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Abstract. The classical model of energy levels consists of a bumpy sur-
face upon which a marble rolls freely. Dips in the surface represent stable
states in which the marble can become entrapped. This physical theory is
applied to three major processes of binocular vision: accommodation (a),
horizontal vergence (v), and fusion (u). A simple model illustrates how the
same external stimulus may produce different. vergence states, depending on
the preceding stimuli, and it shows how extreme values of vergence can be
achieved. The model applies directly to vertical vergence and to torsional eye
rotations. A similar model fits the accommodation and fusion systems and can
be extended to account for the v-a-u interactions.

The peural structures underlying the systems differ. The neural theory
of fusion proposes two neural binocular fields (NBFs): a primary NBF for
fine details and for fine depth discrimination in the stimulus (its outflow
corresponds to the cyclopean binocular view) ; and a secondary NBF for coarse
details and large depth signs (its outflow directs fine analysis to relevant
portions of the visual field, it contributes nothing except coarse depth signs
directly to the cyclopean view). The fusion model illustrates how the same
retinal stimulus may produce different stable perceptual states, depending on
recent stimuli, and it accounts for fusion and rivalry within the same system
and the same neurons. Appendix A offers a general definition of image blur,
and. Appendix B a quantitative analysis of the multistable phenomena in
rivalry and fusion.

Because the two eyes provide two different views of the world, a
person with normal binocular vision can determine the relative
depth of unfamiliar objects in his field of view when he and the ob-
jects are motionless. This ability is called stereoscopic depth per-
ception—or, often, just binocular depth perception, to emphasize its
dependence on both eyes. The evolutionary value of binocular depth
perception is obvious, and some interesting and complicated adapta-
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tions have evolved in our visual systems to facilitate it. This
article explores the intricate interrelationships between the three
most important mechanisms for binocular vision: the mechanisms
for vergenee, for accommodation, and for fusion.

The most important subjective phenomenon of binocular vision
is binocular fusion. When corresponding points of the retinas of the
two eyes are stimulated with light from the same (or nearly the
same) object, only one object is seen. We say the two retinal images
are fused. Ordinarily, the experience of one object is so compelling
that fusion requires no further definition.

Binocular fusion is possible only when stimuli fall on correspond-
ing—or nearly corresponding—points of the retinas. To clarify
what we mean by corresponding points, we suppose the eyes are
looking at a point at infinity. (For practical purposes, this means a
point on an object several hundred yards or more away.) Then, the
lines of sight of the left and of the right eye are parallel, and iden-
tical images fall on each retina. For the moment, we define cor-
responding points as the corresponding retinal points under these
retinal images.? To view a near object the eyes must rotate inward
(converge) in order for the object to stimulate these corresponding
points. The vergence movements of the eyes are the second remark-
able adaptation of binocular vision. When the eyes are verged on a
particular object, only objects in a limited range of depth planes
can be fused; objects outside this range are unfused.

1For the purist, binocular fusion can be defined objectively in terms of
shape (or pattern) invariance. The principle is that small lateral translations
(in opposite directions) of the stimuli to the two eyes leave the shape of a
fused pattern unchanged. Additionally, it also must be shown that both eyes’
stimuli contribute to the perceived pattern. These are sufficient (but not
necessary) conditions. Specifically, a pattern of illumination to the left retina
[lz, )] and to the right retina [¥(z, )] are binocularly fused if there exists
a Az, |Az| > 2 min, such that when the new pattern [l(z + Az, ¥) and
I'(x — Az, y)] replaces the original pattern on the retinas, the observer re-
ports the shape of the new pattern is the same as that of the old. Its depth
in space may or may not have changed. To ensure that both ! and ¥ con-
tribute to the shape of the pattern, there must be points on the left stimulus
[e.g., bright spots of light 3(z:, 1), 8(zs, ¥s) . . .] and on the right stimulus
[¥(zy, y'), ¥(2s, ¥') . .. ] such that the two sets of points [3(z:, ¥:) and
3(z¢, ¥+)] are all different and the observer reports seeing points from both
sets in any neighborhood where fusion is being tested. The motivation for
this definition derives from the neural model of fusion.

2 This actually is & definition of ‘corresponding coordinates.’ Subsequently,
‘corresponding points’ are defined as those whose projections intersect in the
middle layer of the neural binocular field. In the neighborhood of fixation, cor-
responding coordinates and corresponding points coincide exactly.
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The third major phenomenon of binocular vision is accommoda-
tion, whereby the lens of the eye varies its focusing power so that
the depth plane of the object being viewed is in focus on the retina.
Though accommodation is also characteristic of monocular vision,
it is important in binocular vision because it is closely linked to
vergence, That is, accommodating for a near object causes con-
vergence, and convergence ¢auses accommodation.

A priori, neither fusion nor vergence nor accommodation would
be necessary for binocular depth perception. However, once a mech-
anism of fusion has developed, the evolution of accurate vergence
and accommodation would enable the fusion mechanism to evolve
further so as to substantially increase its power of depth discrim-
ination. In fact, once all three mechanisms exist, there are such
great advantages to binocular vision to be gained from their
mutual interactions that these interactions are virtually prede-
termined. This paper presents two kinds of models, physical and
neural, to account for the fundamental phenomena of vergence, ac-
commodation, and fusion, and for the interactions between the three
mechanisms.

Multiple stable states and path dependence. Our starting point
is an easily observed phenomenon: the existence of multiple stable
states. For example, Helmholtz, writing in the last century, ob-
served that “the eyes also may be made to diverge by viewing stereo-
scopic pictures and gradually separating them farther and farther
apart, all the time trying to fuse them into a single image. I am
able in this way to produce a divergence of the lines of fixation of
my eyes amounting to as much as eight degrees.””®

To restate Helmholtz’s procedure in more formal terms, he pre-
sented a picture (L) to the left eye and an identical copy (L’) to
the right eye by means of an optical device, such as a Wheatstone
stereoscope. By moving L slowly to the left and L’ to the right, he
was able to cause his eyes to follow the movement of L and L/, and
thereby to diverge. But if L and L’ had first been presented at the
extreme separation of 8 deg,, his eyes could not have diverged upon
them; his eyes would have remained approximately in their initial
position. This demonstrates multiple stable states of vergence.
When L and L’ are ‘separated’ by 8 deg.—that is, when the ver-

3H. von Helmholtz, Treatise on Physiological Optics, 3d ed. J. P, C.
Southall (trans.), 8, 1924 (reprinted 1962), 58.
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gence angle required for fusion is 8 deg.—then the eyes may some-
times verge correctly and at other times be in their neutral position.
There are two stable states of vergence for the same external stim-
ulus. The particular vergence state attained by the eyes depends
not only on the present stimulus but also on the sequence of previous
stimuli.

As we shall see, Helmholtz’s demonstration involves more com-
plications than are apparent at first. First, the amount of diver-
gence that can be attained depends on the choice of stimulus pictures
(L and L”); for example, a greater amount of divergence is possible
when pictures contain many high-contrast details. Second, with
practice, some voluntary divergence is possible. Whether or not
voluntary divergence suffices to produce fusion depends on the
amount of divergence that is required and on the particular pic-
tures (L and L’) being viewed. Third, fusion of L and L’ can occur
even when the eyes are not fully verged on L and L’. The first two
complications, and of course the basic observation, are shown be-
low to be immediate consequences of the physical model of vergence.
The third complication follows from the joint action of the models
of vergence and fusion.

It often is convenient to represent stimuli or responses as points
in an n-dimensional space. In the example above, the vergence
response can be represented in one-dimensional space as a point
along a line, where the distance of the point from the origin repre-
sents the vergence angle of the eyes. The sequence of responses (to
a sequence of stimuli) can be thought of as a path from point to
point in this space. The conventional way of saying that a response
depends not only on the present stimulus but also on the sequence
of past stimuli is to say that the response is path dependent. That
is, how the eyes respond to a particular stimulus (whether they
verge or not) depends on their current vergence state as well as on
the current stimulus. Because the current vergence state depends on
previous stimuli, the response depends on both current and past
stimuli.

In all the examples in this paper, path dependence and multiple
stable states refer to the same phenomenon. The only way to
achieve multiple stable states (different responses to same stimu-
lus) is by taking different stimulus and response paths prior to
Presentation of the same final stimulus; the only way to demon-
strate path dependence is to achieve different stable states to the
same final stimulus (by virtue of having taken different paths).
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Thus, multiple stable states and path dependence are logically
equivalent. '

Multiple stable states also occur in the fusion process. For ex-
ample, suppose that vergence of the eyes is artificially maintained
on a particular depth plane by optically canceling vergence mo-
tions.* Fusion is possible not only of objects in that particular depth
plane but also of objects in other depth planes. The fusion or non-
fusion of a particular object in a particular plane exhibits the same
kind of multiple stable states as the vergence motions of the eye.
That is, whether the object is seen as fused or double depends on
whether it was seen as fused in its previous position, and so on.
Finally, by methods to be described later, we may also observe
multiple stable states of accommodation (focusing of the eye).

The multiple stable states of vergence, fusion, and accommoda-
tion follow from the same elementary principles, are representable
by the same kind of physical model, and exhibit analogous cor-
related phenomena. Although the physical models of vergence, fu-
sion, and accommodation are formally the same, the underlying
mechanisms are different. The last main section of this article
contains a speculative suggestion toward a neural model of these
mechanisms.

THE PHYSICAL MODEL—WITHOUT INTERACTIONS

The classical model of energy levels consists of a bumpy surface,
the energy surface, upon which a marble rolls freely. Dips in the
surface are called energy wells; they represent stable states in
which the marble can be trapped. Here, this classical model is ap-
plied to the three major processes of binocular vision: vergence
(v), accommodation (a), and fusion (u). In these applications, the
lateral position of the marble represents the instantaneous value
of the depth plane of v or a or u. For example, the basic surface
governing horizontal vergence is bowl-shaped, the shape being
determined by internal factors. The marble rolls toward the center
of the bowl, representing the tendency of the eyes to verge to a
neutral position in the absence of a stimulus to vergence. The ex-
ternal stimulus is assumed to add perturbations to the basic surface,
thereby creating new stable states.

¢D. Fender and B. Julessz, Extension of Panum’s fusional ares in binocularly
stabilized vision, J. opt. Soc. Amer., 57, 1967, 819-830.
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The physical model of binocular vision is thus based on a con-
cept that, because of the physical analogy, is called energy (e). For
example, in the case of vergence, the visual system is assumed to
compute the net vergence energy of various possible states of ver-
gence and—within certain limits—to achieve the state which has the
lowest net vergence energy (e,).

Let v denote the vergence angle between the eyes, a their ac-
commodation, and u the plane of fusion. Let ! and I’ denote the
stimuli on the left and right retinas respectively. There are as-
sumed to be two component sources of energy, which add to pro-
duce net energy: displacement energy (g) and image-disparity
energy (h). Displacement energy depends only on the current
states of v, a, and . It represents the amount of energy needed to
displace v, a, and % from their natural resting values to their cur-
rent values. Image-disparity energy depends only on ! and V. It
represents the energy that a visual stimulus can contribute to dis-
placing v, a, and u. ’

The physical model is a particular embodiment of a set of equa-
tions that expresses the general principles outlined above. The
equations deal with the quantities e, g, and A, which represent
respectively the fotal, the internal, and the external components of
energy. Here the subscripts v, @, and u indicate the system whose
energy is under consideration; and the variables v, @, and u repre-
sent the current values of vergence, accommodation, and fusion.
Commensurate units for v, a, and u themselves are defined in the
following sections. The equations contain all the interactions of the
model and are presented here to provide an overview. They are not
necessary for understanding the principles of the model, however,
and readers who are not interested in mathematics should simply
skip to the next section, on the model of vergence.

&, -+ ) = g0 —a) + h(, 1) (1]
efa, +-- ) = g.(a — v) + hu(l; ") (2]
eu(u: Byt 1) = gu(u -9, z) + hs(l, l': z)’ zCR [3]

Equation 1 represents vergence; Equation 2 represents accommoda-
tion; and Equation 3 represents a set of equations for fusion, one
for each region (2) of the retina (R). Each equation may be
thought of as describing an energy surface upon which rolls a mar-
ble, whose projection on the v, a, and u axes respectively represents
the value of v, a, and u.
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Equations 1-3 do not give information about the dynamics of
v, a, u, because time does not enter into them. Dynamic specification
of v, a, and u requires another set of equations. Let 1, xs, 3 repre-
sent v, a, and u respectively. The dynamics of z, are defined by the
first-order differential equations:

3,
T I TR N O
The right-hand term of each Equation in 4 represents force acting on
the marble; the coefficients ki, and ko respectively reflect the
marble’s mass and the friction of the medium.

Although only the spatial derivative of energy (force) enters
into Equations 4, the ensuing description of the systems is in terms
of energy because it gives better intuitive insight. We may now
begin to deal with the explicit definition of the quantities in Equa-
tions 1-3, the interpretation of the resulting equations, and their
comparison with data.

Model of Vergence

Units of vergence. The horizontal vergence of the eyes is best ex-
pressed as the angle between their lines of sight. The angular unit
of vergence is particularly convenient because it fits in with the
spherical coordinate system used to describe the position of stim-
ulus points in space and with the dioptric system used to measure
accommodation. However, binocular vision is concerned mainly
with depth, so it is useful to keep in mind that there is a one-to-one
correspondence between the angle of vergence and the distance
from the eyes to the verged-upon point. (We confine ourselves here
to points directly in front of the observer, so-called symmetrical
vergence.) The angular measure of vergence can thus be considered
to be a transformed measure of depth, and in the discussion that
follows, the term vergence position is used to evoke the idea.of the
distance at which the eyes are verged. The sign convention followed
is that convergence angles (lines of sight intersect in front of the
observer) are positive and correspond to positive distances; di-
vergence angles (lines of sight intersect behind the observer) are
negative and correspond to negative distances (i.e., behind the
observer). In the case of divergence, of course, ‘distance’ does not
have the usual physical interpretation, and we have no need of the
distance transformation.
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In this section on vergence, we assume that accommodation of
the eye’s lens is fixed, at a value corresponding to accurate focus of
objects at the given viewing distance (e.g., 1 m.). To a first approx-
imation, accommodation does remain fixed if stimuli are confined
to a particular viewing distance (e.g., 1 m.). To maintain accom-
modation more accurately at a given nominal value would require
a negative-feedback optical device.5

Vergence-displacement energy (g,). For any given amount of
accommodation of the eye lens, there is a natural vergence angle
(vo) of the eyes. That is, the natural vergence angle is the angle
formed by the lines of sight of the eyes in the absence of any stim-
ulus to vergence. (For example, a stimulus seen only in one eye is a
stimulus to accommodation but not directly to vergence.)

When the vergence angle of the eyes is any value (v), vergence
displacement (Av) is defined as the angular deviation of the eyes
from the natural vergence angle: Av = v — v,. Vergence-displace-
ment energy is defined as a function of Av: as g,(Av), where
g,(0) = 0; that is, vergence-displacement energy is zero when the
eyes are in the natural vergence angle. Any deviation (Av) of the
eyes from the natural vergence angle is assumed to have a larger
vergence-displacement energy, according to a U-shaped function
such as that illustrated in Figure 1.

9
VI \ /V(M,
L 2 av
o

Fra. 1. Vergence-displacement energy, g.(Av), as a function of vergence dis-
placement, Av. The marble representing vergence is at its equilibrium posi-
tion, Av = 0. Positive values of Av indicate convergence (relative to the
equilibrium position) ; negative values indicate divergence. In this example,
go(Av) = log, (1 4 2) — z — 307 where z = [1 4+ (Av)2]*%. This surface
is the gravimetric analog of Hook’s law: the horizontal restoring force (f)
on the marble due to gravity is f = —kAv.

The physical analogy here is a simplified version of the complete
analogy, which is described below after all interactions have been
considered. The curve g,(Av) of Figure 1 represents a physical

& Whenever accommodation strays from its nominal value, & negative-feed-
back optical device so alters the viewing distance of the objects that the eyes’
normal attempt to maintain accurate accommodation then restores accommo-
dation to the nominal value.
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surface, a ‘bowl’” A small marble rolls on this surface, and the
projection of the marble’s position on the horizontal axis represents
the vergence angle of the eyes. The rule is that the marble tends
to roll downhill, due to gravity. The force on the marble is pro-
portional to the slope of the bowl (—de/dv, Equations 1 and 4);*
its motion depends on its mass and the friction it encounters (ky
and kg respectively in Equation 4).

The g, surface of Figure 1 represents the internal factors con-
trolling vergence in the absence of an external stimulus to vergence.
On this surface the marble rolls to a stable equilibrium position, to
Av = 0, the center of the g, (Av) curve. In order for the model to
correspond to the eyes, the coefficient of mass of the marble is
chosen sufficiently smaller than the coefficient of friction so that
the marble rolls to the bottom without overshooting. In a real bowl,
for example, this situation is achieved by filling the bowl with
fluid. To move the marble from Av = 0 requires ‘work,’ or ‘energy.’
The source of energy is image-disparity energy, described below.

Vergence image-disparity energy (h,). Vergence image-disparity
energy (hy) represents the extent to which two retinal images
agree. It is defined as follows. Let spherical coordinate systems
for each retina be defined so that = y = 0 is the fixation point
(center of the visual field, line of sight) and so that corresponding
points of the two retinas are assigned equal values of z and y.
Let the illuminance distributions (images) on the left and right
retinas respectively be l(z, y) and V(z, y). The image-disparity
energy Ah, in a small neighborhood (AzAy) of a point (z, y) is
defined as

Aby(z, ) = [z, y) — Uz, 9)| Dzdy. (3]
That is, Ah is proportional to the absolute value of the amount by
which [ and V differ.

