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George Sperling

Introduction

The plan of this chapter is to review some experiments on attention, mostly from
my laboratory, and to show how all these experiments and experiments on signal
detection are subsumed under the same theoretical description.2 The kind of
attention tasks under consideration are exemplified by the concurrent tasks of
driving an automobile while listening to a news broadcast on the radio. Can a
driver do both tasks simultaneously without loss? Or does driving suffer when
too much attention is paid to the news? Or is memory for some news events lost
because of momentary concentration on a traffic obstacle?

The concurrent tasks of driving and listening are prototypical of the ones under
consideration here. But driving—listening is complicated because the difficulty of
each task varies from moment to moment and because difficulty depends not
only on the present stimuli but also on previous stimuli and on previous re-
sponses to previous stimuli. Before a good understanding of such a complex
situation is possible, it is necessary to understand some simpler ones. Considered
first are some simpler (but not simple!) visual concurrent tasks in which both
tasks involve visual stimuli and in which the relevant stimuli are condensed into
essentially an instantaneous flash. The interest here is in examining how visual
attention is distributed over the visual field in a single instant of time and in how
long it takes to shift attention within the visual field. In the course of this
examination, it will become useful to discard ‘‘attention™ as-an explanatory
concept (while retaining it as a description of the situation) and to replace it with
“‘processing resource.”” A calculus for processing resources is developed.

'Preparation of this article was made possible by United States Air Force, Life Sciences Directo-
rate, Grant AFOSR 80-0279.

ZThe theory of attention (concurrent—compound tasks, operating characteristics, optimization) was
first published in Sperling and Melchner (1976a, 1978b) and elaborated in two hitherto unpublished
talks (Sperling, Note 1, Note 2).
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Figure 4.1 (a) Stimulus configuration for a two-alternative partial-report procedure, and (b)
partial-report accuracy as.a function of cue delay. The right-hand ordinate, letters available, is the
mean fraction of letters correct times the number of letters in the stimulus. The mean number of
letters in a whole report is shown in the bar on the right. The stimulus is indicated on the abscissa,
beginning at cue delay —0.05 seconds and ending, except for a very brief decay, at 0.0 seconds.
Arrows indicate the sequence in which blocks of trials were conducted. Data are shown for one
subject, ROR. (From Sperling, 1960.)

Experiments
Three Experiments in Visual Attention

Partial-Report Procedure

Estimating the Capacity of Visual Information Storage (VIS) The partial-
report task was originally used by Sperling (1959, 1960) to demonstrate and
measure the duration of short-term visual information storage—subsequently
called iconic memory by Neisser (1966). A subject views an array, for example,
two rows of four letters, exposed very briefly so that he or she cannot make an
eye movement during the exposure. After the exposure, a cue (for example, a
high- or low-pitched tone) directs the subject to report the letters of either the
upper or the lower row (partial report). In control conditions, all letters of both
rows must be reported (whole report).

In the whole-report condition, subjects typically report less than S letters
correctly. In the partial-report condition, they can report about 3.5 of the 4 letters
in the cued row, provided that the tonal cue follows the exposure within a few
tenths of a second (Figure 4.1). Because the choice of tonal cue is random from
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trial to trial and unknown to the subject, we infer that the subject must have
available 7 of the 8 stimulus letters at the time of the cue in order to maintain
such a high accuracy of partial report. These available letters constitute visual
information storage (VIS). In similar experiments involving larger arrays with
more letters (and more tonal signals), estimates of the capacity of VIS have been
as high as 17 (of 18) letters (Sperling, 1963). Estimates of VIS could be made
even higher if there were some reason to construct still larger stimulus arrays and
corresponding sets of cue signals. Typically, VIS decays within a few tenths of a

second, but may not do so for seconds under conditions that produce long-lasting
afterimages. :

The Role of Attention in Partial Report Procedures In traditional terms, the

. cue directs the subject to attend to a particular row and to memorize the letters of

Just that row for later recall. A subject cannot memorize more than four or five
letters from a brief exposure, but as long as VIS exceeds the subject’s short-term
memory (STM) capacity, the subject has a choice of what to memorize; attention
determines that choice. .

