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Motion Perception Models

A motion perception model is a theory or computation
that relates visual stimuli or visual scenes that contain
motion to the motion perceptions and motion-related
actions of observers. We restrict ourselves here to
formal mathematical and computational models. We
can know about another person’s perceptions only by
his or her observable responses. Therefore, the input
to a motion model is a quantitative description of a
stimulus or scene, the output is a predicted response.
In a mathematical motion model, a stimulus (such as
a moving sinewave grating) is described by an equa-
tion. For example, a mathematical theory might make
a prediction, for sinewave gratings, of the probability
that an observer could correctly discriminate a par-
ticular leftwards-moving grating from a rightwards-
moving grating.

In a computational theory, the stimulus typically is
described in terms of an x, y, ¢ cube (see Fig. 1a). For
example, the scene facing a pilot landing an airplane
can be described in terms of the luminance at each
point (x, y) of the pilot’s visual field as a function of
time ¢. The theory might predict the pilot’s perceived
orientation and velocity relative to a runway. In a
psychophysical experiment (in an aviation simulator),
the perception would be measured by asking the pilot
to set a marker to the spot at which he believes the
aircraft is heading at the moment of testing. In a more
complex simulation, the theory would predict the
manipulation of the controls in a real or simulated
aircraft.

Motion theories themselves break down into com-
ponents: pure motion processing, and subsequent

perceptual, decision, and motor components. Even the
pure motion processing is now believed to consist of
several stages: motion direction is computed first, then
velocity, then more complex motion computations
that incorporate velocity at many locations to derive
velocity gradients—curl, shear, and divergence-—and
finally, structure-from-motion, a computation in
which the 3-D structure of an object or environment is
derived from the complex properties of the 2-D motion
field.

1. Historical Background

The formal psychophysical study of motion perception
is usually traced to Exner (1875), who produced a
spark at one spatial location x, followed after a short
interval At by a spark at an adjacent location x,. For
a wide range of distances Ax between the locations
and of time intervals Ay, observers perceived motion
between the two locations. This is often called ap-
parent motion (in contrast to real motion), because
there is no instantaneous movement of the stimulus.
Exner’s observations, elaborated by Wertheimer
(1912), ultimately became a cornerstone of Gestalt
Psychology as the Phi phenomenon: The whole, which
includes a perception of motion, is more than the sum
of the parts—two static flashes.

One might have expected that demonstrations of
stroboscopic motion in the 1830s, which preceded
Exner, and the later advent of motion pictures early in
the twentieth century would have demystified apparent
motion. It is perfectly obvious that as the number of
frames per second in a motion picture increases, its
representation of motion more and more closely
approximates real motion. Phi is a special case of only
two frames of a movie that depicts motion. Although
a simple theory that encompasses both sampled
(apparent) and continuous (real) motion was pub-
lished by Fourier (1822), it was not applied to motion
until more than 150 years later.

2. Fourier Analysis of Motion Stimuli

Fourier analysis is now regarded as the default motion
model, or better perhaps, as the default description of
motion itself. As noted above, when color is neglected,
a stimulus is characterized by the luminance falling at
a point x, y at time ¢ in the 2-D visual field. Suppose
the x dimension is sampled at n, points, the y
dimension at n, points and the ¢ dimension at n,
points. Then it requires N =n,_xn, xn, points to
describe the visual stimulus. In computer terminology,
one would say the n,, n,, n, stimulus cube consists of
N voxels (units of volume). Whereas visual space is
three-dimensional (it takes three numbers to describe
the location of a point in 3-D space), the dimen-
sionality of the stimulus cube is N, because N numbers
are required to describe it.
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Figure 1