The image-disparity energy (k) is given by summing Ak, (z, y)
over the whole retina (R). In summing image disparity over the
retina, central areas of the retina are given greater weight than
peripheral areas. This selective weighting of the central ares is ac-

8Let ¢ = de(z)/oz. In the system of Equations 1-4, the horizontal force
(f) acting to change the vergence position (v) is defined by f == —ke’. In
the gravimetric analog, f, = —k sin ¢’ cos ¢’ = — ke’/(1 + e’2), which is an
irrelevant complication. The gravimetric analog becomes equivalent to Equa-~
tions 14 as €2 —> 0. Thus, by scaling units appropriately, the gravimetric
analog satisfies the equations.
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complished by multiplying Ah,(z, y) by a weighting function
[w(z, ¥); 0 < w(z, y) < 1] before summing. Equation 6 then
gives vergence image-disparity energy:

h, = Ew(x) )Ah(x7 )

R

~ [[ e, v - 1@, 9l v, v do dy. Q

Equation 6 represents a point-by-point comparison of the left and
right eye’s retinal images (I and ). When ! is identical with 0,
h, is zero. When 1 is not identical with ¥, h, is greater than zero.

In practice, Equation 6 is somewhat inaccurate because it gives
too much weight to large areas where [ and I’ differ slightly, and too
little weight to small areas where ! and ¥ differ sharply (boundary
conflicts). This discrepancy arises because in the nervous system,
each visual image is transformed before the two images are com-
pared in the brain. The difficulty is overcome by not using i(z, ¥)
directly in Equation 6 but 7':l(z, y) where T represents the various
retinal (and subsequent) neural transformations on I, such as
adaptation and boundary enhancement. Another problem with Equa-
tion 6 is that the attention-weighting function [w(z, ¥)] is not
specified. The elucidation of neural transformations and of atten-
tion are interesting problems in visual psychology, but we can
bypass them. The elementary definition of k, by Equation 6 suffices
for the present, providing that w(z, y) is taken as any reasonable
function that decreases as x and y increase.

Calculation of l. Given any external luminance distribution:
(L), we wish to calculate the retinal illuminance distribution (i)-
In general, L and L’ (to left and right eyes respectively) could
occur at any arbitrary distance from the observer and at any di-
rection relative to his head; his eyes could be pointed in some
other direction and be verged at another distance. Qur interest here
is in the effect of vergence upon retinal images, and we can avoid
the hideous complications of this general formulation by restricting
ourselves to symmetrical vergence; that is, to the case of an ob-
server looking at stimuli directly in front of him. For this purpose it
is convenient to define coordinates of the external stimuli (L and
L’) as those of the retinal stimuli they would produce if the ob-
server’s eyes were pointed straight ahead with a vergence angle of
v = 0 (i.e., were verged at infinity.) Spherical coordinates are used,
although so long as we restrict consideration to objects directly in
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front of the observer and to a small neighborhood of fixation, there
is no important difference. between Cartesian and spherical co-
ordinates. The external horizontal coordinate (z) is given in an-
gular units; 2 = 0 represents the projection at infinity of the mid-
saggital plane (the plane through the nose and perpendicular to the
line connecting the centers of the two eyes). Positive values (angles)
of z are to the right. The external vertical coordinate (y) is de-
fined with positive values upward.

When v = 0, the retinal coordinates (z, and y,) and the external
coordinates (z and y) coincide exactly, by definition. When the
vergence angle is v, external and retinal coordinates are related by
z =z, + v/2 (left retina) and z = z, — v/2 (right retina). For
both eyes, it is assumed that ¥ = y,. For example, when the ver-
gence angle is 2 deg., the left eye is rotated 1 deg. to the right
(toward the nose) and the right eye is rotated 1 deg. to the left.
The center of the left retina then is pointed at z = v/2 = +1 deg.

If we neglect the blur of the retinal image caused by the im-
perfect optics of the eye, then the retinal illuminance distributions
(I and I’) are exactly proportional to the external luminance dis-
tributions: I(z,, y) = kL(z, y) and U(z,, y) = kL’(z, y), where
k expresses the conversion factor from external luminance to retinal
illuminance. Substituting the appropriate external coordinates for
the left and right retinal coordinates gives simple expressions to
relate I and L in terms of the eyes’ vergence angle (v):

Wz —v/2,y) = kL(z,y) and U(z +v/2,9) = kL'(z, y).
The expressions for ! and I’ contain the relevant information about
the external stimulus, so that L and L’ are not needed in subsequent
calculations.

Caleulation of hy(Av). Let the external stimuli be L(z, y) and
L’ (z, y). Let the eyes be in their natural vergence position (v,) for
the state of accommodation, so that the retinal stimuli are I(z —
vo/2, y) and V(x + vo/2, y). The vergence image disparity (k)
for this pair of retinal images is given by substituting ! and !’ into
Equation 6. Now, let the eyes alter their vergence by Av, to v =
vy + Av. The vergence image disparity still is given by substituting
I and ¥ in Equation 6; now it is a function of Av, namely, '

m(an = [[ e - @+ 20/2,4] |
- = Ve + @ + A/2, 9]l we, y) dzdy. [T}
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Equation 7 is at the very heart of the theory so it is important
that the reader understand it completely. To help intuitive under-
standing of Equation 7, the concept of a cyclopean image is intro-
duced here. Our two eyes receive different retinal images (I and
V') of the world; yet, we are unaware of having two separate images
and perceive things as single, like the one-eyed Cyclops. For the
moment we define the cyclopean image (*I) simply as the sum of
the two separate images:

Mz, y) = Uz, y) + V(z, y).

(Later, in the section on the neural model and its predictions for
binocular rivalry, we shall see that the subjective cyclopean view
is & much more complicated combination of ! and ¥ than their
sum.)

When the external stimuli (L and L’) remain fixed, then the
retinal images (I and ”, and hence *I) depend on the vergence
angle of the eyes. Figure 2¢ illustrates a pair of external stimuli
(L and L’) ; the cyclopean images that would result for two differ-
ent vergence positions are shown in Figure 2ab.

The critical term of Equation 7 is [l — I|, which is like a
cyclopean image except that ! and I are subtracted instead of
being summed. Since image-disparity energy (h,) depends on the
difference between I and V, it is more nearly zero the more nearly
identical I and I’ are. For the vergence position v, of the eyes
illustrated in Figure 2a, h,(vo) is at a relative minimum because
the two rectangles are optimally superposed. The image-disparity
energy hy(vo) is not zero, however, because neither the rectangles
nor the disks superpose exactly, and thus they fail to cancel com-
pletely. When the vergence angle of the eyes is v;, the two disks
are superposed but the rectangles fail to superpose. Image-disparity
energy calculated at Av, again is at a relative minimum, but
hy(Avi) > h,(0) because of the large contribution of the now
unsuperposed rectangles.

Figure 2 also illustrates that changing vergence of the eyes is
equivalent to keeping the eyes stationary but shifting the positions
of the physical stimuli (L and L’). The image-disparity energy
function h,(Av) is an index of the similarity of L and L’ as a
function of their relative position. However, Equation 7 is written
in terms of the retinal stimuli (! and I’) in order to emphasize that
the eyes need not actually verge to compute k,(Av). A single pair
of retinal images (I and I), obtained in a single glimpse, contains
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Fia. 2. Calculation of image-disparity energy, ho(Av). (d) The eyes are in
the natural vergence position, v,, induced by accommodation on the retinal
stimuli, L(z, y) and L’(z, y), illustrated in (c); the vertical position of L
and L’ is arbitrary. (a) Cyclopean image illustrating I(z — v/2,%) + V(z +
v/2,y), from which h.(0) is caleulated. (b) Cyclopean image illustrating
Uz — (o 4+ Av)/29) + Vlz + (vo + Aw)/2y], from which h.(Avs) is
calculated. (e) The hs(Av) for the image pair (c), as given by Equation 7.
The abscissa, Av, is in angular units of vergence. Clockwise rotations of the
left eye and counterclockwise rotations of the right eye are indicated by posi-
tive values of Av, which represent convergence.

all the information needed to compute the entire function A,(Av).
In other words, a single glimpse suffices to ‘tell’ the visual system
the cyclopean image it should expect to see in any vergence posi-
tion, and from this information it can compute k,(Av). Just how
much of this potentially available information actually is used by
the visual system is considered below. Here, for convenience, the
model is stated as though the entire function h,(Av) were known;
in fact, knowledge of just two values of h,(Av) at any one time
would be a sufficient assumption. :
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Figure 2e illustrates h,(Av) as a function of Av. Two interest-
ing properties of h,(Av) are evident: first, that h,(Av) consists of
the sum of functions, each of which represents registration of some
part of the images and, therefore, each of which is symmetrical
about its minimum (if the effect of w is negligible) ; and, second,
that at any relative minimum of k,(A,), its derivative dh,(Av)/
d(Av) is discontinuous. The discontinuity of the derivative results
from the absolute-value operation in Equation 3. As a practical
matter, such discontinuities do not exist in real life because image
blur and ‘noise’ (uncertainty) have the effect of rounding the
minimum.”

Ezxamples of the model for vergence. A simpler illustration of
binocular stimuli (L and L’) and their corresponding k,(Av) func-
tion is given in Figure 3. In this example, the retinal images (I and
') would become identical if the eyes diverged slightly. Thus in

2 (x,9) Zix,y)

Fi1a. 8. A visual display with a single stable vergence state. (a) The left eye
sees L(z, y), the right eye L'(z, ) ; the crosses in L and L’ indicate the point
2 = y = 0; the disks are symmetrically displaced from z = ¥ = 0 (nasally
on the retinas, temporally in the external world). (b) Vergence image-disparity
energy, ho(Av), as a function of vergence displacement, Av, for the display
illustrated in (a). (¢c) Vergence energy, e+.( Av), as a function of Av. The point -
Avs indicates the projection on the horizontal axis of the minimum of the
energy well in e,. The marble representing vergence is in the energy well, its
only stable position,

7 The discontinuity of its derivative at sero gives the absolute-value fune-
tion some rather strange properties that probably do not accurately reflect
nature (which abhors discontinuous derivatives). Taking into account the
effect of the neural transformation on ! and ¥ before h.(Av) is computed im-
proves matters (see Appendix A). .
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Figure 3b, hy(Avs) = 0. Figure 3c illustrates vergence energy
e, (Av) defined as the sum of g,(Av) and &, (Av).

The binocular stimuli (L and L’) of Figure 3a yield an e,(Av)
function that has only one relative minimum. For this function,
there is one and only one stable position of the marble, namely,
at the bottom of the e,(Av) function. This means that no matter
what the initial vergence position of the eyes may be, they ulti-
mately stop at the vergence position Avs.

Consider now what happens when L and L’ of Figure 3a are sep-
arated horizontally; that is, when the left eye’s stimulus is moved
to the left and the right eye’s stimulus to the right. Vergence be-
comes increasingly difficult. Figure 4 illustrates that a marble
initially at rest (at Av = 0) does not roll into the energy well
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F1a. 4. A visual display with two stable vergence states. The marble repre-
senting vergence is in its neutral position, Av = 0. Vergence on the disks
cannot be established if the disks are turned on when the eyes are at Av = 0.
Once vergence is established (e.g., by slow lateral separation of the disks from
the displacements shown in Figure 3), vergence can be maintained at Av..

at Avg but remains at Av = 0. However, if the left and right eyes
are initially verged on their stimulus at a displacement of about
Avs (Figure 3), and then the two stimuli are slowly separated, the
marble remains in the energy well. The eyes remain verged. This
example shows that the stimuli illustrated in Figure 4 permit two
stable states of vergence.

When L and L/ are separated by the amount illustrated in Figure
5, the energy well in the ¢,(Av) curve has flattened out to such an
extent that it no longer can hold the marble, which then rolls to
the position of zero vergence displacement. The binocular stimulus
pair of Figure 5 thus yields only one stable vergence position for
the eyes.
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F1a. 5. A display for which vergence cannot be established. The disks are
displaced laterally even further than those illustrated in Figure 4a. The marble
representing vergence is in its only stable position, Av = 0.

Suppose that L and L’ initially are separated by the amount
illustrated in Figure 5. Then, to establish vergence they would have
to be brought closer together than the separation Av, (Figure 4),
where vergence would be maintained but not established; they
would have to be brought to a displacement of about Avs (Figure
3). A similar effect may be observed when illumination is inter-
rupted. Suppose vergence somehow has been established at Awv,
(Figure 4). Then, turning the illumination off for a few tenths of a
second removes the energy well caused by A, and allows the marble
to move under the influence of g, toward Av = 0. It then requires
a slow separation of the stimuli to reestablish vergence at Av,.

Slow separation of stimuli is not the only way to establish ver-
gence at extreme divergence values. A succession of small, quick
displacements (with longer time intervals between them) also suc-
ceeds. The amplitude of the quick displacement must be such that
the marble remains inside the energy well. Then, during the interval
between displacements, it rolls down into the new well. The process
may be repeated until the critical divergence illustrated in Figure 5
is reached.

‘Vergence disparity.’ When the minima of k,(Av) are rounded at
their bottom [i.e., dh,(Av)/d(Av) is continuous at a minimum],
then the minima of e,(Av) do not correspond exactly to the minima
of hy but are shifted toward the center of e,, toward Av = 0. The
difference in location of minima is negligible when they lie near
Av = 0, but it becomes significant as Av increases, because the e,
function becomes steeper.

In the model, the marble rests only at minima of the e, function.
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When a minimum of e, does not coincide exactly with a minimum
of hy,(Av), it means that the eyes verge insufficiently to carry their
retinal stimuli to exactly corresponding points. This phenomenon of
human vision is known as vergence disparity and has been measured
under a variety of conditions.® The psychophysical measurements
of vergence disparity are qualitatively in agreement with those
predicted by the model. Further comparisons between the model and
experiment are deferred until the full interactions between vergence
and accommodation have been considered.

Model of Vertical Vergence and of Torsional Rotation

The vergence model can be applied to two other kinds of eye
movements. Vertical vergence occurs when the stimulus to one eye
is displaced vertically. The eye can move vertically to again center
itself on the displaced stimulus, even while the other eye remains
relatively stationary. Similarly, when the stimulus to one eye is ro-
tated around the line of sight, the eye can rotate to realign itself
with the stimulus. These movements occur only within certain
bounds, about 6 deg. for vertical vergence and about 7 deg. for
torsional rotation (see n. 3, pp. 58-62).

The angle between the vertical elevation of the two eyes is ex-
actly analogous to the horizontal vergence angle, and the same
model applies to control of both kinds of angle. In the case of
torsion, the torsional angle of the eye is the analog of the horizontal
vergence angle, and the model applies independently to each eye. In
fact, in composing demonstrations of multistability phenomena, it
often is more convenient to use vertical vergence or torsional ro-
tation, because these movements are less under voluntary control
than is horizontal vergence.

Model of Accommodation

Just as the current state of accommodation determines the nat-
ural vergence position, the value of vergence determines the natural
accommodation position. To displace accommodation from its nat-

8 Among others, see K. N. Ogle, Researches in Binocular Vision, 1950;
E. F. Fincham and J. Walton, The reciprocal actions of accommodation and
convergence, J. Physiol. (London), 137, 1957, 488-508.
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ural position—from its value in the absence of any stimulus to
accommedation—requires an amount of energy described by the
accommodation-displacement energy function (g,); this energy is
supplied by a stimulus to accommodation via an image-defocus
function (h,); and the actual state of accommodation is predicted
from the accommodation energy function (e;): e = ¢o + ho.
The model for accommodation is thus formally identical to the
model for vergence and differs only in the details of calculating the
functions. These details offer some special problems, which are con-
sidered below.

Units of accommodation. The conventional measurement unit of
accommodation is the diopter. When the eye is focused on an ob-
ject 1/n meters distant from it, it is said to be accommodated to
n diopters. The scales of diopters of accommodation and of degrees
of vergence are related almost linearly. For objects in front of the
observer, the deviation from linearity is of the third order and does
not exceed about 1% at 8 diopters of accommodation, which ig the
practical limit of the adult range. Therefore with negligible error,
we can use the same scale for accommodation as for vergence. There
is, in fact, an advantage in using the diopter scale: it is independent
of the interpupillary distance (p) of the observer. For an average
value of p (6.0 cm.), 1 diopter = 3.5 deg.

Accommodation-displacement energy (g,). Theoretically, ac-
commodation-displacement energy (g,) may be regarded as a func-
tion of only Aa, the displacement of accommodation from the value
(ao) determined by vergence. In practice, however, the value of ac-
commodation is strongly influenced by the mechanical properties of
the lens.? The situation may be conceived of as one in which neural
signals attempt to control accommodation according to a function
[gs(Aa)] that depends only on Aa; but the transduction of these
signals into accommodative power also depends on a. The non-
linear (a-dependent) transduction of attempted accommodation
into achieved accommodation is an important and unfortunate con-
sequence of the hardening of the lens caused by aging.1® It is worth
noting that rotation of the eyeball in vergence also is limited by

? For a summary of the evidence for distinguishing between the muscular
force exerted on the lens and its mechanical response, see M. Alpern, W. M,
Kincaid, and M., J. Lubeck, Vergence and accommodation: III, Proposed def-
finitions of the AC/A ratios, Amer. J. Ophthal., 48, 1959, 141-148.

10 See Fincham and Walton (n. 8 above).
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mechanical factors; in vergence, however, the neural control oper-
ates so far within the mechanical limits that the mechanical factors
can be neglected.