In contemporary terms, it might be said that the subject has several informa-
tion processing resources> available: VIS, STM, and a transfer process from VIS
to STM. The transfer process is under voluntary control—the cue to attend to
(and to report) a particular row being translated into control instructions for the
transfer process. The limiting resource is the limited five-item capacity of STM.
At this point, I have simply introduced novel words for familiar processes. But
there is a lot more to the analysis of the partial report-procedure, and this
example is considered again later.

Visual Search

In their classic experiments, Neisser and his collaborators (Neisser, 1963;
Neisser, Novick, & Lazar, 1963) studied the ability of subjects to find a particu-
lar target character or characters embedded in long lists of randomly chosen
characters. Subjects searched lists from top to bottom and made a manual re-
sponse when they detected the target. Neisser et al.’s fastest reported search
times were on the order of 20 msec per distractor (nontarget) character. For
example, if the target were the thousand and first character on the list, it would
take the subject about 20 seconds longer to discover the target than if it were the
first character on the list. Unfortunately, Neisser et al.’s calculated search times

per character were not consistent between lists having different spatial arrange-
ments of characters.

Eye Movements in Visual Search To investigate the conjecture that eye move-
ments might have been a limiting factor in Neisser et al.’s visual search, a
computer-driven display was devised to enable visual search to proceed without

3The term information processing resource was first introduced by Norman and Bobrow (1975).
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Figure 4.2 Visual search without eye movements in computer-generated displays. (a) The stim-
ulus—fixation point (f), random number (6-12) of displays containing only letters (g), critical
display containing a numeral target (h), and 12 more nontarget displays (i). (b) Number of locations
(€) searched as a function of interstimulus interval (ISI), the parameter is the number of letters in the
display, € is corrected for guessing. (c) The scan time T derived from (b): T = ISI/£. (d) Search-field
contours in a 7 X 7 array. The parameter shown is search accuracy at the contour. (¢) Comparison of
search accuracy with known numeral targets [p (known)] to search with unknown numeral targets
[P (unknown)]. Numerals at the top indicate the identity of the target points plotted, and the line
through the data has a slope of 1.0, accounting for 97% of the variance. (Panel d based on Sperling
and Melchner, 1978b; Panels a—c, and e based on Sperling, Budiansky, Spivak and Johnson, 1971.)
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eye movements (Budiansky & Sperling, Note 3). In the sequential search pro-
cedure, a sequence of briefly flashed letter arrays is presented on a cathode-ray
tube (CRT) display screen, with each new array falling on top of its predecessor.
A critical array containing a lone numeral target is embedded somewhere in the
middle sequence. The target’s spatial location (within the array) and its identity
are chosen randomly on each trial. The task of the subject is to detect the location
and to identify the target (see Figure 4.2).

In rapid, natural, visual search through simple material, the eyes make about
four saccadic eye movements per second, each movement lasting a few tens of
milliseconds (depending on the distance transversed), with the eyes relatively
motionless between saccades (Woodworth & Schlosberg, 1954). To approximate
this natural search mode, the computer-generated arrays are exposed for dura-
tions of 200 msec with brief 40-msec blank periods between arrays. Such a
stimulus sequence to the stationary eye approximates the stimulus sequence
produced by saccadic eye movements. In fact, data obtained with 200-msec
exposures followed by 40-msec blank periods are not different from data ob-
tained with 10-msec exposures and 230-msec blank periods (Sperling, 1973;
Sperling & Melchner, 1978b, p. 676). The computer-generated sequence has
many information processing advantages over the natural sequence. For exam-
ple, in natural search, when the eyes do not move quite far enough between
fixations, some of the same material falls within the eyes’ search area in succes-
sive fixations and is searched twice, which is wasteful. Even when redundant
material on the retina is ignored, the redundant material still usurps space within
the search area that could have been occupied by new material. If the eyes move
too far between fixations, they leave unsearched lacunae in the stimulus.

In natural search, there are two unknown factors: (1) the eye movement
strategy and (2) the attentional field around the eye fixations. Eye movement
strategy must be known to determine the attentional factors. In the computer-

- generated sequence, eye movements are effectively eliminated? so that the atten-

tional field around fixation can be determined.