(a) A stimulus cube illustrating eight successive frames in the left-to-right movement of a vertical black bar. (b) An
x, ¢ cross section of (a). (¢) Same as (b) with a sinewave (the dominant sinewave component in (a) superimposed. (d)
X, t cross section of a sinewave grating that is moved continuously. The arrow represents the direction of movement.
(e) x,  cross section of a sinewave grating that is sampled every 90 degrees. The arrows represent directions of
movement. (f) Fourier amplitude spectrum of (d). The axes represent the frequencies f, and f; of the Fourier
components. The weight of the points represents the amount of the indicated component. The arrow(s) represent
the Fourier component(s) corresponding to the direction(s) of movement as (e). (g) Fourier amplitude spectrum of
(e). Axes similar to (f) (after Chubb and Sperling 1985 and 1989)

A discrete Fourier transform describes an n_, n,, n, That is, the same space-time stimulus is simply viewed
stimulus cube as the sum of N =n, xn, xn sineand  from a different vantage point; all the relational
cosine component waves. The Fourier representation properties within the stimulus remain unchanged. The
is equivalent to a rotation in N-dimensional space. Fourier representation of a sampled motion stimulus
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(e.g., a Phi stimulus or a motion picture) has all the
same components as the continuously moving stimu-
lus plus some extra components that represent the
sampling function (Fig. 1). Watson et al. (1986)
propose a useful rule of thumb to determine whether
an observer can discriminate a continuously moving
from a sampled stimulus: Discrimination requires that
at least one of the extra temporal frequencies intro-
duced by sampling is less than 30Hz and less than 30
cycles per degree (cpd).

The Fourier representation of the typical Phi
apparent-motion stimulus contains many sampling-
produced frequencies below 30Hz and 30cpd. There-
fore, according to the Fourier model, Phi is easily
discriminable from a continuously moving stimulus.
But it is perceived as moving because it also contains
the same motion components as a continuously mov-
ing stimulus.

3. Reichardt Detector for First-order Motion

The Fourier model is a descriptive theory. It does not
specify the actual processes by which motion is
perceived. The first computational motion process
theory was proposed by Reichardt (1957, 1961) to
account for motion-induced responses of the beetle,
Chlorophanus. Reichardt’s theory was adapted for
human vision by van Santen and Sperling (1984,
1985). According to their theory, corresponding to
every small neighborhood of the visual field, there is
an array of Reichardt detectors of different scales
(from small to large) and different orientations (from
0to 179 degrees) that compute motion direction in this
neighborhood. Motion is detected according to a
voting rule, that is, a rule for combining the outputs of
the detectors. The voting rule that seems to be used for
computing motion direction when there are many
oppositely directed motions (as is typical in sampled
motion), is to choose the direction that has greatest
number of Fourier components above threshold, i.e.,
the greatest number of active Reichardt detectors
(Sperling et al. 1989).

Figure 2 shows an elaborated Reichardt detector
(ERD). SF, and SF, represent spatial filters in
adjacent spatial locations. To detect left-to-right mo-
tion, the output of SF, is delayed by filter TF. When
an object traveling in the external world from SF, to
SF, reaches SF, with the same delay as TF, then the
direct signal from SF, and the delayed signal from
SF, both arrive at the comparator at the same time.
Basically, a delay-and-compare computation is at the
core of all motion theories; in the Reichardt detector
the comparison operation is multiplication (covari-
ance).

It is assumed that the inputs to a Reichardt detector
are point contrasts. That is, the contrast of the mean
tuminance /; is taken as zero. A point contrast less than
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Figure 2

Elaborated Reichardt Detector (ERD). It computes
motion direction from two inputs that sample the
visual display in two spatial areas A and B. SF, and
SFy denote the linear spatio-temporal filters (receptive
fields) that may have different spatial distributions. In
the R (‘right’) subunit of the detector, the output of
SF, at A is delayed by the temporal delay filter TF and
then multiplied ( x ) with the direct output from SFy. In
the L subunit of the détector, the output of SFy is
delayed by the temporal delay filter TF and then
multiplied with the direct output of SF,. The sign of
the difference between the outputs of L and R subunits
determines the perceived direction of motion. Qutputs
greater than zero indicate stimulus motion from A to
B; outputs less than zero indicate stimulus motion from
B to A (reproduced by permission of the Optical
Society of America from Lu and Sperling 2001)

0 means the luminance at that point is < [, a positive
point contrast means the luminance at that point
is > [,. If both the straight-through input and the
delayed input are positive, or both are negative, then
the multiplication produces a positive output indicat-
ing motion (in this case) from left to right. If either
input is zero, the comparison produces a zero output,
and if one input is positive, and the other negative, the
ERD signals motion in the reverse direction.