Image-defocus energy (h,). Image-defocus energy (hs) repre-
sents the blurredness of a retinal image. Although we do not know
what particular h, is computed by the nervous system, we shall de-
fine an h, with these three properties: it is a function that could be
computed by neurons; it is monotonically related to blur; and it is
mathematically tractable. Given l(z, y) and V(z, y), the illum-
inance distributions on the retinas, an h, satisfying the three con-
ditions is defined by

r
—h = [[ (v, (e, 1) dz dy

+ f,L (VV(=z, YV wiz, ) dedy. (8]

In words, —h, is the square of the magnitude of the Laplacian of
l(z,y), weighted by w(z,y), integrated over the retina, and sum-
med for the two eyes.

The algebraic value of k, as defined by Equation 8 increases
when I(z,y) is blurred and decreases when l(z,y) is sharpened.
Specifically, if I(z, y) represents any luminance distribution on the
retina and if I,(z, y) represents this distribution after it has been
blurred, it is shown in Appendix A that

f j; [V?}l(x, ] dz dy > f _/; [V*(z, 9] dz dy, (9]

where V" represents any order of differentiation or integration ap-
plied to l.

The reason for choosing the Laplacian—rather than P(z, y) di-
rectly, for example—is that it represents a good approximation to
the spatial analysis performed by the retinal receptive fields (see
Appendix A). The reason for using a square inside the integral of
Equation 8 instead of the absolute value (as in the definition of
h,) is for the mathematical elegance of the theorems which follow
therefrom. In fact, the same general properties hold for the abso-
lute value as for the square (Appendix A).

Calculating de;/da; How the visual system estimates h,. To com-
pute ke as a function of Aa, the accommodation displacement, it
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need only be noted that ! is implicitly a function of a [ie., [ =
L(z, y, a) ]. Substitution in Equation 8 gives hs(Aa). This, however,
leads to a problem.

In the model, d¢,/da controls the behavior of the marble. To
know de,/da it is necessary to know dh,/da, and to estimate dk,/da
requires knowledge of at least two values of h,. The problem is one
of determining how the nervous system computes %, for more than
one value of a when the lens can assume only one value of a at any
one time, for any one wavelength of light at any one point. These
restrictions suggest three possible solutions: that the visual system
obtains two (or more) values of h, by determining a at two or more
times, by determining a at two or more wavelengths, or by de-
terming a at two or more points. Let us examine each of these solu-
tions in turn.

The temporal solution is a trial-and-error solution. When the eye
is confronted with a new stimulus, it would alter its present value
of accommodation (a;) to a new value (a,, a trial value). The new
value (ag) might be an improvement or not, but no matter which,
it would provide a second value of k,, from which 9k,/da may be
estimated by

Oh./da = [h.(as) — h.(a))/(as — a,).

In such temporal trial and error, the initial change of accommoda-
tion in response to a new stimulus would be in error about half the
time; subsequent changes of accommodation would be in the right
direction. However, the first measurable accommodation response
to a step or to a pulse displacement in the accommodative distance
of a stimulus is generally in the right direction.!* We must infer
that at least two values of h, are computed before accommodation
has changed.

The chromatic aberration of the lens, which introduces a Av of
about 1.3 diopters (Av = 4.5 deg.) between the long and short wave-
lengths, provides a second possible way of realizing simultaneously
two values of a on the retina. This cannot be the only mechanism,
because some subjects make initially correct accommodation re-
sponses even in monochromatic illumination.12

11F. W. Campbell and G. Westheimer, Dynamics of accommodation re-
sponses of the human eye, J. Physiol., 151, 1960, 285-295; E. F. Fincham, The
accommodation reflex and its stimulus, Brit. J. Ophthal., 35, 1951, 381-393.
12 Fincham (n. 11).
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The alternative to time and wavelength as means of obtaining
different values of @ is spatial variation of a. A mechanism for
spatial variation of a is known to exist. In the neighborhood of the
optic axis, the retina is not exactly perpendicular to the optic axis;
thus, some parts of the retina are optically closer to the lens than
others.’® Comparison of two regions in different focus would provide
an estimate of de,/da to even the stationary eye. By elimination,
then, spatial variation of a is the means by which the relevant posi-
tion of e,(a) is computed by the visual system. This complication
requires: redefining l(z, ¥, a) as l[z, v, a(z, y)]; calculating the
predicted difference Ah/Aa (rather than 6h/da) from Equation 8;
and using two different weighting functions for the two terms of the
difference [i.e., Ah = h(wsy, |, I') — h(wy, I, I')]. These complica-
tions, though real, are not of great theoretical importance for the
understanding of accommodation.

Whether , is known simultaneously for only two values of Aa or
for infinitely many values makes little difference. Only two values
are needed to estimate de,/da, and this estimate suffices to control
the dynamics of a. However, when temporal information is used to
estimate de,/da (and it occasionally may be), the situation can be
vastly more complicated. For example, if it is assumed that there
is a fixed time interval (At) between the two instants of sampling
hs, then the estimate depends on Aa/At, the average velocity of a
during At. This leads to an additional term [ks (deq/da) (—da/dt]
on the right-hand side of Equation 4 and converts a highly stable
system into a highly unstable one, depending on how large ks is. Such
a system would tend to have big, slow drifts in accommodation be-
cause when da/dt is small, the stabilizing force de,/da is small.
Even small amounts of extraneous ‘noise’ would perturb a far from
the minimum of e,. In fact, this kind of ‘d.c. drift’ is a distinguish-
ing characteristic of accommodation.

Demonstration of the multistability of accommodation. If the
‘reader is young enough to possess a lens still capable of a few di-
opters of accommodation, he can easily demonstrate to himself
two different stable states of accommodation in response to a single
external stimulus configuration. First, cover one eye and establish
the near point for accommodation by moving a pencil toward the
open eye, while focusing on its point. (The near point is the small-

t;G. L. Walls, The Vertebrate Eye and Its Adaptive Radiation, 1942, 7
and 255.
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est distance at which a sharp image is possible.) Second, fixate a
textured object (say, a picture) a few meters away. Third, while
maintaining focus on the picture, move the pencil to the near point.
Move it to various positions in front of the picture so that it ob-
scures the point of fixation. Maintain focus on the picture. Fourth,
focus on the pencil keeping the picture in the background. Then,
alternate the third and fourth steps until you find a particular line
of sight for the eye and a particular position of the pencil such that
they on some occasions lead to accommodation of the picture and
on other occasions to accommodation of the pencil. It is easy to
focus either on the picture or on the pencil, but these changes of
focus usually are consequences of changes in line of sight. The pur-
pose of alternating the third and fourth steps is to find a single ex-
ternal stimulus configuration (same line of sight) that can yield
either state of accommodation. The external stimulus (picture plus
pencil) thus induces two different states of accommodation (ac-
commodation on picture, accommodation on pencil) ; there are two
stable response states to one stimulus (multistability).

In this demonstration, vergence of the covered eye changes with
accommodation. The correlated vergence change is irrelevant to the
demonstration; it means only that the demonstration may not re-
veal the dynamic parameters of accommodation when the covered
eye exerts ‘drag’ on the changing value of accommodation.

Model of Fusion

When the eyes are at a given vergence angle (v), this vergence
position defines a surface called the horopter. The defining char-
acteristic of the horopter is that whenever a point lies on the
horopter, it stimulates corresponding points of the two retinas.!* In
a small neighborhood of fixation, the horopter may be considered a
plane, which is called the vergence plane, or plane of fixation. The
horopter corresponding to v defines the optimum depth of an object
for fusion of the object. When an object lies slightly in front of or
behind the horopter, fusion is more difficult. When such objects are

1¢Jt is assumed here that the nonius method is used for the empirical
determination of the horopter, as suggested by Ogle (n. 8). Also see K. N.
Ogle, The problem of the horopter, in H. Davson (ed.), The Eye, 4, 1962,
325-348. By this method, there is no significant difference in the neighbor-
hood of fixation between corresponding points (horopter) and corresponding
coordinates (as defined early in this paper).
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fused, they are seen in depth relative to objects on the horopter.
This depth sensation is here called fusion depth.1®

The model of fusion is formally equivalent to the models for
vergence and for accommodation. First, in the fusion model the
fusion distance (distance from eyes to plane of fusion) corresponds
precisely to the vergence distance in the vergence model (distance
from eyes to plane of vergence). Second, the perceived fusion depth
in the fusion model corresponds to the achieved vergence angle in
the vergence model. Third, the calculation of fusion disparity from
the retinal stimulus (I and ) is the same as the calculation of
vergence disparity, except that fusion is considered separately for
each small retinal neighborhood (in vergence, the relevant region is
the whole retina). Fourth, in the fusion model there is an internal
bias to fuse objects in the plane of vergence (the corresponding bias
in the vergence model is the bias to verge on the plane of accommo-
dation). Fifth, the external stimulus energies and internal bias ener-
gies add to form the surface governing the fusion-depth plane just
a3 the corresponding vergence energies add to form the e, surface
that determines the vergence plane.

Before developing the model for fusion in detail, it must be noted
that when an object lies too far behind or in front of the horopter,
fusion is impossible. Nevertheless, the object still may seem to be
located at the appropriate depth plane. This depth sensation is
here called postfusion depth; it corresponds to what is convention-
ally called ‘qualitative stereopsis.’ In the physical model of fusion
phenomena, the perception of fusion and the perceived fusion depth
are two different manifestations of the same underlying variable: the
plane of fusion. By taking fusion depth and postfusion depth to be
two different regions of a single continuum of perceived depth, the
physical model for fusion depth (which extends over about =3} deg.,
or *+.03 diopters, in the fovea) may be extended to include post-
. fusion depth (about =2 deg. in central vision) without introducing
any new principles. The complete, complex relations between per-
ceived fusion, fusion depth, and postfusion depth are described in
the neural model. Here we consider only the most basic phenomena
and how the model applies to them.

18 ‘Fusion depth’ corresponds approximately to what has been called
‘patent stereopsis’; see K. N. Ogle, On the limits of stereoscopic vision,
J. exp. Psychol., 44, 1952, 253-259. Because of binocular rivalry, however, the
range of patent stereopsis may vastly exceed the range of fusion depth~—
see the sections on binocular combinations.
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Units of fusion displacement (Aw). The unit of vergence was de-
fined as the angle between the lines of sight of the eyes. The ver-
gence angle is also an unconventional measure of distance from which
conventional distance can be calculated. The distance (d) from the
midpoint between the observer’s eyes to an object located directly in
front of him is given by

-1
d= (2 tan g‘) P :—' p/u, [10]

where p is the interocular distance and u is the vergence angle of
the object. Although d, the linear distance from the observer to the
plane of fusion, is the conventional unit of distance, it is more con-
venient to designate the plane of fusion by wu, its angular distance
as defined by Equation 10. This scale of distance for u is commen-
surate with the scales for v and a, and it shares their advantages of
being directly proportional to distance on the retina (see Figure
2d). When u is small, the tangent function can be removed from
Equation 10, giving directly the reciprocal ‘diopter’ relation between
d and u. In considering fusion, the distance of the horopter is v, the
distance of the plane of fusion is u, and the distance from plane of
fusion to the horopter is Au = u — v. This follows the earlier sign
convention for Av; points beyond the horopter are represented by
A< 0.

According to the model, whether a pair of retinal images (I and
¥; an object) is seen as fused or unfused is determined by the fusion
energy function e,(Au) corresponding to that object, in the same
general way that the vergence energy function e,(Av) determined
whether the eyes verged or did not verge on the object. The Au
value of an e, minimum determines the perceived fusion depth. Two
components sum to give fusion energy: fusmn-dlsplacement energy
(g4) and image-disparity energy (h,).

Fusion-displacement energy (g.). Fusion-displacement energy
(gu) is given by a U-shaped function [gy(Aw)], which governs
whether or not fusion occurs. The function does not extend more
than about } deg. to either side, representing the fact that fusion is
impossible for objects displaced more than about } deg. from the
horopter. The function g,(Au) may also be interpreted as govern-
ing the depth sensation that results from successful fusion. In this
case, it is useful to think of it as having an extension to % 2 deg.
as fusion depth (= # deg.) and postfusion depth (= 2 deg.) form
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qu(Au)

Fig. 6. Fusion-displacement energy, g«, as a function of fusion displacement,
Au. The function g«(Au) is defined only for [Au| < % deg. in central vision.
The same function extended to |Au| < 2 deg. describes the corresponding con-
tinuum of perceived depth (fusion depth plus postfusion depth).

a single continuum. The sharp minimum of g,(Awu) represents the
fact that unfused objects (objects seen by only one eye) tend to be
seen in the plane of the horopter; the sides of g,(Au) are drawn
straight (see Figure 6) mainly to help the reader distinguish g, from
g» on graphs where both functions occur.

Fusion tmage-disparity energy (h,). The contribution of k, to e,
is defined as was the contribution of A, to e,, with one difference:
whereas h, was calculated by summing disparity over the whole
retina, h, is calculated in each small neighborhood (Az) of the
retina and summed over only those neighborhoods which cover the
object. When several objects are present simultaneously in the visual
field, hy(u, 2) is calculated separately for each of them.

Ezamples of the model for fusion. The study of fusion in isola-
tion requires the control of Awu, which in turn requires control of
vergence movements. Some voluntary control of vergence is possible
with the aid of a strong vergence stimulus (e.g., a picture frame
within which other stimuli are presented). A better method is that
of Fender and Julesz (n. 4), who studied the fusion properties of
stimuli whose retinal position was stabilized by optical means (i.e.,
stimuli whose retinal position was independent of vergence). In gen-
eral, they demonstrated that fusion had the same characteristics
as vergence, although they did not analyze their data in this way.
Their results can be summarized efficiently in the terminology of the
model.

Fender and Julesz observed that a stabilized image pair could
always be seen as a single object if the minimum of their A, (Au)
function occurred for Au < % deg. (compare with Figure 3) and
could conditionally be seen as a single object (by slow separation of
the images) for Awu in the range 4 deg. < Aw < 1 deg. (compare
with Figure 4). Their results show, as the model predicts, that the
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range of the fusion depends on the retinal stimuli (I and ) used—
particularly on the steepness of the sides of the minimum of the
hu(Au) function—since their most complex textured stimulus,
which would give the deepest, steepest h, minimum, also gave the
greatest range of single vision, (The quantitative discrepancy be-
tween the range of single vision observed by Fender and Julesz and
the range of fusion predicted by the model is explained in the sec-
tion on predictions of the neural model, below.)

One interesting incidental observation of Fender and Julesz is
the existence of various stable ‘secondary’ fusion points. This too is
predicted by the model. The secondary fusion points occur because
a complex retinal stimulus (! and ) may yield an h,(Au) func-
tion that has several smaller relative minima in addition to its
major minimum. The minor minima result from chance superposi-
tion of unrelated but similar parts of the complex images. Such
minor minima provide alternative fusion modes. In normal vision,
saccadic eye movements produce a ‘noise’ perturbation of vergence
(Av). In normal vision, therefore, fluctuations in vergence from one
eye movement to the next make it unlikely that the point of fusion
could long remain in a small, shallow relative minimum, especially
when it is near a major minimum of the e,(Aw) function. In
stabilized vision, the eye movements are optically canceled and
therefore secondary fusion points are more easily observed.

Panum’s fusional area. In the case of vergence movements, ‘verg-
ence disparity’ occurred because the minima of the e,(Av) function
did not coincide exactly with the minima of the k,(Av) function.
The same displacement phenomenon occurs in the fusion model when
the minima of e,(Aw) function fail to coincide exactly with the
minima of the A,(Au) function. This means that when retinal
fusion occurs for a stimulus that is not in the horopter, the apparent
plane of the fused object is shifted slightly from the true stimulus
plane and toward the horopter. The more important psychophysical
correlate—insofar as the shift is detectable—would be blurring and
then doubleness of vision of the object. Blurring might be observed
even when the error in fusion depth itself is too slight to be meas-
ured.

The retinal range within which fusion is possible without notice-
able blurring or double images is called Panum’s fusional area. It
traditionally has been measured with fine-line stimuli and, so meas-

-ured, is remarkably small, about ¢ deg. (6 min. of arc) in foveal
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vision.® We now examine the predictions of the model of the range
of singleness of vision (Panum’s area), of the range of fusion
(which is larger than Panum’s area), and of how these ranges de-
pend on the nature of the stimuli used to measure them.

In the model, the correlate of doubleness of vision is the shift of
a minimum of h, caused by adding g, to form e,. (The analogous
effect in the model of vergence produced ‘vergence disparity.’) We
can make a quantitative statement. The displacement of the mini-
mum of A, is small when it is a sharp minimum (i.e., when the sides
of h, near its minimum are steep). This sharpness is determined by
d?h,/du?; the greater d2h,/du?, the greater the range of singleness
of vision. The range of fusion is determined by the maximum slope
of h, (max dh,/du); the greater this quantity, the greater the range
of fusion (see Figure 5).

We can say immediately that fine lines are poor stimuli for ver-
gence and for fusion because the minimum of A, is very shallow;
large-area, fine-textured, high-contrast stimuli produce the deepest
minima in Ay, and thereby the largest values of d%h./du? and max
dh,/du. Therefore the physical model correctly predicts that large-
area stimuli produce a greater range of singleness of vision and a
greater range of fusion than do fine lines. It also predicts that the
range of fusion (determined by max dh,/du) may far exceed the
range of singleness of vision (determined by d2h./du?). This pre-
diction accounts in part for the paradox of the enormously large
range of binocular fusion in casual observations (several degrees)
and the tiny range of Panum’s area (7% deg.). The difference be-
tween the fine-line stimuli used to measure Panum’s area and the
large-area stimuli encountered in normal vision is not the whole
explanation, however, bécause binocular rivalry is involved, The
problem is considered again in the section on predictions of the
neural model.