Experimental Investigations of Visual Search in Computer-Driven Visual Dis-
plays Visual search was studied with many different presentation rates in addi-
tion to those that most closely approximated natural search (Sperling 1970a;

“4Subjects reported no difficulty in meintaining fixation in the center of the display sequences. In
briefly flashed arrays, eye movements (\igring the array are not a problem because subjects would
require several tenths of a second to initlate a movement and the array is exposed only for 0.01
second (10 msec) or less. That the stimulus is radially symmetric around the intended fixation in the
center of the display negates the utility of altering the fixation point, and the rapid succession of
displays encourages oculomotor passivity. When Sperling and Reeves (1980) observed and Murphy,
Kowler, & Steinman (1975) and Murphy (1978) carefully measured fixation stability in similar
situations, it has been found that subjects can and do maintain stable fixation.
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Sperling et al., 1971). The most rapid visual search actually occurred when new
arrays were presented every 40 msec—five times faster than the fastest possible
saccade rate (Figure 4.2c). At these artifically high presentation rates, search
proceeded at a rate of one background character per 10 msec, about twice as fast
as Neisser’s (1963) maximum rate and twice as fast as in the 240-msec presenta-
tion- rate that simulated Neisser’s conditions. In fact, there was only a small
difference in detection accuracy between interarray times of 120 and 240/sec
(Figure 4.2b); suggesting that in some natural searches, the motor control of the
eye is the limiting factor. In Neisser et al.’s (1963) search task, if their subjects’
eyes had executed saccades every 120 msec, search rate might have doubled with
little loss of accuracy. The second half of many fixation pauses seems to have
been wasted waiting for the eyes to move.

In contrast to Neisser et al.’s lists, the computer-generated arrays of different
sizes are searched at similar rates (characters/sec). Further, there is a consider-
able trade-off possible between scanning characters in one array or in several;
thus, almost as many background characters can be scanned in 1 array presented
for 120 msec (12 characters) as in 3 arrays each presented for 40 msec (4
characters/array). This is best seen by looking at the scan times per character
(Figure 4.2c), which dip just below 10 msec/character throughout the 40- to 120-
msec interval.

The attentional search field around fixation is defined by the proportion of
targets detected at various points within it, as shown in Figure 4.2d for search of
7 X 7 letter arrays. The search field is approximately concentric, centered
slightly above fixation. However, locations with fewer neighbors or with adja-
cent blank space are easier to search (Bouma, 1978; Harris, Shaw, & Bates,
1979; Shaw, 1969), so that the measured search field is distorted by the bound-
aries of the 7 X 7 stimulus. The subject in Figure 4.2d tends to concentrate
search more in the left than in the right half of the stimulus.

The search field depends on the stimuli used to measure it; extremely rapid
presentations or extremely small-sized characters shrink the search field. Howev-
er, these parameter variations do not necessarily alter the shape of the search
field. That means, except for a task-dependent monotonic transformation, the
search field would appear to be an invariant property of the visual system.
Attention is distributed gracefully, like Fujiyama, high in the center and tapering
gradually towards the periphery. Attractive though this picture of attention may
be, in the next section it is shown to be false by evidence that the spatial
distribution of attention can be voluntarily altered.

The Role of Attention in the Visual Search for Multiple Targets Among the
most interesting questions concerning this aspect of attention (see also
Schneider, Dumais & Shiffrin, Chapter 1, this volume) is: Can a subject search
as quickly for a known target, for example say a 5, as for an unknown numeral
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that is a member of a set of potential targets, for example say 0, 1, . . 9? Neisser
(1963) conjectured that the answer was yes, but he did not test the hypothesis
correctly. The correct test requires comparing performance for the same target in
known and unknown conditions.