The Reichardt detector has two subunits, one which
detects left-to-right motion, the other which detects
right-to-left motion. Ultimately, the outputs of these
two subunits are subtracted. Thus, a positive output
for the Reichardt detector of Fig. 1 indicates left-to-
right motion, a negative output indicates right-to-left
motion. The subtraction is critical for filtering out
certain nonmotion signals that stimulate the subunits.
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For example, a simple flickering light (which contains
no net motion) stimulates each subunit equally. These
subunit outputs are canceled in the final subtraction so
that the output of the Reichardt detector is zero for
nonmoving stimuli.

In the visual system, prior to motion detection,
there is very powerful contrast gain control (Lu and
Sperling 1996). To observe the properties of the
Reichardt detector in human psychophysics requires
using stimuli with sufficiently low contrast (e.g., less
than a few percent) so that they are relatively undis-
torted by the gain control. With such stimuli, several
very surprising, counterintuitive predictions of the
Reichardt detector have been verified (van Santen and
Sperling 1984). For example, adding a uniform-field
flicker to a moving stimulus has absolutely no effect on
its visibility unless the flicker happens to be of the same
temporal frequency. On the other hand, when the
flicker has the same temporal frequency as the motion
stimulus, depending on the relative phases, the flicker
can either enhance or reverse the direction of apparent
motion. The successful prediction of a number of such
psychophysical results has established the Reichardt
computation as the algorithm of human motion-
direction detection.

In addition to the Reichardt detector, two appar-
ently different theories of motion have been proposed:
motion energy detection (Adelson and Bergen 1985)
Hilbert transforms (Watson and Ahumada 1985).
These have been shown to be computationally equi-
valent to the Reichardt detector (Adelson and Bergen
1985, van Santen and Sperling 1985). Consequently,
there is only one theory of human motion-direction
detection, although it can be framed in different
ways.

4.  Velocity Detection

The output of the Reichardt detector gives only a
measure of motion-strength in a particular direction,
not a measure of velocity. Although velocity cannot be
derived from an individual Reichardt detector, it can
be derived from the outputs of an array Reichardt (or
equivalent) detectors. Each individual Reichardt de-
tector is optimally stimulated by a particular velocity;
an appropriate voting rule enables an array of Reich-
ardt detectors to signal the most likely velocity.

5. Second-order Motion

It had long been suspected that motion detection may
involve different systems. Following the description of
Phi motion, introspectionists proposed other categ-
ories (o, f5, and y: Kenkel 1913; A: Korte 1915), in
addition to Phi to describe experiential aspects of
motion perception (for a review, see Boring 1942).

10096

Figure 3

Space-time representations of drift-balanced and
microbalanced stimuli that selectively stimulate the
second-order motion system. The overlay shows Hubel-
Wiesel receptive fields oriented at +45 degrees and
—45 degrees and illustrates that both have exactly the
same expected outputs. Detection of left-to-right
motion (or upper-left to lower-right slant) requires
second-order motion (or second-order texture
processing). (Adapted from Chubb and Sperling 1989.)

Latein the twentieth century, a number of dual process
theories of motion were proposed, the most influential
being the short- and long-range motion systems
proposed by Braddick (1974). However, it was not
possible to evaluate such theories because no explicit
motion computation had been proposed, merely in-
cidental properties, such as sensitivity to binocular
versus monocular presentation.