THE PHYSICAL MODEL—WITH INTERACTIONS

Up to this point, the physical model has dealt with each system
in isolation. The model for vergence considered a and u fixed; the
model for accommodation considered v and u fixed; and the model
for fusion that was just discussed considered v and a fixed. We are
now ready to consider the interactions between the three mecha-
nisms and to describe the operation of the complete model.

18 Ogle (n. 8).
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Interaction of Vergence and Accommodation

In Equations 1 and 2, both v and a occur in both terms on the
right side of the equations: the displacement terms (g) contain «
and v explicitly, and the image terms (h) contain a and v implicitly
inland V.

The image-term interactions are relatively unimportant and may
merely be mentioned. In Equation 2, vergence affects the position on
the retina of the stimulus (! and ¥) to accommodation. Because the
weighting function [w(z, y)] is not a constant, retinal positions dif-
fer in the effectiveness with which they affect accommodation. Be-
cause vergence can shift | and I relative to w, it can affect h,
slightly. Similarly, in Equation 8, the value of accommodation af-
fects the shape of minima in the A, funection; blurred images have
shallower minima than sharp images. In practice both of the effects
of these image-term interactions are negligible compared to the ef-
fects of the displacement-term interactions.

The displacement-term interactions between vergence and ac-
commodation are evident in Equations 1 and 2. In the accommoda-
tion-displacement term of Equation 2 [9.(Aa)], Aa is defined in
terms of both a and v, by Aa = a — v. Thus, the value of v
determines the center of the accommodation-displacement function.
Similarly, in Equation 1, the center of the vergence-displacement
term g, is determined by the value of a. These relations are incor-
porated into the model illustrated in Figure 7. This model consists
of two templates (g, and g,), which slide sideways, parallel to each
other, along rails to which they are attached. Two marbles (v and
a, representing vergence and accommodation respectively) roll
along the templates. A constant force (a spring, not gravity, in this
model) drives each marble toward the ‘bottom’ of each template
(i.e., toward the opposite rail). The v marble is held by a rod-and-
spring device which is attached rigidly and perpendicularly to the
center of the g, template, so that when the marble moves, the g,
template slides horizontally by exactly the same amount. The a
marble is similarly attached to the g, template. Figure 7a shows
the systems temporarily out of equilibrium, at the instant when a
visual stimulus has been turned off; Figure 7b illustrates the equilib-
rium reached in the absence of a stimulus.

Figure 8ab illustrates the vergence and accommodation systems’
response to a stimulus to convergence. In Figure 8a the stimulus has
just been turned on and the gystems are starting from their previous
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F1a. 7. Vergence-accommodation interaction in the dark. The marble repre-
senting vergence rolls on the g, template, pushed toward the lower rail by a
constant force from the spring; the g template, rigidly attached to the rod-
and-spring device holding the v marble, follows the v marble exactly. The
accommodation marble rolls on the g. surface, pushed toward the upper rail
by its spring; it carries the g, template with it. The templates slide along the
rails without friction. (a) The v-a systems temporarily out of equilibrium;
(b) the final equilibrium. No visual stimulus to vergence or to accommoda-
tion is present here.

equilibrium position. Figure 8b illustrates the equilibrium position
reached in response to this new stimulus. The image-displacement
functions h, and h, are also illustrated in Figure 8. They remain
fixed in the external world as the g, and g, templates slide. The
e; and e, surfaces upon which the marbles roll are formed by adding
the stationary hs to the sliding gs. The physical realization of the
g + h addition is a cumbersome, irrelevent mechanical problem;
it is trivial in an electrostatic analogy.

Figure 8 also illustrates how accommodation helps vergence. If
accommodation were fixed at the initial value, the vergence energy
function e, of Figure 8a would indicate a bistable vergence con-
figuration. Starting from the position of Figure 8a, vergence on the
stimulus would not occur (i.e., the marble would not leave its initial
position). However, when accommodation is free to vary, it carries
the vergence template (g,) along with it until vergence also occurs.

Figure 8cd illustrates what happens when the stimuli to accomo-
dation and vergence do not agree. This would happen, for example,
if a person with normal vision, who had verged and accommo-
dated on a stimulus, suddenly put on reading spectables with, say,
a correction of +1 diopter (=3.5 deg.). Figure 8¢ illustrates the sit-
uation the instant the spectacles have been put on. His vergence is
correct, but his accommodation is now too large by +1 diopter and,
as Figure 8c illustrates, the a marble would start to roll into the
e energy well. As it moves, it carries with it the g, template. There
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Fia, 8. Vergence-accommodation interaction, Vergence image-disparity energy,
hs, is shown below the vergence template’s rail, and accommodation image-de-
focus energy, hs, is shown above accommodation’s rail. The image functions,
he and h., add directly to the displacement functions, ge and ge, to form their
respective energy functions, e. and e, (Equations 1 and 2). Here, g and e.
(but not hs) are represented ‘upside down.’ The @ and v marbles roll on es and
e, surfaces propelled outward by their springs; they carry the opposite tem-
plates with them, and in so doing cause the e. and e. surfaces to change
shape continuously as g and % are added in different spatial relations. (a) The
v-a systems (just previously accommodated and verged on a distant stimulus)
the instant after a near stimulus has been turned on. (b) Equilibrium on the
near stimulus. (¢) Equilibrium on the near stimulus disturbed by sudden
placement of a positive lens before each eye. (d) Equilibrium achieved in
viewing the near stimulus through the positive lenses; ‘accommodation dis-
parity’ is Aa., ‘vergence disparity’ is Avi.

is no initial ‘resistance’ of the g, template to the movement because
the vergence marble was resting at the bottom of an energy well
where the slope was zero. At some point before accommodation
reaches the bottom of the energy well in e,, equilibrium is reached,
as illustrated in Figure 8d.
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The equilibrium position illustrated in Figure 8d has two inter-
esting properties. First, the final equilibrium position may not be
uniquely determined, because the marbles come to rest when they
both lie on ¢, and e, slopes that are zero. This situation may occur
for a significant range of possible values of a and v, with a cor-
respondingly wide ambiguity of the ‘equilibrium’ values of a and v.
Second, the equilibrium positions of @ and v occur at the minima of
e; and e,, and these minima are displaced from the corresponding
minima of k, and h,. The displacement of the minima of e, from
those of h, was previously noted to be the cause of ‘vergence dis-
parity.” A similar displacement of the minima of e, from those of A,
is the cause of ‘accommodation disparity.’

At the instant the +1 diopter of ‘accommodation disparity’ was
introduced by the spectacles, the sum of the ‘vergence disparity’
plus ‘accommodation disparity’ was 1.0. As the overall system ap-
proaches the equilibrium position (Figure 8d), the total disparity
is continuously reduced, but it can never quite reach zero; some
‘vergence disparity’ and some ‘accommodation disparity’ remain at
the minima of h, and h, whenever a % v. The final equilibrium
depends complexly on all of the relevant factors: the stimulus to
accommodation, the stimulus to vergence, and the exact shape of
the accommodation and vergence displacement functions.

Interaction of Fusion and Vergence

In the model, the effect of vergence on fusion is simple: vergence
determines the horopter and hence the center of the g, displace-
ment function.!? So far, however, the model does not contain a cor-
responding effect of fusion on vergence. The computation of image
disparity, which is virtually identical for fusion and vergence, sug-
gests a possible action of fusion on vergence.

The speed of vergence is restricted by the mechanical properties
of the eyeball and its muscular apparatus. Fusion is not so re-
stricted. Consequently, fusion of an object can occur before vergence
upon it is complete—or, for that matter, before vergence has even
begun. The model of vergence is based on de/dv (Equation 1),
which is calculated in an infinitesimal neighborhood of v (Equation

17 The effect of vergence on perceived depth is far more complex, and be-
yond the scope of this theory. See K. N. Ogle, Spatial localization through
binocular vision, in H., Davson (ed.), The Eye, 4, 1962, 271-324; W. Richards
and J. F. Miller, Convergence as a cue to depth, Percept. & Psychophys., 5,
1969, 317-320.
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6). The definition of e, does not take any account of the infor-
mation the fusion system may have about vergence possibilities up
to =2 deg. from v. Therefore, ¢ new vergence image-disparity en-
ergy function (H,) is proposed here, to incorporate fusion informa-
tion. :

In defining H,, the h, definition (Equation 6) is modified to give
fused stimuli greater importance than unfused stimuli in deter-
mining vergence, by incorporating a fusion factor [U(z, y, w)] into
the defining integral:

Ho,U) = [[ e —v/2,9) = V@ +v/2, )]
+ Uz, y, )w(z, ) dzdy.  [11]
The fusion factor is U = 0 when fusion has occurred at the plane
v = u in a neighborhood of z, ¥; and U > 0 when fusion has not
occurred. In general, U(z, y, v) is assumed to vary with distance
from the plane of fusion in roughly the same way that g.(Au)
varies with Au (Figure 6). The revised definition of H, by Equa-
tion 11 changes nothing of fundamental importance in the treat-
ment. It merely makes e, a more accurate representation of ver-
gence by incorporating an interaction of fusion with vergence.
Before concluding this section, it must be mentioned that hori-
zontal vergence, and horizontal convergence in particular, can—to
a much greater extent than vertical vergence, fusion, or accommoda-
tion—be controlled voluntarily with practice. Voluntary control is
represented as a force, de,;/dv; fva has been neglected in the theo-
retical treatment, but it must be considered, particularly in com-
posing demonstrations that involve convergence.

Interaction of Accommodation and Fusion

The model contains an implicit image-term interaction of a and
u; that is, failure to accommodate blurs an image and affects fusion
of it. The model contains no provision for u to affect a, and there
are no data to suggest that one is needed. Nor does the author know
of any authentic three-term interactions (i.e., interactions not de-
rivable from two-term interactions).

The Complete Physical Model: An Illustrative Example

Naturally occurring objects provide highly correlated stimuli to
a, v, and u; they challenge neither the visual system nor the model.
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However, images viewed in a stereoscope frequently not only chal-
lenge but defeat the visual system’s attempts to cope with them. The
model now undertakes to joust with one such stimulus.

Figure 9 illustrates a typical stereoscopic stimulus (L and L')
and the intended depth illusion (seeing a raised disk above a rec-
tangle). The illusion of stereoscopic depth is difficult to achieve
when the rectangle and disk are separated by about 1 diopter
(=3.5 deg.). Most observers readily can fuse that portion of the
scene for which accommodation is appropriate—say, the rectangle
—but they cannot at first fuse the disk. After some ‘trying’ (which
consists of looking at various parts of the display), they suddenly
are able to fuse the disk also. Once this fusion has occurred, they can
look from the rectangle to the disk without disturbing fusion of
either.

Figure 10 shows the model for the sequence of events just de-
scribed. The complete model of Figure 10 differs from the model
of Figure 8 only in that templates representing fusion have been
added. The fusion templates are carried along with vergence, so that

(0}

(b)

Fia. 9. A stimulus (a) to be viewed in a stereoscope; L and L’ respectively
are the images seen by the left and right eyes. (b) Perspective representation
of percept induced by the stimulus in (a).
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gs always lies centered under g,. The image-disparity functions
hy(u, 2) that add to g, remain fixed, of course, and do not move.
The two fusion templates illustrated represent two small areas of
the retina, one in the central fovea, one in the periphery.

Figure 10a shows the starting position of the model when the pic-
ture is turned on. Immediately before, the observer has been looking
at the frame of the stereoscope. Accommodation and vergence
therefore are appropriate for the background rectangle. The disk,
which falls on the fovea, is unfused and the eyes are not verged
on it. The vergence image disparity (h,) is indicated according to
its original definition in Equation 6. The weighting function (w)
assigns less weight to the peripheral stimulus (rectangle) than to
the foveal stimulus (disk). The ‘unweighting’ of peripheral image
disparity is confined to vergence and does not occur in the k, fusion
image-disparity function.

When confronted with unfused foveal images and fused periph-
eral images, the eyes usually turn to fixate the fused image. Figure
10b illustrates this situation, with the fovea pointed to one side of
the rectangle. There now are excellent stimuli to accommodation,
vergence, and foveal fusion; only peripheral fusion of the disk is
unsatisfied.

Eventually, as the observer attempts to fuse his entire visual field,
his eyes return to fixate the disk and he has returned to his initial
state (Figure 10a). To fuse the disk, the eyes first must converge.
Convergence may be triggered in numerous ways. In terms of the
model, these ways are methods of getting over the ‘hump’ between
the two minima of e,, or of eliminating it temporarily. In some
cases, convergence may be delayed even when there is no hump, if it
is slowed by a very shallow slope of e,. In these cases, the observer
need only keep looking at the unfused disk and his eyes will slowly
verge on it. Alternatively, a saccadic eye movement may cause a
spontaneous fluctuation in vergence that is large enough to bring
vergence over the hump in the e, function. Or, the eyes may find a
location to fixate that produces a particularly strong vergence stim-
ulus (a minimum of minima of A,), which eliminates the e, hump.
Voluntary or spontaneous vergence-hunting motions may occur.
Vergence may also be stimulated artificially, by placing negative
lenses before the eyes; or it may be simulated by placing prism(s)
before the eye(s).

For whatever reason, when the vergence marble finally arrives at
the edge of the disk’s e, energy well, it rolls into it. Fusion of the
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Fia. 10. Complete model of vergence, accommodation and fusion. The g
fusion templates are attached to the v marble and move with it (as does ga).
The fusion image-disparity energy function h.(u, z) remains fixed. It adds to
gu(u) to produce the e, surface upon which the % marble rolls. A constant
force (mechanism not indicated) propels the u marble downward. Each g,
template represents a different small area of retina. The minimum of hs is
drawn narrow for the disk, wide for the rectangle (see Figure 9). The k., function
is the sum of ke functions, with the peripheral hu reduced by %. (a) Initial view-
ing of the images of Figure 9a, fixation on disk: vergence and accommodation
are appropriate for rectangle; accommodation is appropriate for disk also, but
vergence is not and the disk is not fused (v and foveal ¥ marbles are not in
energy wells of the disk). (b) Fixation on rectangle: the disk, which still is
unverged upon and unfused, now is in periphery. (¢) Fixation on disk after
vergence upon and fusion of disk: note that peripheral fusion of rectangle is
maintained ; note ‘accommodation disparity’ Aa, and negligible ‘vergence dis-
parity.’ (d) Fixation on rectangle after (¢c): note that peripheral fusion of disk
is maintained.
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disk occurs momentarily before the equilibrium position of vergence
on the disk is reached (Figure 10c). In verging to equilibrium, fu-
sion of the rectangle may remain undisturbed because of the rela-
tively slow vergence movement, although nonfusion of the rectangle
is now an alternative stable state.

Figure 10d illustrates the equilibrium state of the system when
fixation is transferred to the rectangle. In the model (and presum-
ably in the observer), accommodation and vergence when both disk
and rectangle are fused are the same as when only one or the other
was fused (compare Figure 10a and 10d). Even the fusion energy
function e, is the same. The only difference is that in Figure 10d the
fusion marble has attained the less accessible one of the two energy
wells of the peripheral e, function.

Once fusion of the disk has been established, it is possible to look
back and forth from disk to rectangle and to verge on each. In the
model, this requires that fusion of the disk, when it occurs, remove
the hump in the e, vergence functions of Figure 10a. This facili-
tating effect of fusion on vergence is provided for in the revised
definition of vergence image-disparity energy (H,), but it has not
been indicated in Figure 10.

THE NEURAL MODEL

The physical model is formally the same for vergence, for accom-
modation, and for fusion. However, the neural mechanisms underly-
ing these three systems differ from each other. The accommodation
mechanism is essentially monocular; therefore, accommodation
itself is of interest here mainly in terms of its interaction with
vergence. (A neural mechanism of accommodation is proposed in
Appendix A.) On the other hand, fusion and vergence are essen-
tially binocular processes; both require the interaction of informa-
tion from both eyes. The proposed neural process is basically the
same for vergence and for fusion; the main difference being that
fusion is computed separately in each region of the retina whereas
vergence signals are summed over the whole retina. Thus, fusion
serves as the kernel of the vergence system. In addition, fusion in-
volves binocular rivalry and other interesting phenomena. The pur-
pose of the neural model is to propose an analysis of the component
processes of fusion; the extension to the processes of vergence is
merely outlined.

The analysis is presented in terms of the functions performed by
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hypothetical neurons. The hypothetical neurons resemble real neu-
rons, but whether they resemble neurons of the visual system is an
unanswered question. The analysis is entirely functional, so any ex-
act resemblance would be fortuitous. Although there are important
new reports of electrophysiological recording from binocularly sensi-
tive neurons in the brains of cats and monkeys,!® the neurophysio-
logical data presently available are too fragmentary to provide
either confirmation or disproof of the proposed model.

The core of the proposed neural mechanism is a neural binoc-
ular field (NBF) that performs the kind of binocular comparisons
described by Equation 7. The use of a binocular-comparison field as
an explanatory concept for depth perception can be traced to Kep-
ler;'® neural fields of this general kind are also familiar in other
contexts.?® Psychophysically, the existence of binocular point-by-
point comparison has been amply documented by the demonstra-
tion of binocular depth perception in the absence of monocular
cues.?!

As diagrammed in Figure 11, the neural binocular field (NBF)
is an internal three-dimensional representation of the external world.
The z, y plane represents the dimensions perpendicular to the ob-
server’s line of view; the z dimension represents depth. At each level
in the NBF, signals originating from the left and right eyes are
represented with different translations relative to each other. Sig-
nals originating from corresponding points of the retinas intersect
in the middle of the field; signals originating from points displaced
temporally in the two retinas (i.e., signals produced by an object
nearer to the observer than his fixation point) intersect below the
middle of the field; signals from a more distant object intersect at
the top of the field.

18 H. B. Barlow, C. Blakemore, and J. D. Pettigrew, The neural mechanism
of binocular depth discrimination, J. Physiol. (London), 193, 1967, 327-342;
T. Nikara, P. O. Bishop, and J. D. Pettigrew, Analysis of retinal correspondence
by studying receptive fields of binocular single units in cat striate cortex, Ezp.
Brain Res., 6, 1968, 353-372; D. H. Hubel and T. N. Wiesel, Cells sensitive
to binocular depth in area 18 of the macaque monkey cortex, Nature, 225,
1970, 41-42.

18 See reviews in E, G. Boring, The Physical Dimensions of Consctousness,
1933 (reprinted 1963), and in L. Kaufman, On the operations underlying
stereoscopic combination, SP-66-1, 1966, Sperry Rand Research Center (Sud-
bury, Mass.).

20 W. 8. Pitts and W. McCulloch, How we know universals, Bull. math.
Biophys., 9, 1947, 124-147.

21 B, Julesz, Binocular depth perception of computer-generated patterns,
Bell Syst. tech. J., 39, 1960, 1125-1162.
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U 4

Fia. 11. Diagrammatic illustration of the Keplerian theory of stereopsis. A
cross section of the neutral binocular field is indicated by NBF, at the right.
Neural signals originate from images on the left and right retinas (I and I
respectively) and pass through the NBF along the straight lines drawn from
! and I' to the NBF. When a region of the field receives inputs from both I
and [, these inputs interact. Regions of interaction of the center and outer
disks respectively are indicated by heavy and by medium stippling. Vertical
lines, % and wu., indicate levels of the NBF at which exact binocular cor-
respondences occur between the signals from outer and inner disks respectively
of I and V. These two different levels represent different distances from the
observer (depth). The figure is so drawn that the direction of signal flow can
be reversed. In this case, levels of binocular correspondence s, us in the NBF
are interpreted as cross-sections of external stimuli. The signals (light) flow
from right to left to produce the images [ and /. This method of representa-
tion demonstrates how, in Keplerian theory, the contents of the NBF are a
simple reflection of the external world.

Up to this point, the model reiterates the general ideas of Koffka,
Charnwood, Linksz, Julesz, Dodwell and Engle, Kaufman, and
many others.?2 The model presented here embellishes on its prede-
cessors in three respects. First, it contains two NBFs: a primary
NBF for the fine-detail functions of binocular vision, and a sec-

22 K. Koffka, Some problems of space perception, in C. Murchison (ed.),
Psychologies of 1930, 1930, 161-187; J. R. B. Charnwood, Essay on Binocular
Vision, 1951; A. Linksz, Vision, Physiology of the Eye, Vol, 2, 1952; P. C,
Dodwell and G. R. Engle, A theory of binocular fusion, Nature, 198, 1963, 39~
40, 173-174; L. Kaufman, Some new stereoscopic phenomena and their im-
plications for the theory of stereopsis, this Journaw, 78, 1965, 1-20.
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ondary NBF for coarse-detail functions. The interaction of these
two systems is crucial for many phenomena of binocular depth per-
ception. Second, the model analyzes binocular fusion into elemen-
tary subfunctions, performed by hypothetical neurons. Third, it
accounts for fusion and for rivalry within the same system and in
the same neurons; it suggests how neurons that yield binocular
fusion in some circumstances can yield binocular rivalry in others.

Primary Neural Binocular Field

Inflow neurons. Figure 12 illustrates the four kinds of neurons
proposed to constitute the primary NBF. The first of these are the
inflow neurons (Figure 12a), which carry signals that originate
from the left and right retinas. Their axons cross the NBF at op-
posite slants. Inflow signals are carried by their axon terminations
to all depths in the field. The inflow neurons are assumed to con-

(b) (c) (d)
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Fia. 12. ' The neurons of which the NBF is assumed to be composed and the
operations subsequently performed on their outputs. (a) Inflow neurons, carry-
ing inputs from left and right eyes. (b) Binocular correspondence-detecting
neurons (BCDNs). (e¢) Level-detecting neurons. (d) Outflow neurons. The
motor control of the lens (accommodation) and of the rectus muscles (ver-
gence) is indicated at lower left,
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nect to all other neurons in the NBF. Figure 12 is drawn so that
the number of synapses (connections) between axons (outputs) of
one neuron and dendrites (inputs) of another neuron in a given
small area is proportional to the product of the density of axon
terminations and dendrites within that area.

Binocular correspondence-detecting neurons (BCDNs). A BCDN-
(Figure 12b) receives its input from only one level of the NBF and
sends its output to all other levels. The function of the BCDNs is to
limit outflow from the NBF to just one particular level when a bin-
ocular correspondence exists at that level. A BCDN receives inputs
from inflow neurons, and it is silent unless its input indicates a cor-
respondence between the left and right retinas. When its input does
indicate correspondence, it produces a large output; this output
acts to potentiate outflow at its own level and to inhibit BCDNs on
all other levels. The precise nature of the inputs is considered be-
low, in the section on rivalry. The transfer of signals from inflow
neurons to outflow neurons is assumed to be possible only at the
level that is not inhibited by BCDNs. Thus, within any small z
column of the NBF, outflow from the NBF occurs only from the one
level that has active BCDNs (monoactivity).

The monoactivity of a column of BCDNs depends on their gain
and their threshold. The gain is assumed to be large; that is, in
isolation a BCDN would produce a large output in relation to its
input. When the BCDNs on one level have a significantly larger
output than those on any other level, the BCDNSs of this level si-
lence those of all the other levels. The silencing occurs because of
implicit positive feedback. As the BCDN with the largest input begins
to inhibit the other BCDNS, they in turn inhibit the original BCDN
less; it increases its output still further, which in turn acts to dimin-
ish other outputs still further, and so on, ad infinitum. When the
most active BCDN succeeds in suppressing other BCDN& to below
their threshold, it no longer receives inhibitory signals from them;
it then acts as though it were in isolation. This monoactive inter-
action permits only one level in any vertical column of the NBF
to be active at one time. Appendix B describes and analyzes a neural
network that has these properties; in particular, it demonstrates that
when neurons are appropriately interconnected, their normal physi-
ological characteristics are adequate to produce the monoactive in-
teraction. :

If it is assumed that BCDNs in the middle level of the NBF have



BINOCULAR VISION 501

a slightly lower threshold (or equivalently, receive a slightly higher
level of spontaneous activity) than other BCDNSs, then when only
one eye is stimulated, the middle level is the only active level. The
bias in favor of the NBF’s middle level corresponds to the g, func-
tion of the physical model for fusion; recall that g,(Au) expressed
the tendency for fusion to occur at 4 = 0 (middle level) in prefer-
ence to other depth planes.

In general, the computation performed by the BCDNs corre-
sponds to the ! — I’ comparison operation of the k, and h, image-
disparity functions (Equation 6) of the physical model. Different
levels of the NBF correspond to different values of Av and Au at
which I — I’ is computed. The active level of the NBF corresponds
to the plane of fusion of the physical model; the outflow from this
level corresponds to the subjective binocular image.

Level-detecting neurons. The third kind of neuron detects the
active level of the NBF, that is, the depth plane at which binocular
correspondence occurs. The function of the level-detecting neuron
could be combined with that of the BCDN, but I have chosen to
designate it separately. Level-detecting neurons (Figure 12¢) re-
ceive their input from BCDNs. The number of connections be-
tween a BCDN and a level-detecting neuron increases with the
BCDN'’s distance from the center of the NBF, so that a binocular
correspondence at an extreme level of the NBF produces a big in-
put to the level-detector and hence a big output.

The outputs of level-detecting neurons are evaluated at a dis-
parity-depth center. Level-detecting neurons that receive signals
primarily from the bottom of the NBF feed excitatory signals to
the disparity-depth center; neurons from the top of the NBF feed
inhibitory signals. Thus the inputs to the disparity-depth center
indicate the depth levels of binocular correspondences.

Information about the fusion depth of each small area of the
NBF is passed through the disparity-depth center to subsequent
stages for further processing. In addition to transmitting local depth
information, the disparity-depth center sums the combined out-
puts of the level-detecting neurons over the NBF. This summed out-
put signal (plus the equivalent output of the secondary NBF) is
used to control vergence; it is the net contribution of retinal dis-
parity to the control of vergence. In the physical model, the image
component of the force that controls vergence is 6h,/9v (the
image’s contribution to the slope of the e, surface under the ver-
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gence marble) ; this force corresponds to the summed output of the
disparity-depth center.

As defined, the disparity-depth center produces a signal inversely
proportional to depth, that is, a convergence signal. As a rule, the
nervous system provides functions in paired opposites; therefore,
a more complete diagram would include an oppositely signed depth
center to provide a divergence signal. The factor g, of the physical
model, which represents motoric and all influences on vergence other
than disparity cues, is implicitly represented in Figure 12 by the
box labeled Motor Control.

Outflow neurons. The outflow neurons (Figure 12d) continue the
analysis of shape, texture, and color in the NBF. These neurons are
organized perpendicularly to the NBF and they receive inputs
equally from all depths. Their input is significantly simplified by
the BCDNs, which limit the inflow-outflow transfer to a single
level of the NBF. If it were not for BCDNs, the outflow neurons
would receive the summed signal of various planes of comparison,
a blur of useful and useless information. The outflow neurons carry
no binocular depth information. At subsequent stages of analysis,
however, binocular depth information (from the level-detecting
neurons) is recombined with the shape, texture, and color informa-
tion of the outflow neurons.

We may note here that the neurons which control accommoda-
tion are not represented in Figure 12. To provide the h, defocus
signal, any combination of contour-sensitive neurons {e.g., on-
center, off-surround) whose output was added at an ‘accommoda-
tion center’ would suffice (see Appendix A).

‘Binocular-rivalry neurons’: BCDNs I-IV. When antagonistic
stimuli are presented to the two retinas (e.g., { = horizontal, V=
vertical stripes), then in some areas of the visual field an observer
sees the stimulus from one eye; in the remaining areas he sees the
stimulus from the other. For many stimulus pairs, there are no
areas of the field in which stimuli from both eyes are seen simul-
taneously. This ‘either-or’ interaction between stimuli to the left
and right retinas is called binocular rivalry, a phenomenon so
closely related to binocular depth perception that one can hardly
discuss one without the other. Here, the features of the NBF are
elaborated to account for these rivalry interactions.

Only one generic type of BCDN has so far been proposed, to de-
tect binocular correspondences in the NBF. Here it is further pro-
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posed that the NBF has four generic types of BCDNs, organized as
two pairs, and that reciprocal interactions between these pair-mates
on the same level of the NBF account for binocular rivalry. (The
interactions between BCDNs on different levels are as described
above: an active level suppresses all other levels, and this interac-
tion accounts for fusion and depth phenomena.)

To illustrate the four BCDN types, a nomenclature for describing
neuronal inputs is helpful. Let F represent the function trans-
mitted by an input, and let ~F represent the complementary func-
tion. For example, F may represent input to the BCDN from an on-
center, off-surround receptive field as described by Kuffler and by
Hubel;?8 ~F then represents an off-center, on-surround receptive
field. Other examples of antagonistic receptive-field functions would
be a vertical light-dark boundary (F) and a dark-light boundary
(~F), a vertical bar (F) and a horizontal bar (~F), and so
forth. Further, let L represent an input from. the left eye and R
.an input from the right eye. Let + represent an excitatory input
connection and — an inhibitory input connection. A BCDN is in-
active when it receives no input sighals or when it receives only in-
hibitory signals. When it receives a signal through an excitatory
input, it becomes active. If both excitatory and inhibitory signals
‘are received, the activity is less than that produced by only ex-
citatory signals.

Table I lists the four kinds of BCDNs for a particular function
(F). Types I and IV are F detectors; they are active when the eyes
receive a stimulus satisfying the function (F)—in this example, a
white spot on a dark surround. When only the left eye receives the

TABLE I

InruTs oF THE Four TyrEs or BCDNs

Type Eye Message A Input ‘

I L F ( F,L, +)and (~F, R, —)
II L ~F (~F,L, +)and ( F, R, —~)
1 R ~E ( F L —)and (~F R +)
v (NF L —)and( F, R, +)

Pair A BCDNs I and III Pau' B, BCDNs II and IV.

238, W. Kuﬂﬂer, Discharge pattern and functional organization of the mam-
malian retina, J. Neurophysiol.,, 16, 1953, 37-68; D. H. Hubel, Integrative
processes in central visual pathways of the cat, J. opt. Soc. Amer., 53, 1963,
58-66.
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stimulus, T'ype I is active; when only the right eye receives the stim-
ulus, Type IV is active. Types II and III are the corresponding
~F detectors.

All four types of BCDNSs are assumed to be present in every small
region of every level of the NBF. The function of the BCDNs is to
detect binocular correspondences and then, by means of strong
inhibition of BCDNSs at all other levels, to restrict outflow from the
NBF to the level at which the correspondence occurred. The four
types of BCDNs are assumed to enable specific inflow-outflow
connections: left-eye BCDNs (Types I and II) enable transfer of
information from left-eye inflow neurons to outflow neurons, and
right-eye BCDNs (Types III and IV) enable right-eye inflow-out-
flow transfer.

The four BCDN types are organized into strong reciprocally
inhibiting pairs within any given level of the NBF. Two kinds of
BCDN pairs are proposed here: A pairs, composed of BCDN Types
I and III; and B pairs, composed of BCDN Types II and IV.
The two partners in each pair receive identical inputs except that
excitation and inhibition are reversed. Within a level the two mem-
bers of a pair interact in basically the same way as two different
levels interact: a member is fully active or silent, and only one
member of the pair can be active at one time. The active member
is usually the member with the larger input, although previously
established activity may persist even when the inputs are changed.
When neither member has an input that exceeds the threshold (e),
then both members of the pair are silent.

Finally, it is assumed that—in addition to their strong reciprocal
interconnections with their partners in a pair—the four kinds of
BCDNSs have similar but much weaker reciprocally inhibiting in-
terconnections with neighboring opposite-eye neurons on the same
level. For example, BCDN I inhibits neighboring BCDN IIIs and
IVs weakly, in addition to strongly inhibiting its BCDN-III part-
ner. The effect of this interaction is facilitory, in the sense that as
soon as one member of one pair has achieved dominance, it helps to
silence ambivalent opposite-eye neighbors and thereby to facilitate
the quick spatial spread of dominance of BCDNs of the same eye
throughout that level of the NBF.

To illustrate the operation of BCDN pairs, we consider first the
case where both eyes receive the same stimulus. Then, one BCDN of
each pair receives an excitatory input, and the other member re-
ceives an inhibitory input. For example, when the stimulus on both
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retinas satisfies F (when it is, say, a bright spot on a dark back-
ground), the left-eye input of BCDN I (which has an excitatory
connection) is excited, and the right-eye input of BCDN 1 (which
has an inhibitory connection) is inhibited and carries no signals.
Therefore BCDN 1 is excited. The excitatory input of BCDN III is
silent (it requires a dark spot), and the inhibitory input is active;
therefore, BCDN I is active; BCDN III is inhibited. In Pair A
then, BCDN I dominates BCDN III. Similarly, in Pair B, BCDN
IV dominates BCDN II. The active BCDN I’s enable left-eye in-
flow-outflow connections in the neural field, and the active BCDN
IVs enable right-eye inflow-outflow connections; all inflow-outflow
connections are enabled. And when the stimulus on both retinas
satisfies ~F (when it is a dark spot on a light surround), BCDN
II dominates I and BCDN III dominates BCDN 1V; again, all in-
flow-outflow connections are enabled.

When the stimulus to one retina satisfies F and the stimulus to the
other retina satisfies ~F, however, then only one set of inflow-out-
flow connections is enabled. For example, suppose that the left eye
receives a bright spot and the right eye receives a dark spot. BCDN
I receives excitatory signals from the left eye and inhibitory signals
from the right eye. BCDN III has the opposite inputs. Which of
BCDN I and IIT dominates Pair A depends on the relative strength
of the two stimuli, on past stimulation, and on bias factors. How-
ever, only one member can be active at one time. If BCDN I is the
active member of Pair A, then the left eye’s inflow-outflow connec-
tions are enabled; if BCDN III is active, the right eye’s inflow-out-
flow connections are enabled. Normally, Pair B would enable the
connections of the eye that was not enabled by Pair A. In the case
of antagonistic stimuli (I = F; L’ = ~F), however, both mem-
bers of Pair B (both BCDN II and BCDN 1IV) fail to receive ex-
citatory input signals. Therefore neither member of Pair B is active,
and only one eye’s inflow-outflow connections are enabled—those of
the eye chosen by Pair A.

Secondary Neural Binocular Field

The secondary NBF is assumed to be functionally similar to,
and composed of the same types of neurons as, the primary NBF,
the main difference being that the sizes of the receptive fields of its
input neurons are about 10 to 20 times greater. The depth range of
the primary NBF is estimated to be about =} deg., that of the



506 SPERLING

secondary NBF about =2 deg. These depth ranges are very ap-
proximate characterizations of central vision; in both NBFs the
depth range increases rapidly with peripheral angle.?* The depth
signals from the primary and secondary NBFs add in proportion to
the magnitude of the depth; thus the primary NBF signals are
merely a perturbation on the larger depth signals from the sec-
ondary NBF.