With the establishment of the Reichardt model for
motion perception, it quickly became obvious that
observers perceived strong apparent motion in some
stimuli that were completely ambiguous to Reichardt
detectors and which (equivalently) contained no useful
Fourier motion components. Chubb and Sperling
(1988) originally characterized such stimuli as having
two properties, drift-balanced and microbalanced.
Originally, these stimuli were said to activate a non-
Fourier motion system. Later the terminology of
Cavanagh and Mather (1989) was adopted. ‘First-
order motion’ refers to motion that can be detected
by Reichardt detectors; ‘second-order motion’ refers
to apparent motion that is invisible to Reichardt
detectors.

In a drift-balanced stimulus, for every Fourier
component that represents motion in one direction,
there is another Fourier component, with the same ex-
pected amplitude, that represents motion in the oppo-
site direction. In other words, a drift-balanced stimulus
cannot convey Fourier motion. A microbalanced
stimulus 1s a stimulus that remains drift-balanced
when viewed through any space-time separable win-
dow. In other words, every neighborhood or combina-
tion of neighborhoods of a microbalanced stimulus is
itself drift-balanced. An immediate corollary is that
a microbalanced stimulus is ambiguous for every
Reichardt detector or combination of detectors. Fig. 3
shows two examples of microbalanced stimuli in
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which apparent motion is easily perceived. Indeed,
observers cannot discriminate when they perceive
motion whether the motion computation is a first-
order or a second-order computation.

The model for the detection of second-order motion
is the same as the Reichardt model for the detection of
first-order motion with one exception. Prior to motion
detection, the stimulus is processed by a texture
grabber—a linear filter plus a rectifier—that produces
a positive output that is proportional to the amount of
texture present in a neighborhood. Thus the first-order
motion system computes the motion conveyed by
photons, the second-order motion system computes the
motion conveyed by features (the unit of texture).

6. Third-order Motion

There is now a large class of exotic stimuli that are
invisible to first- and second-order motion compu-
tation in which observers clearly see motion (Lu and
Sperling 1995b). The basis for this motion compu-
tation appears to be figure-ground. The clearest
example is a sequence of frames, each of which
contains a square that is perceived as figure and in
which the square translates in a consistent direction
(Fig. 4). In frame 1, the figure is a red square on a green
background, in frame 2, a high contrast texture on a
low contrast background, in frame 3 a stereoptically
produced square that appears closer to the observer
than the background, and so on. The only common
element linking these frames to permit a motion
computation is that the area perceived as figure moves
in a consistent direction.

It has been assumed that the actual motion algo-
rithm, i.e., a Reichardt computation, is the same for
all motion systems, only the preprocessing of the input
differentiates them. The first-order motion system
computes motion more-or-less directly from the raw
representation of the stimulus (the luminance cube,
i(x, », 1)). Second-order motion operates on an input
that represents the ‘amount of features f(x, y, f) at
each location x, y, f. Third-order motion computes
motion from a salience field s(x, y, 7) in which positive
values of s(x, y, t) denote ‘figure’ and zero denotes
‘ground.’

7. Properties of the Three Motion Systems

Most natural motion, as well as most stimuli used in
motion experiments, stimulates all three motion sys-
tems. Although it can be difficult to stimulate only one
system, such experiments have revealed the properties
of each of the three systems. First- and second-order
motion seem to be primarily monocular (computed
separately for stimuli arriving in each eye) and quite
fast with a ‘corner’ frequency of 10-12Hz. The third-

Color red
green
2 high
Contrast contrast
low
contrast
3
Depth foreground
background
4
Slant slant L
slant R
Figure 4

A sequence of frames for stimulating only the third-
order motion system (after Lu and Sperling 2001)

order system is relatively slower, (corner frequency
typically 4Hz) and exclusively binocular, and is
indifferent to the eye of origin. When a monocular
image contains a third-order stimulus, but the bin-
ocularimage does not, the motion cannot be processed
by the third-order system (Solomon and Morgan
1999). On the other hand, only the third-order system
can decode isoluminant chromatic motion (Lu et al.
19994, 1999b), and motion in dynamic random-dot
stereograms. Unlike first- and second-order motion,
third-order is influenced strongly by attention (Lu and
Sperling 1995a). Brain trauma can selectively destroy
first-order (but not second-order) motion perception
in one hemifield (Vaina et al. 1998) or second-order
(but not first-order motion) perception (Vaina and
Cowey 1996).
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8. Structure from Motion, KDE