The fine-detail output of the primary NBF contains information
about stimulus shape and texture, information which is used in
subsequent decoding of these stimulus properties, such as in pattern
recognition. The outflow of the primary NBF ultimately determines
the contents of perception—what we see. The coarse-detail output
of the secondary NBF—except for the depth signal—does not serve
pattern recognition so directly. Metaphorically, we may say the
secondary NBF is concerned with the metalanguage of perception;
it directs recognition processes to particular regions of the visual
field, but it is the outflow of the primary NBF that is processed.
Because the information dealt with by the secondary NBF is so
coarse, the secondary NBF computes binocular correspondence be-
tween stimuli that would be treated as different by the primary
NBF. For example, at reading distance, the primary NBF clearly
discriminates between the letters A and B; the secondary NBF
treats them as identical ‘blobs.’

Predictions of the Neural Model

There are two kinds of outputs from the primary and secondary
NBFs that can be related to behavioral data: the depth signal,
which derives from both NBFs, and the pattern outflow, which
derives from the primary NBF. Below, the depth signals for fusion
and vergence derived from the neural model are compared with
those derived from the physical model; pattern outflow is consid-
ered next; and the combinations of depth signals and pattern out-
flow are considered last.

Depth signals: Fusion. The active level of an NBF corresponds
to the level (Au) at which fusion occurs in the physical model; a
signal indicating this level is transmitted by the level-detecting
neurons (Figure 12¢). The computation of binocular correspondence

2¢ Ogle (n. 17).
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by the BCDNs corresponds to h, (and k) in Equation 6 of the
physical model. The layer of BCDNs with greatest binocular cor-
respondence corresponds to the fusion value of the A, function in
the physical model, and the spontaneous input to the middle layer
of the NBF corresponds to the g, bias function. The addition of
gs and h, to form e, in the physical model is represented in the
neural model by the combination of the spontaneous and stimulus-
produced inputs to the BCDNs; the particular energy well of e,
into which the marble representing fusion rolls depends on past
stimuli and responses, just as does the particular active layer of the
NBF.

The multistability of fusion in stabilized vision is the work of the
BCDNs. Activity at any level of an NBF—once it is established—
inhibits activity at any other level (monoactivity). The normal
mechanism for establishing activity at a new level is & sudden
change in the entire input, such as that caused by a saccadic eye
movement or a blink, which in effect resets the NBF to a neutral
starting position and allows the level which contains the strongest
stimulus to establish itself.

In stabilized vision, activity can be established at a level (u)
far from the center of the primary NBF by slowly shifting a fused
L and L’ laterally. Sooner or later, the level of maximal corre-
spondence (Aw%) will contain & shallower energy well than that pro-
duced by the bias in favor of the center level, but fusion at Au
continues to predominate until a sudden change causes a reevalua-
tion of stimulation at all levels (see Figure 10d).

The physical model for fusion assumes that the image disparity of
all possible fusion depths (u) is computed. The marble representing
fusion rests in a particular energy well because of its past history.
The neural suppression of one level in the NBF by another is equiv-
alent to the suppression of certain fusion computations, that is, to
the elimination of all but one of the energy wells—the one in which
the marble rests. This suppression does not grossly disturb the
isomorphism between the neural model and the physical model be-
cause the marble representing fusion can rest in only one energy well
at one time, and therefore the presence or absence of the others in
the neural model is not of first-order importance.

Depth signals: Vergence. The signals for controlling vergence
are the summed depth signals from the primary and secondary
NBFs, weighted according to the signals’ retinal location, with
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foveal values having the greatest weight. The summing and weight-
ing is carried out at the disparity-depth center (Figure 12). This
signal (h,) is combined with the motor-bias compornent (g,) to
give the net vergence-control signal (e,).

The multistability phenomena illustrated in Figure 4 (that the
eyes may fail to verge on a stimulus when it is presented sud-
denly, although they can verge on it when it is produced by slowly
transforming a previously verged stimulus) result from the com-
bination of motor-bias forces (g,) with image-disparity forces
(hy). However, complete failure of vergence (Figure 5) results
when the disparity of the stimuli to the left and right retinas ex-
ceeds that for which binocular correspondence is computed in the
NBFs. This and other interactions of fusion with vergence were
subsumed in the physical model by Equation 12. Vergence failure
usually does not occur outside the laboratory because the link be-
tween accommodation and vergence provides a vergence stimulus
for naturally occurring objects.

Pattern outflow: Binocular rivalry. The neural model predicts
that when stimuli to the two retinas are in correspondence, the out-
flow from the primary NBF contains the total pattern message from
both eyes. When the retinal stimuli are not in correspondence, the
outflow from the primary NBF contains messages only from one
eye; the chosen eye depends on the stimulus configuration (past
and present), on ocular dominance, and on accident. For a given
pair of rivalrous stimuli, the condition of one eye being dominant
is a stable condition, which, in the model, would persist indefinitely
until a perturbation such as a blink or an eye movement changed
the inputs.?® Insofar as activity tends to fatigue BCDNs, fa-
tigue as well as perturbations of input would contribute to altera-
tions of dominance.

By assuming that the function (F) used by BCDNs in the pri-
mary NBF is on-center and off-surround, many additional facts of
binocular rivalry are accounted for. For example, when, in a given
retinal neighborhood, one stimulus contains contours and the other
does not, the stimulus with contours dominates. This observation is
predicted by the model because F is a contour-sensitive function;
the contour input to the BCDNs enables inflow-outflow transfer in

28 N, J. M. Levelt, Note on the distribution of dominance times in binocular
rivalry, Brit. J. Psychol., 58, 1967, 143-145.
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its eye, whereas the noncontour input to the other eye does not en-
able transfer.

The model further predicts that a contour stimulus (say, a ring)
presented to one eye enables inflow-outflow from the same eye not
only in the neighborhood of the contour but also for the whole in-
side of the ring. It predicts this even for rings whose radius exceeds
the range of lateral BCDN-pair interactions—see the paragraph on
weak BCDN interactions—because lateral spread is a self-propa-
gating phenomenon when no resistance is encountered (i.e., a rival-
rous visual stimulus). Levelt summarizes many observations to
prove that common contours enable binocular summation in the area
within the contours.?® For example, when a black disk on a white
surround is presented to the left eye and a uniform field, white or
dark, to the right eye, the disk dominates and is seen unaltered.
But when a disk is presented to the left eye and a ring to the right
eye, a disk is seen and its observed brightness is intermediate be-
tween that of the presented disk and that of the field within the
ring. In the neural model, inflow-outflow is enabled within both the
disk and the ring, so that the net outflow is the combination of both
inflows, dark and light. The model does not specify how subse-
quent stages respond when they receive messages from the primary
NBF that an area is both light and dark, but gray—the average—
is a reasonable solution.

The model predicts in some detail what is seen in such complex
stimuli as horizontal stripes to one eye and vertical stripes to the
other. There are two areas at the intersection of the edges of the
stripes where the BCDN pairs receive conflicting inputs from each
eye (see Figure 13). Once one retinal stimulus (1), say, the vertical
stripes, has dominated the other in one boundary conflict, lateral
interaction tends to cause dominance of that stimulus to spread
throughout the whole stripe and into any adjacent stripes. If the
stripes are wide enough, however, the contours of horizontal stripes
(V') from the other eye can establish little ‘islands’ of dominance
within the vertical stripes (Figure 13). Brightness signals from the
two eyes are combined interior to these islands because both BCDN
pairs are active. Where I and ¥ present conflicting contours to the
two eyes, only one member of one BCDN pair is active. Figure
13 indicates these areas of rivalry.

28N, J. M. Levelt, On Binocular Ribalrv, 1965, Institute for Perception
RVO-TNO (Soesterberg, The Netherlands).
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Fia. 13. Diagrammatic representation of the visual appearance of binoeular
rivalry. The stimulus to the left eye, L, is a vertical black bar on a white
surround; the stimulus to the right eye, L’, is a horizontal black bar. The
Roman numerals indicate the type of BCDNs stimulated in each area of the
view. In the center and in the background, s BCDN member of each of the
A and B pairs is stimulated; these areas are not seen in rivalry. In other
areas, members of only one pair are stimulated; these are areas of rivalry.
(After Helmholtz [n. 31, 496.)

The binocular rivalry discussed in the paragraphs above is
within a depth plane. Rivalry between depth planes is another mat-
ter. Consider two objects, one behind the other, yet so placed that
both objects are seen by each eye. The reader can arrange such a
demonstration for himself with two pins. Stick the pins into a pencil
about an inch apart, parallel to each other and perpendicular to the
pencil. Hold the pencil against an illuminated surface at reading
distance so that one pin is directly behind the other, as in Figure 14.
As long as one pin is directly behind the other (pencil pointing be-
tween the eyes), both pins cannot be fused simultaneously; a dou-
ble image is very obvious. When the pencil is rotated so that it
points outside of the eyes, the angular distance between the depth
planes of the pins is not changed much, but the pins can now be
fused. This demonstration illustrates that even when both objects
produce distinet retinal images in each eye (so there is no loss of
information), an object cannot be seen as being behind another
object at the same point of the visual field.

In the model, the inability to fuse two objects when one is di-
rectly behind the other results from the monoactivity of a column
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F1o. 14. A display in which two objects, one directly behind the other, never-
theless produce distinct images on each retina. (a) Top view of two pins in
& pencil; 4, s indicate the depth planes. (b) Retinal projections of the
stimuli. (¢) Views of the stimulus as seen by each eye (these views are mirror
images of the retinal projections). (d) Projection of the stimuli (c) onto the
NBF: fusion of the near pin on level u shown by an filled circle; the un-
filled circles indicate heterogeneous fusion of a projection of the near pin
with a projection of the far pin; shading indicates the area within which
potential fusions are suppressed because of fusion at u,; the filled circle at ua
(in shaded area) indicates the point of binocular correspondence of images of
the far pin, a point at which fusion is suppressed,

of BCDNs (i.e., outflow is restricted to only one level of the NBF).
This rivalry between different levels of an NBF is fundamentally
different from binocular rivalry between neurons at the same
level of the NBF, where the within-pair interactions of BCDNs
come into play.

Depth and outflow: Binocular combinations. A binocular view
contains the outflow of the primary NBF (the contents) plus
the combined fusion-depth values assigned to each z, y location
by both NBFs. The binocular view is cyclopean because the two
eyes combine to give a single outflow at each z,y location of the
NBF; the contents of a binocular view therefore are basically the
same as those of & monocular view. The important difference be-
tween monocular and binocular vision is the possibility of nonzero
fusion-depth values in binocular vision.
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To determine the contents and depth values of the cyclopean view
in the most general case, consider a pair of stimuli (L and L’) of
the type illustrated in Figure 15. The letters A, B, X, Y, and A’,
B’, X/, Y’ in Figure 15 denote the stimulus letters A, B, X, Y, or
any other identifiable patterns. The stimuli X-X’ and Y-Y” function
as a reference frame to fix vergence; it is assumed that binocular
correspondences of X-X’ and Y-Y’ occur in the middle layer of
the NBF. When X = X’ and Y = Y/, then X-X’ and Y-Y’ are

z E4
. EAE EFE

e N

& X’
BI

(d) AB VBA

X

/ \

Fra. 16. Stimuli (a and ¢) to demonstrate binocular rivalry and/or depth;
L and L’ are the images to the left and right eyes respectively. The repre-~
sentations of the stimuli in the primary NBF are shown in (b) and in (d).
(b) Monoactivity within each column of the NBF precludes seeing both A
and B; only one is seen and in depth relative to X and Y. (d) A or B’
(ANDB’) is seen together with A’NB, according to the outcome of rivalry in
the central layer of the NBF. When binocular correspondence is detected in
the secondary NBF (indicated by open circles), then ANB’ and/or A’NB is
seen in depth relative to X and Y.
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each seen as a single stimulus at a depth determined by vergence
and incidental cues. Which of A or B is seen? What is its depth
and lateral position relative to that of X and Y? The answers de-
pend on the nature of A and B, and on the lateral separation be-
tween them. The answers to these questions are completely general,
because for any given region of any binocular stimulus, there is
a choice of A, B, X, Y and of A/, B’, X’, Y’ that makes the
reduced stimulus configuration of Figure 15 prototypical of any
given region of the complex stimulus.

—Binocular combinations of identical stimuli. In the first
group of cases, B is assumed to be a null stimulus (i.e., equal to the
background). This eliminates complications due to binocular rivalry
and means that the specific questions and answers inivolve binocular
combinations of identical stimuli (A and A’). When the lateral
separation between X and Y is very small (less than 4 deg. in central
vision), the binocular correspondence between A and A’ falls within
the primary NBF (Figure 15b). In this case, a single stimulus
(A-A’) is seen, above and behind X and Y, laterally between them.
Not only does A-A’ appear laterally between X and Y, but, by
varying the relative intensity of the stimulus to the left and to the
right eye, the perceived lateral position can be made vary con-
tinously between its two extremes: with A laterally directly above
X, as when only the left eye’s stimulus of Figure 15a is presented;
or A’ directly above Y’, as when only the right eye'’s stimulus is
presented. This displacement effect is predicted by the physical
model of fusion as follows.

Let uy, us, ug, respectively be the values of w at the minima of
g(u), h(u), and e(u). Whenever us 5% u;, then u; < ug < ug or
Uy = ug > uz; us is displaced from u, toward u; by the amount
Au = uz — ug. The shift Au depends on the shallowness of the
minimum of & (w) ; the shallower the minimum, the greater Au. The
deepest minima of %(u) occur when I and I are of equal intensity;
the minima become shallower when [ is unequal to ! in intensity,
and they vanish entirely when either I or I’ vanishes. Changing the
value of Aw corresponds to sliding the point of fusion along one of
the -V projections in the NBF, and hence to a lateral shift as well
as a shift in depth. In fact, this lateral mobility of a fused object is
the best empirical criterion of fusion in the primary NBF.?

27 The question of whether fusion can cause a lateral displacement of the

fused object has received conflicting answers in the literature. Large dis~
placements invariably are the result of uncontrolled vergence and suppres-
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Consider now what happens when we separate X and Y. When
the lateral separation between A and A’ exceeds the § deg. half-
depth of the primary NBF, binocular correspondence between A
and A’ cannot occur within the primary NBF. In this case, the
middle layer of the primary NBF dominates; A and A’ are repre-
sented there separately (Figure 15d). Unless one eye is strongly
dominant, A is seen above X-X’ and A’ is seen above Y-Y’. How-
ever, if A and A’ are large relative to the lateral displacement
between them, they overlap and binocular rivalry may cause one
to partially or completely suppress the other. For this reason,
singleness of vision is not a sufficient criterion for binocular cor-
respondence in the primary NBF.

When the lateral separation of X and Y is less than the 2 deg.
half-depth of the secondary NBF, the apparent depth of A is de-
termined by the depth signal from the secondary NBF. Suppose
both A and A’ are seen, one above each of X and Y. Whether or
not A or A’ or both appear in depth behind X-Y depends on their
lateral separation, on the past history of stimulation, and on their
size and texture. With large separations, two stable states (depth,
no depth) are possible in the secondary NBF, but the depth sign
of the A-A’ fusion in the secondary NBF may not always be at-
tached to both the A and A’ representations in the primary NBF.
Therefore, the same stimuli (A-A’) may appear behind X-Y on
some occasions and in the plane of X-Y on other occasions. In
brief, then, one or both images of A are seen because of their sep-
arate representations and possible rivalry in the primary NBF;
neither, one, or both of the images appear in depth depending on
whether binocular correspondence was detected in the secondary
NBF. (These relations between the objects of Figure 15 are sum-
marized in Table II, in the middle cell of the top row).

The last cell of the top row of Table II indicates the visual con-
tents when the separation between X and Y exceeds the limit at
which correspondences can be calculated in the secondary NBF,
Then, in both NBFs, the only active layer is the middle one and no
depth difference is seen between A and X-Y. Because A is repre-
sented twice in the middle layer, it is seen doubly. In all rows of

sion. This is demonstrated by briefly intensifying a steady I and ¥ alternately,
and noting the reappearance of the suppressed elements. For background,
see H. Werner, Dynamics in binocular depth perception, Psychol. Monogr.,
49, 1937, No. 2 (Whole No. 218); L. Kaufman, Suppression and fusion in view-
ing complex stereograms, this JournaL, 77, 1964, 193-205.
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Table II depth disappears when the disparity exceeds the range of
the NBFs, and in all cases it reappears (if it appeared in any cell
of the row) when vergence movements are permitted.

Because the receptive fields of cells composing the secondary
NBF are assumed to be very large, partial correspondences may be
detected at disparities far exceeding the range of the secondary
NBF. For example, suppose the extreme layers of the secondary NBF
compute correspondences at disparities of 2 deg. If the diameter
of receptive fields also were 2 deg., then stimuli separated by 4 deg.
would still stimulate the edges of the receptive fields at the extreme
layers, and a partial correspondence would be detected there. Brief
flashes of simple stimuli separated by over 4 deg. do, in fact, yield
appropriate localizations in depth (i.e., far or near) and they induce
vergence movements in the appropriate directions,?® but these re-
sults do not directly indicate the range of the secondary NBF.

—Binocular combinations of rivalrous stimuli. In this second
group of cases, B is assumed to be a nonzero stimulus, different
from A. This means that the question of what is seen involves bin-
ocular combinations of rivalrous stimuli (A and B—assuming that
they are sufficiently different to ‘rival’ each other, a condition
which it is obviously impossible to fulfill for very small X-Y sep-
arations). The results with rivalrous stimuli are basically the same
as for stimuli that contain only A, except that wherever A was seen,
only one of A or B is seen, depending on the local outcome of the
A-B rivalry. These results are summarized in the second row of
Table II. ‘

When the difference between A and B is too small to be resolved
by the secondary NBF (e.g., two different printed letters are in-
terpreted as similar ‘blobs’), then there are three possible levels of
binocular correspondence in the secondary NBF: A-A’; A-B’,
B-A’; and B-B’. Of these, the A-B’, B-A’ correspondence is most
likely to dominate because it is on the middle level of the NBF.
- When the middle level dominates, relative depth between X-Y and
A or B is lost. The last two cells of the second row of Table II sum-
marize these results.

When A and B are so similar that they are taken to be identical

28D, E. Mitchell, Qualitative depth localization with diplopic images of
dissimilar shape, Vis. Res., 9, 1969, 991-994; G, Westheimer and D. E. Mitchell,
The sensory stimulus for disjunctive eye movements, Vis. Res., 9, 1969, 749~
755; D. E. Mitchell, Properties of stimuli eliciting vergence eye movements and
stereopsis, Vis. Res., 10, 1970, 145-162.
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not only by the secondary NBF but also by the primary NBF,
then A fuses with B’ and B with A’ on the middle level of the pri-
mary NBF and no relative depth is seen. The first cell of the third
row in Table II represents this situation. A-B’ fusion without
depth is not the only stable state; but it takes some ingenuity to
achieve the others. For example, if the intensity of B-B’ is ini-
tially set to zero, then fusion occurs on A-A’. By slowly intensify-
ing B-B’, a second state (A-A’ fusion with depth) can be main-
tained, at least temporarily.

Because of its historical interest, Panum’s limiting case®® is de-
scribed in the last row of Table II. In Panum’s limiting case, the
stimuli, A, B, and B, are identical lines (e.g., the letter I), and A’
is null. The AB’ line is always fused in the X-Y plane. Whether
the B-B’ binocular correspondence occurs in the primary or sec-
ondary NBF depends on the X-Y disparity, and it determines the
lateral shift (if any) of B; in either case, it is seen behind X-Y.

The previously untested predictions of Table II have been veri-
fied experimentally by the author, using stimuli of the kind in-
troduced by Kaufman following Julesz’s method.2° The demonstra-
tions and the predictions have much in common with those of
Verhoeff, Asher, and Kaufman.® It was Kaufman who first ob-
tained and correctly interpreted evidence for a coarse-detail func-
tion (a ‘blob’ detector) in binocular correspondence detection 32
Some of Kaufman'’s results are considered below; the neural model
accounts for all the details.

Binocular combinations: The Kaufman figures. Figure 16ab illus-
trates two stereoscopic image pairs (L;, Ly’ and L, Ly’) taken from
Kaufman (n. 22). Only Figure 16a yields a stable stereoscopic depth
illusion. Figure 16cd illustrates the representation of these stimuli in
the secondary NBF. (Because of the large separation between char-
acters, binocular correspondences at nonzero levels occur only in the
secondary NBF.) Partial correspondences (any character of L with
any other character of L’) are indicated by open circles; exact cor-

22 K, N. Ogle, Special topics in binocular spatial localization, in H. Davson
(ed.), The Eye, 4, 1962, 349407,

30 Kaufman (n. 27); Julesz (n. 21).

81 F. H. Verhoeff, A new theory of binocular vision, Arch. Ophthal., 13,
1935, 161-175; H. Asher, Suppression theory of binocular vision, Brit. J.
Ophthal., 37, 1953, 37-49; Kaufman (n. 22).

321, Kaufman, On the nature of binocular disparity, this JourNar, 77, 1964,
393-402; Kaufman (n. 22). :
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respondences (a character with its exact mateh) are indicated by
filled circles. With the stimuli of Figure 16a, exact binocular corre-
spondences occur only on one level of the NBF. When a BCDN
becomes active on that level, activity quickly spreads to the limits
of the region of exact correspondence, and beyond, suppressing the
other levels.

TTTIY
lllllllllll AA AR AAARAAAAAAAAAAA AAAAAAAAAAAAAAA

ta) TITTTRSVNRTY AAAAAAXIFTEAALL o} ey AMAAMAZEEAAA
TS AMAAL AAAA AAAAAEVENWAAAAA AAAAAAETENVAAM
TrrTTIERVTY AAAAAASVERVAAAL AAAAAVERVEAAAA AAAMTEITIAAAL
TrrTTRVIRET AAAAA A AAA AMAAMERFFEAAAL
TUTITTTITITIT
T

F1e. 16, Two stereogram pairs (a and b) from Kaufman (n. 22) and their
representations (¢ and d) in the secondary NBF, Filled circles indicate exact
correspondences, unfilled circles indicate coarse correspondences (ie. of dif-
ferent letters) ; Xs indicate projection onto middle layer of outermost letters
(for these, there is no binocular correspondence in the middle layer). Arrows
indicate the direction of spread of activity within a layer; the lines through the
arrows indicate the final, stable depth perception. For simplicity, only 12 of
the 16 columns of the stereograms are indicated in (¢) and (d).

Partial correspondence is possible at many levels throughout the
secondary NBF. However, one BCDN that is always activated by
a partial correspondence is the outermost one, because only this
BCDN suffers no competition from correspondences at other levels.
Since the uncontested, outermost partial correspondence is one level
removed from the level of exact correspondence, it initiates a
counterspread of activity throughout its level. The activity initiated
by the partial correspondence at the edge spreads inward from the
edge while the activity initiated by exact correspondences spreads
outward from the center; ultimately they meet. The exact cor-
respondence is a stronger input to the BCDNs than the partial one,
so that wherever a conflict arises, the exact correspondence pre-
dominates. Therefore, in Figure 16¢, the activity initiated by outer
correspondences is excluded from the center rectangle. There are two
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stable states: the one illustrated in Figure 16¢ (which predominates)
and the initial state (illustrated in Figure 16d).

For the stimuli of Figure 16b, activity initiated by an exact cor-
respondence in the center of the stimulus spreads almost to the
very edge (Figure 16d). Thus in Figure 16a, the center rectangle is
seen in depth against its entire surround; in Figure 16b, only the
end columns are seen in depth. By careful stereoscopic observation
of Figure 16b the reader may be able to observe the temporal
spread of activity from the center outwards: he also may observe
briefly various semistable depth configurations.

The foregoing explanation accounts for the presence or absence
of relative depth in Kaufman’s demonstration. The content of what
is seen (i.e., which letter) is determined in the primary NBF. Only
the center level is active there because the disparity between ad-
jacent letters exceeds its limits. Since the eyes verge on the inner
letters, these fall on the center level. To note which letters are pro-
jected onto the center level of the primary NBF, the reader may
refer to the center level of the secondary NBF (Figure 16¢, 16d);
there is no need for a separate diagram. For the stereogram of
Figure 16a, which letter is seen depends on the A-T rivalry
(A NT) at the center level of the primary NBF. The end col-
umns are an exception because only the stimulus from one eye is
represented at the center level of the NBF (crosses, Figure 16¢).
Thus the left-end column is A, and the right-end column is T,

In the stereogram of Figure 16b, the character A is seen at all its
projections onto the center level. As for lateral position, all letters
line up in vertical rows; the letters of the end columns (which can
be seen in depth) do not appear to be shifted horizontally. (Lateral
position is determined in the primary NBF, i.e., by the projections
onto the center level in these illustrations.) These phenomena are
subsumed in Table II in the second column (secondary NBF), the
second (A = B) and third (A = B) rows. That is, A is partially

_confused with B in the secondary NBF and therefore the phenom-
ena characteristic of both A B and A = B occur. Most of Kauf-
man’s other interesting demonstrations fall in the same cells of
Table II.

Binocular combinations: The Hochberg stereograms. Hochberg
published several interesting stereograms,® all of which use rival-

83 J, Hochberg, Depth perception loss with local monocular suppression:
A problem in the explanation of stereopsis, Science, 145, 1964, 1334-1336;
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rous stimuli with this property: that whenever binocular rivalry
causes the image in one eye to dominate completely, the illusion of
depth is lost. Since Kaufman’s stereograms are counterexamples to
this rule (only A or T is seen, yet depth persists; Figure 16a), we
are faced with specifying the critical difference between the two
kinds of stereograms. The main difference seems to be that the
rivalry-inducing features of Hochberg’s demonstrations are quite
coarse, so that rivalry occurs in the secondary NBF as well as in
the primary NBF.

£ £

Fia. 17. Stereogram from Hochberg (third reference, n. 33) after Kaufman
and Pitblado. The inner circles are seen in depth except when binocular rivalry
of one pair member over the other is complete.

For example, to produce the stereogram of Figure 17, a hori-
zontal grid is added to the left member and a vertical grid is added
to the right member of a stimulus pair that would normally produce
a stable illusion of depth. The relative coarseness of the grid fea-
ture explains the occasional loss of depth, because large conflicting
features cause failure to compute the image-disparity minima in
the secondary NBF.

Feature coarseness does not explain the correlation between sup-
pression of one eye’s input in the primary NBF and depth loss
(suppression of an input in the secondary NBF). Significantly,
however, the best operation for producing the correlated effects of
suppression and depth loss is reducing the stimulus intensity to one
eye.®* Filtering the light input obviously affects both NBFs, which
suggests that peripheral causes—such as vergence changes or other

J. Hochberg, On the conditions of stereopsis-suppression, Science, 146, 1964, 800;
J. Hochberg, One view through two eyes: A theory of binocular combina-
tion and some supportive experiments, paper read at the meeting of the
Psychonometric Society, October, 1964.

8¢ Kaufman and Pitblado, cited by Hochberg (see the second reference in
n. 33).
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eye movements—may account for the correlation and, at any
rate, need to be eliminated before considering explanations at higher
levels.

Binocular combinations in stabilized vision. Fender and Julesz’s
experiments on the “extension of Panum’s fusional area in binocu-
larly stabilized vision” were described above, in the section on ex-
amples of the physical model for fusion. In these experiments, rela-
tive depth perception persisted in stimuli that had been displaced
by 2 deg. on the retina (i.e., the left eye’s stimulus moved left by
1 deg. and the right eye’s stimulus moved right by 1 deg.). These
conditions fall in the middle cell of Table II (secondary NBF,
A #B). The only discrepancy between the prediction of Table II
and the observation is that Table II predicts that two images, one
of I and one of , will be seen, whereas visibility of only one was
reported. To account for this result, we must carefully examine the
procedure.

A

{a) (b)

Fia. 18. Cyclopean view of the relative position of the stimulus to the left
(D) and right () retina in the stabilized-vision experiment of Fender and
Julesz (n. 4). The width of the stimuli is 3.4 deg. The orientation (b) illus-
trates the point at which singleness of vision is lost ; (a) illustrates the point
at which fusion reoccurs.

Figure 18a illustrates the stimulus conditions at the beginning of
a trial, and Figure 18b shows them at the point where singleness of
vision was lost. If the stimulus of Figure 18b were presented by it-
self, both ! and ¥ would be seen, yet when the stimulus of Figure
18a was transformed slowly into that of Figure 18b, subjects saw
only one square, an effect which Fender and Julesz explained in
terms of an extended fusion area in stabilized vision. Both results
can be explained without introducing any new concepts: the crucial
detail is Fender and Julesz’s inadvertently cunning use of binocular




522 SPERLING

rivalry. For the stimulus of Figure 18a, binocular rivalry deter-
mines which of ! or I is seen. Once the lateral disparity between
! and V is about } deg. (top-to-bottom depth of the primary NBF),
binocular correspondence no longer can be computed within the
primary NBF. The active level of the primary NBF is the center
level; wherever I and I conflict on that level, rivalry determines
which is suppressed. Because of the dense detail of I and 7, it is
unlikely that any contour from ! can fall against a neutral area in
U, or conversely. Contours fall against contours, so that when ¥
is suppressed, for example, there are no stable islands where con-
tours of I’ can break the suppression by I. However, depth relations
between portions of ! and I persist because they are computed in
the secondary NBF.

As the lateral disparity between ! and ¥ is increased, the sup-
pressed stimulus remains suppressed even after it no longer is
competing against contours. This phenomenon can be observed in
normal vision, although the model predicts it would be more readily
produced in stabilized vision where eye movements and blinks—
events that would tend to perturb a delicately achieved suppres-
sion state—are eliminated. The 2-deg. limit of single vision (not
fusion) observed by Fender and Julesz measures the limit at which
the binocular correspondence no longer can be maintained in the
secondary NBF (see Figure 5). The change of state in the secondary
NBF from binocular correspondence (at Au = 2 deg.) to rivalry
(at Au = 0) triggers the failure of the extraordinary suppression.
At this point, the dominant stimulus is seen in its entirety; the
other reappears in the regions where it stands alone (Figure 18b).
Both stimuli are seen at loci appropriate to their retinal locations.

In brief, the depth that results with binocularly stabilized images
is accounted for by depth signals from the secondary NBF, and the
singleness of vision (apparent fusion) is accounted for by binocular
rivalry. No new principles are involved.3® In fact, similar sup-

35 Professor Fender (personal communication) himself has often observed
the sudden loss of apparent fusion at the critical separation of binocularly
stabilized images. He states that the sensation is one of sudden ‘jumping
apart’ of two images from a single source. The proposed suppression hypothesis,
he thinks, would predict that at the instant when suppression fails, the sup-
pressed image merely reappears without any ‘jumping apart.! The observa-
tion of ‘jumping apart’ and the assumption that suppression precludes
‘jumping apart’ causes him to reject the suppression hypothesis. To support
the hypothesis it is proposed that the loss of binocular correspondence in the
secondary NBF, a loss which is coincident with reemergence of the sup-
pressed stimulus, produces a sensation of ‘jumping apart.’
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pression phenomena can be observed in normal, unstabilized vision
by displacing stimuli laterally beyond the limits at which the eyes
diverge to verge on them. In unstabilized vision, binocular rivalry
is quite apparent, since only partial suppression is normally
achieved.

Other functions in the NBF. So far, only two functions of the in-
put have been considered: coarse detail and fine detail. Both of
these functions can be accomplished by center-surround types of
receptive fields of the appropriate size. Undoubtedly, many other
functions of the input are computed. For example, the well-known
red-green antagonism in binocular vision suggests the existence of a
function pair for green (F) and red (~F). So far too, it has been as-
sumed that the fine-detail and coarse-detail functions of the pri-
mary and secondary NBFs are noninteracting and that the fine-
detail system of the primary NBF controls other inputs, such as
color and brightness. At present, however, the relations to each other
of different function systems—even the specification of such sys-
tems—must be regarded as an open question for future theory and
experiments.

Two processes that have erroneously been attributed to the NBFs
are a change in the mapping of corresponding points with asymmetric
vergence (to account for stability of the apparent normal plane)
and a change in the receptive field size with convergence (to account
for changes in apparent size).® In fact, corresponding points, as
measured by nonius lines are so remarkably stable’” that remap-
ping is excluded, and we must look elsewhere for explanations of
these perceptual phenomena. The apparent location, orientation,
and size of objects depend in a complex way on the interpretation
by subsequent analyzers of information available from the NBFs
and other sources rather than on any restructuring of the NBFs
themselves. '

Evolution of Binocular Depth Discrimination

Some of the interactions between accommodation, vergence, and
fusion are best understood in terms of their evolutionary develop-
ment. Of the three, according to Walls, accommodation was

8¢ W, Richards, Spatial remapping in the primate visual system, Kybernetik,
4, 1968, 145-156.
87 Ogle (n. 8).
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evolved first and most universally.3® The most versatile of the ac-
commodation mechanisms is that for comparing blur in different
retinal areas. It requires the object whose depth is in question to
overlap at least two predetermined retinal areas merely to make
a determination of closer or further than the current value of
accommodation; even then, the determination of blur is highly
dependent on the number of contours within each area. Further-
more, when pupil diameter is reduced in bright daylight, blur
becomes an extremely insensitive indicator of depth because of
increased depth of focus. Therefore, an accurate accommodative
depth system would ultimately depend on movements of the lens
and of the eye to track depth, and would use the accommodation
values as the depth estimate. Unfortunately, systems that require
both the eye and the lens to track are too inefficient, too insensitive
(relative to the systems described below), and too slow—and
therefore seem not to have evolved. Accommodation thus failed
to develop into a depth-discrimination mechanism, and depth
determination fell to other systems.

Head movements provide extremely good cues for the monocular
discrimination of depth. The two successive images to the one
eye correspond exactly to the two different views of different eyes.
The evolution of a depth mechanism based on head movements
would suffice for animals that are not endangered by having to
move their heads and for animals that capture food with their
heads by moving toward it until they encounter it. But animals
that use paws, hands, or trunks to capture food need binocular
depth perception to avoid avoidable trial-and-error reaching. (In
fact, such animals have the most binocular overlap in their monoc-
ular fields—an indication of dependence on binocular vision.)