When a twisted wire is rotated in front of a projection
lamp so that it casts a shadow on a screen, the 2-D
shadow appears to be a dynamically rotating 3-D
object. Originally labeled the kinetic depth effect
(KDE) by its discoverers (Wallach and O’Connell
1953), the process of the recovery of the 3-D shape is
now known as ‘structure from motion.” The shadow
demonstration shows that cues such as texture, shad-
ing, and object familiarity are not necessary for the
recovery of 3-D shape. Ullman (1979) provided the
first formal theory for the recovery of 3-D structure
from 2-D motion. He was able to prove that three
independent views of four identifiable noncoplanar
points were sufficient to recover the 3-D structure of a
rigid, rotating object. Subsequently, numerous alge-
braic algorithms have been proposed for the recovery
of a rigid 3-D structure from »n views of m points. In a
technical sense, these algorithms do not involve
motion, merely different views. In a practical sense,
they fail to recover even slightly nonrigid motion or
rigid motion from imperfect data.

An alternative algorithm for deriving 3-D structure
from 2-D motion uses a ‘hill climbing’ optimization
procedure. The x, y coordinates of the structure are
given in the image, only the z coordinate (the distance
from the observer) is unknown. In frame 1, z values are
randomly assigned to each point. In general, frame 2
will be inconsistent with a rigid rotation of the object
defined by frame one. Therefore, the z-values in frame
2 are perturbed in such a direction as would have made
the rotation from frame 1 to frame 2 more rigid. By
successive improvements, such an algorithm can con-
verge to a rigid object when one is presented, and can
also accurately represent a slowly changing nonrigid
object (Ullman 1984).

Imagine black spots painted on a perfectly trans-
parent surface, such as a mound. When such a mound
is stationary and viewed from above, it is perceived as
a flat, spotted plane. As soon as it starts to move, the
3-D shape of the surface is instantly apparent. This is
another example of the KDE. However, suppose that
as the surface moves, in each new frame, half the dots
are replaced, so that dots have a lifetime of only two
frames (Sperling et al. 1989). The two-frame lifetime
would cause most algorithms that depend on frame-
to-frame dot correspondence to fail. On the other
hand, a motion flow-field can be calculated perfectly
well in such a display. And observers perfectly well
perceive the 3D depth. Indeed, complex properties of
the motion flow-field (such as shear) are sufficient to
enable (computational) recovery of latent 3D object
structure (Koenderink and van Doorn 1986).

9. Heading and Self-motion

When we move in a textured environment, the self-
movement generates a motion flow-field on the retina.
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For the special case in which we fixate on the point
towards which we are moving, the flow-field is one of
divergence from a focus of expansion, and the focus
itself is the point towards which we are moving.
However, if we happen to be looking elsewhere,
matters are much more complicated. These complica-
tions can be mathematically resolved, and it can be
shown that such flow-fields contain sufficient infor-
mation to determine the heading direction (Longuet-
Higgins and Prazdny 1980) and other useful quantities,
such as time to contact (Lee 1980).

The computation of structure from motion (and
presumably also heading direction) has been shown to
rely almost entirely on the first-order motion system
(Dosher et al. 1989). This is probably a matter of
spatial resolution. The computation of complex prop-
erties of a flow-field (such as shear and divergence)
requires accurate comparison of velocity in adjacent
neighborhoods. Computing small velocity differences
between large velocities demands more resolution that
is available in the second- and third-order motion
systems. '

See also: Fourier Analysis; Motion Perception:
Psychological and Neural Aspects; Sensation and
Perception: Direct Scaling; Statistical Pattern Recog-
nition; Vision for Action: Neural Mechanisms; Vision,
High-level Theory of; Vision, Low-level Theory of;
Vision, Psychology of; Visual Space, Geometry of
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