The evolution of stereoscopic depth discrimination required, first,
overlapping visual fields (which originally evolved to avoid blind
spots); second, a binocular registration mechanism (the NBF,
which originally evolved to deal with the binocular overlap);
and ultimately, vergence movements. To show how these systems
evolved together, consider the following example. Suppose & species
has evolved an NBF that is ten levels thick, and that an animal
can discriminate two depths if their levels in the NBF differ
by one level. If the total NBF thickness of ten levels corresponded
to 15 deg., the animal could diseriminate two depths that differed

38 Walls (n. 13), 247 ff.
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by 1.5 deg.; if the total depth range of the NBF were 5 deg., the
animal could discriminate .5 deg. As the NBF evolved toward
the limits of visual acuity and became capable of ever-finer dis-
crimination, it also covered an ever-smaller depth range. The
principle is the same as in’ a microscope: the higher the power, the
smaller the range of view. A small NBF depth range implies a
critical dependence on accurate centering in the NBF. Therefore,
to evolve a sensitive NBF, precise vergence movements were
necessary.

A small NBF range also means that vergence is not computed
for objects outside this range. At this point, the link of accommoda-
tion to vergence becomes an important supplement to the NBF. Thus
the development of sensitive binocular depth discrimination re-
quired the concomitant development of accurate vergence (to
center objects in the NBF) and of linked accommodation (to
supplement the range of the NBF).

Conclusion

The neural model represents only a tiny subject of the functions
carried out in the visual system and does so in terms of neural
components compatible with our present-day knowledge of neural
processes. It is not unique: similar functions could be carried out
in other ways. Nor does the gometric arrangement of parts of the
model—multilayered NBFs—necessarily correspond to neuroanat-
omy; the model is an hypothesis only about topology (i.e., con-
nectivity).

For all its limitations, the model has one characteristic that is
of very general interest. Namely, one function performed by the
BCDNs—limiting activity to a single level of the NBF—is rep-
resentative of a universal kind of function in the nervous system.
The BCDNs perform an extreme filtering action that restricts
the whole range of potential NBF outputs to output from only
one level; it makes only some very selected aspect of the stimulus
available for further processing. Since it is inefficient for a system
to decide in advance just which selected aspects of every possible
stimulus are to be processed, the selection of input for processing
must be under dynamic control; the results of previous processing—
the previous outputs—must control the future inputs. Therefore,
extreme filtering invariably is accompanied by feedback control
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of the filter; these twin processes produce the phenomena of multiple
stable states.

For example, the lens of the eye can be focused exactly on but a
single depth plane, an input restriction that places greater weight
on the depth plane accommodated and, together with the feedback
control of accommodation, leads to the multiple stable states of
accommodation. Similarly, the vergence angle between the eyes
determines the input from which binocular image disparity is
computed, and in turn image disparity controls vergence. Again,
filtering and feedback control lead to multiple stable states. Of
course, vergence movements are just a minor subclass of eye
movements. In general, the direction in which the eyes are pointed
determines the input they receive, and this input ultimately deter-
mines the direction in which they point. Eye movements represent
the ultimate in peripheral filtering under feedback control—a truly
multistable system,

The BCDN interactions in the NBF are especially interesting
because the filtering is not mechanical but neural. When a binoc-
ular correspondence is detected at one level of the NBF, the level
becomes active and output from the NBF is restricted to that one
level (is filtered). The choice of level depends on responses to pre-
vious inputs (is feedback controlled), and the result is multiple
stable states of fusion. Other examples of visual processes that
exhibit extreme multistability, presumably because of feedback-
controlled neural filtering, are binocular rivalry (seeing the stimu-
lus from one eye in a region of the visual field precludes seeing a
conflicting stimulus from the other eye in that region) and figure-
ground phenomena (seeing an ambiguous figure in one mode pre-
cludes simultaneously seeing other modes; seeing a particular
figure-ground relation, as on a map, precludes simultaneously
seeing other figure-ground relations). Even elementary interactions
between successive visual stimuli can be interpreted as exhibiting
this multistable ‘either-or’ characteristic.3®

In nature, there normally is no reason for organisms simul-
taneously to execute two antagonistic responses, and organisms
cannot do it. Therefore, there is no reason to preserve information
that ultimately would lead to antagonistic responses. The neural
binocular field is an early locus for the rejection of antagonistic
information; many of its paradoxical properties follow therefrom.

39 GG, Sperling, Bistable aspects of monocular vision, J. opt. Soc. Amer., 50,
1960, 1140-1141.
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APPENDIX A

PROOF THAT BLURRING INCREASES
IMAGE-DEFOCUS ENERGY (h.):
THE RELATION OF h. TO RECEPTIVE-FIELD STRUCTURE

Let I(z, y) be any luminance distribution such that I(z, y) > 0.

Let b(z, y) be any blur function such that b(z, ) > 0 and B =

2o J2u b(z, y) dz dy = 1. When I(z, y) is blurred by the function
b(z, y) the resulting blurred image [, (z, ¥)] is given by

e = [ [ e vibe -2y — ) awdy. (A

The two-dimensional Fourier transform of I(z, ) is

L, o) = L j; ¢z, y) de dy.

The Fourier transform ®(w, ¢) of b(z, y) is defined similarly. Let A
represent the generalized Laplacian [(9°/8'z) + (6°/9y')]. Then
Parseval’s theorem gives the following equality, which also defines
aQ, 1)

a9 = [ (v‘Z(x, y))’ dedy = [[ @+ oy L, o)|* da do
[A-2]

G(l, ©) gives a similar relation in terms of |Ls(ew, )|, where
Ly(w, ¢) = L(w, 0)B(w, ¢). Proof of the theorem that blurring in-
creases k, follows immediately from Equation A-2 if we can show
that |Ly(v, 0)|* < |L(w, o)[’; to show this it is necessary only to
show that |®(w, ¢)|* < 1, since

|LJ* = |L] [®". [A-3]

Using E to denote expectation, and recognizing that b is a proba-
bility distribution function, gives

B, o)| = [BE“'™)| S E |¢'*"*'"| =E 1| = 1. [A-4]

In fact, the middle equality occurs only when bz, y) = 8(z — ay)
8(y — ap); that is, when there is no blurring, merely exact repro-
duction or translation.

Equations A-3 and A-4 in conjunction with Equation A-2 give

G, %) < G, 9). [A-5]
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In the text, h, was defined as —GQ(l, 2). As Equation A-5
unambiguously states, blurring ! to produce I, can only decrease
G or, equivalently, increase k,. (The proof of Equation A-5 is due
to M. Sondhi.)

Receptive fields. The definition of h, in terms of V2 is perfectly
logical in terms of receptive fields. The antagonistic center-surround
type of receptive field corresponds to a ‘blurred’ V22 That is, if
the center portion of the receptive field were infinitely narrow,
and the surround were an infinitely small surrounding annulus
which subtracted from the center, the receptive field would cor-
respond exactly to V2. In fact, the center and surround portions of
the receptive field have a finite extent; this extent corresponds to a
particular blurring (b) of the output of a network of receptive
fields. The transformation performed by the receptive field is thus
approximated by bV2. Because differentiation (V¥) commutes with
convolution (blurring), the finite center-surround dimensions of the
receptive fields can be treated as blur in the stimulus, and the fields
themselves considered to be perfect differentiators (V2b). The de-
focus of the lens adds additional blur to the image; it is this vari-
able source of blur, k,, which is the stimulus for accommodation.

The use of the square V*l(z, y)? in Equation 8 of the text and
Equation A-2 is for mathematical elegance. The replacement of
(V1)2 by |vi| might perhaps bring the expression closer to physio-
logical plausibility (separate ‘on’ and ‘off’ channels convey the
positive and negative values of V1), but it would not materially
alter the main results (Equation A-5). That is, when the absolute
value replaces the square, Equation A-5 becomes

f_: f_: IV, y)| dz dy < f_: f_: IVUz, )| dxdy  [A-6)

where [, is a blurred image of 1.

In Equation A-6, strict equality holds for i = 0; equality may
still hold even when ¢ > 1 for certain combinations of stimuli )
and blur functions (b). The condition for inequality is that blur-
ring cause some light from an area where V*/ > 0 to spill into an
area where V¥ < 0 (or vice versa). For ¢ > 2, this spillage always
occurs in physically realizable images with nontrivial blur functions,

* For an early insight into this problem, see E. Mach, Ueber die physiolo-

gische Wirkung réumlich vertheilter Lichtreize, IV, Sitzungsber. math-natur-
wis. Classe Kaiserl. Akad. Wissensch., 57 (1868), No. 2, 11-19,
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and so the absolue value, as well as the square, could serve in the
evaluation of blur. Finally, as a practical matter, for special I(z, y)
which are themselves very ‘blurred,’ the additional effect of de-
focus may be negligible; in these cases, the theory predicts, it will
be impossible to accommodate the images.

APPENDIX B
ANALYSIS OF NEURON-PAIR INTERACTIONS

In terms of its function, a neuron is defined by its input-output
relations; these are approximated by a nonlinear differential equa-
tion of the form

dy(t)/dt + (A + B(z) + C)y(t) = =(t). [B-1]
Here, z(t) is the input, y(¢) is the output; 4 is a constant, B is a
function of the entire input (feedforward inhibition), and C
is a function of the entire output of all the neurons at the same
level (feedback inhibition).b

Elementary neuron pair. Consider the pair of neurons illustrated
in Figure B-1a. These neurons interact only by mutually inhibiting
each other; the constants (k) of mutual inhibition are assumed to

e ~

L

* Y

N\,

V@ > Y2
ay, o

(a) (b)

Fra. B-1. Reciprocally interconnected neurons. (a) Elementary neuron pair:
each neuron consists of an RC stage; the value of R is controlled by the
output of the neighboring neuron. (b) Neurons with positive feedback:
threshold, ¢, for output has been added, and there is an excitatory feedback
loop, ey, from the output back into the input,.

* To relate Equation B-1 to cellular parameters, consult W. Rall, Theoretical
significance of dendritic trees for neuronal input-output relations, in R. F. Reiss
(ed.), Neural Theory and Modeling, 1964; G. Sperling and M. M. Sondhi,
Model for visual luminance discrimination and flicker detection, J. opt. Soc.
Amer., 58, 1968, 1133-1145.
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be equal; and there is assumed to be no threshold and no self-
inhibition. Thus the term B(z) = 0; C(y) = ky; the dimensional
constant (4) is taken to be 1.0. The analysis becomes quite simple
if it is restricted to steady-state outputs (dy/dt = 0) in response
to step inputs [z(t) = constant, ¢ > 0]. In fact, very little general-
ity is lost thereby. For such a neuron pair, Equation B-1 reduces
to

Z,
Y = 1 + k% [B'Z]
and
— ——x’ . o

The inputs (z;) are restricted to positive values and labeled so
that z, > z; > 0. Define Ay as y; — y; and Az as 23 — z;. Multi-
plying out Equations B-2 and B-3, and subtracting, gives

Ay = Az. (B-4]
This result holds for all values of k.
Adding Equations B-2 and B-3, and reducing the result alge-
braically, gives

W+ ) = —3 + VBT T 2@ F ek F P, (B3]

For special conditions (when k > 0), Equation B-5 can be sub-
stantially simplified:

kAz > 2(z, + 2) = {y‘ ~0 . [B-6]
Ys R Az
and
kAz L2z, + ) = {y R ya & Vz/k. [B-7]

Equation B-6 holds for z; % z, and Equation B-7 holds for z; =~
3. These results show that the elementary neuron pair is a system
for performing subtraction. The system is all the more remarkable
because the interaction is not subtractive but divisive (the inhibi-
tion terms appear in the denominators of Equations B-2 and B-3).
The output Ay always equals the input Az, and when k is large,
the smaller output is approximately zero. For large k, at most one
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of two neurons is active, the one with the larger input, and this
neuron’s output is approximately Az.

Elementary neuron N-tuple. When more than two neurons inter-
act mutually in the same way as the neuron pair (i.e., as a neuron
N-tuple), Equations B-2 and B-3 generalize to

T
-._-——————-‘ . _8
VTR (B8]

s
For large k and N the following properties are derived from Equa-
tion B-8. Let z; be the largest input and let all other inputs (z;)
be equal. Two cases are considered: first, when z; > 3" z; (see
Equation B-9) and second, when z; < 32" ; (see Equation B-10).

h~vy
31=N33+‘Y ﬂnd7>0==> Za (_B'Q]
Y X —k‘Y- ~0
= 2/8’0—1/8_’0
=Nz, =¥ =5 -10
= T {y{ - z:/ak-an—t -0 [B ]

When the largest input (z,) is less than the sum of other inputs,
the output also yields a power of k (k/2) in the denominator, much
as in Equation B-10. Thus, the neuron N-tuple retains the de-
sirable features of the elementary pair only when one neuron has
a larger input than all the other inputs combined. Otherwise, all
outputs depend on k and go to zero as k — . (The author is
indebted to M. Sondhi for the derivation of Equations B-9 and
B-10.)

Neurons with positive feedback. Consider an elementary neuron
pair, like that of Figure B-1b. Each neuron feeds a part of its out-
put, a y, back into its input, where it acts like an added input
- signal. (The threshold is ignored, temporarily.) The equation de-
scribing this modified pair is

= ot oy )
Y 1+ ch, [B 11]
By defining 8 a3 1/(1 — a) for « < 1, it is a simple matter of alge-
braic manipulation to reduce Equation B-11 to

- Brd
A W7y [B-12]
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The right-hand term of Equation B-12 shows that by redefining
input as 2’ = Bz and the inhibitory coefficient as k¥’ = Bk, the basic
form of Equation B-2 remains unchanged by positive feedback. The
net effect of positive feedback is to multiply k and Az by 8. This
is no small effect: as « approaches 1, g approaches «; fora > 1, 8
is infinite. Thus, a relatively small amount of positive feedback can
enormously increase the strength of interaction (k) between neurons,
and their gain (8).

Effect of threshold (e). Neuronal thresholds arise naturally from
the two-stage conversion of input to output: a neuron’s input is
converted, first, into an internal voltage and, second, into an out-
put spike rate. Spike rates typically are proportional to internal
voltage, but as rates cannot fall below zero, there is a threshold
voltage. If the internal resting voltage of a neuron (zero input)
is e below its threshold-for-firing voltage, then inputs will not be
reflected in the output until they perturb the resting voltage by
¢ (Figure B-1b). The output of a neuron with a threshold and
positive feedback is given by

- Tty ] .
Y: = max [1+Ic ’Z:‘y‘ €, 0 [B-13]
”]

Rather than develop the full complexities of Equation B-13, only
one simple case is here considered, the case where « > 1. Consider
first a neuron acting in isolation: 2; = 0, 7 5% j. (Note that z, = 0
implies y; = 0.) Because « > 1, any input 2; > € causes y; = 0, or
more realistically, y;, = ¥, the maximum possible output. A neuron
(?) acting in isolation is either fully turned on (y; = ¥Y) or silent
(ys = 0) depending on whetherz > eorz < e.

Monoactivity in an interacting system of neurons with thresholds
and positive feedback. Let X be the maximum possible input; let
Y be the maximum possible output; let « > 1. Consider first what
happens when all inputs except z; are zero; that is, 2; = 0, j = +.
This is the same case a8 neuron ¢ acting in isolation: y; = 0 (for
j 7% 1) and either y; = Y (for oy > ¢) or ¥ = 0 (for z; < ).

When more than one neuron receives nonzero inputs, the first
neuron (7) whose input (z) exceeds ¢ turns fully on (y; = Y).
The condition for monosactivity of a network of N-neurons is
quite simple; it is that any active neuron has sufficient output to
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prevent all other neurons from turning on. For example, if the
first neuron (¢) whose input (z;) exceeds ¢ were to produce an
output (Y) of sufficient magnitude to keep all the others silent,
this would be a highly stable state. It would persist until the
input changed. When z; finally subsided to ¢, another neuron
could take over; it would silence the others, and so on. Sufficient
conditions for this kind of monostable interaction are developed
below.
Neuron j is maintained in perpetual silence by neuron 7 when

i_%}-’ <e [B-14]
(Note that the denominator of Equation B-14 contains kY, and
not BkY as suggested by Equation B-12, because it is assumed
that Y already is the largest value of y,. The numerator of Equa-
tion B-14 does not contain B because it is assumed that neuron i’s
threshold is not exceeded; therefore there is no positive feedback.)
Rearranging Equation B-15 gives

A+ kY) 2 2;/e = m. [B-15]
The left side of Equation B-15 is the total inhibition of neuron j
(by neuron 7); physiologically, it represents the factor by which
neuron 1 must change the effective conductance of neuron j to silence
it. The factor m = z,/e is the number of times by which z; exceeds
the threshold (). Let X/e = M. To guarantee monostability, the
effective neuronal conductance change (left side of Equation B-15)
must exceed the largest m, giving (1 + kY) > M. When this condi-
tion is satisfied, neuron z; is silenced by z; even when z; is receiving
its maximum possible input.

The value of M depends largely on ¢; when e is large, M is
small and easily achieved. To avoid the possibility of having no
active neurons when ¢ is large, it can be assumed that some
neurons (i.e., neurons of the middle level of the NBF) receive
spontaneously active inputs; these effectively reduce the e re-
quirement without changing M.

To obtain bounds on M, consider the two factors which determine
the effective change in neuronal shunting conductance (the left-
hand term of Equation B-15). Let the factor fi= (1 4+ kY) be
the direct increase in conductance wrought by inhibition. When
the site of excitation is separated from the site of inhibition, the
effectiveness of the inhibition can be increased; the increased
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effectiveness is represented by the factor f;. Assuming the attain-
able values of f; and of f; are about 3 gives a net f,f; of about 9e
- for the range of opposing inputs that can be totally silenced by an
active neuron. For inputs ranging up to 9e, this system is mono-
stable and unbiased. If one or more inputs exceed ¢, one (and
only one) neuron is active; otherwise, all are silent. This system
has the properties assumed for it in the neural model.