In the sequential-search procedure, comparing detection accuracy for known
and unknown targets requires comparing accuracy of the location judgments

- (Where in the critical array did the target occur?) in the two conditions: A typical

numeral-known condition is a block of 100 trials in which only the target 5
occurs. The corresponding numeral-unknown condition is a mixed list of 1000
trials in which the numeral targets 0, 1, . . . 9 occur with equal probability.
From this mixed list, the subset of 100 trials (on each of which the target 5
occurred) is extracted for comparison with the known condition. Obviously it
would have made no sense to compare identification responses between two
conditions because the subject knew in advance the identity of the target in the
numeral-known condition. Location judgments are used to compare numeral-
known and numeral-unknown conditions. Sperling et al. (1971) found that ac-
curacies of location judgments for each of the numerals 0, 1, . . . 9 were nearly
the same for target-known and target-unknown conditions and were highly corre-
lated (0.97; see Figure 4.2¢), providing strong evidence that the same search
processes were executed in the two conditions. Any difference in search pro-
cesses would suggest that a numeral that was relatively easy in one condition
(e.g., known) would be relatively more difficult in the other condition (e.g.,
unknown), but this was not observed. '

One can conceive of the search for a particular target numeral, for example,
the numeral ], as a search task, for example, Task 1. One can conceive of search
for the numeral 2 as Search Task 2. It is known that a subject who has to execute
both searches simultaneously (i.e., either target may occur), does so with negli-
gible loss in either search and is thus able (in classical terminology) to attend to 2
(or even 10) numerals at once. This is a case of apparently lossless division of
attention, or better, of multiplication of attention. To describe this situation in
contemporary jargon, the subject can execute 10 searches (for the 10 numerals)
in parallel.

There is a technical problem in the interpretation of simultaneous search for
two possible targets as the carrying out of two simultaneous tasks. Recall the
prototypical concurrent tasks mentioned earlier: driving and listening to the
radio. The search for Target 1 is analogous to driving the car, and the search for
Target 2 is analogous to listening to the radio. Sometimes a driver encounters a
road obstacle and a radio news item simultaneously, but Sperling et al.’s (1971)
subjects never encountered Target 1 and Target 2 simultaneously in the same
display. This is symptomatic of an important, real difference. Before resolving
this difference, Example 3, in which two search tasks occur simultaneously, is
considered.
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Concurrent Search for Two Targets

Target Size Matched to Information-Processing Capacity The visual search
experiments of Sperling ez al. (1971) just described were directed at the question
of finding optimal stimuli for visual search. How should characters in an array be
arranged so that search can proceed as efficiently as possible? In the course of
subsequent experiments with arrays of characters composed of different sizes, it
quickly became apparent that it was inefficient to compose arrays of characters of
just that size. For example, although it was efficient to image many small
characters in the foveal area where acuity is good, these characters were below
the acuity limit of peripheral vision, and thus most of the peripheral visual field
was wasted. Conversely, composing an array of large characters that are resolva-
ble in peripheral vision caused central acuity to be squandered because the fovea
was fully occupied by a mere fragment of a character. The obvious solution
seemed to be to compose an array of characters of different sizes, ranging from
small characters in the center to large characters in the periphery, in which each
size of character was matched to the information-processing capacity of the
retinal area on which it was imaged. Anstis (1974) independently developed
remarkably similar displays, which he used for demonstrating letters that are
equally above their acuity threshold in different areas of the retina.

The investigation of spatially matched arrays was begun by the author in
collaboration with Melvin Melchner. As before, test sequences were constructed
in which only one target numeral occurred in a critical array that was otherwise
composed entirely of letters (see preceding description). This target might occur
at peripheral locations that received large-sized targets or central locations that
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There is one numeral target.

to the information-processing capacity of the visual system.
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received smaller targets. Figure 4.3 shows one of several array configurations
that were tested.> To our astonishment, Melchner was unable to search arrays
simultaneously for large and small targets (e.g., a large 9 or a small 9). This was
especially astonishing because in earlier experiments, he had been able to, search
simultaneously for ten numeral targets (0, 1, . . . 9) when they were all the same
size. Was a large 9 more different from a small 9 than from a large 3 or 4? We set
about to devise an appropriate search task to test this possibility.

Concurrent Search for Large and Small Targets To investigate how well
subjects can search for targets of two different sizes concurrently, arrays were
constructed as follows: an outer frame contained 16 letters of the same large size
as the earlier Sperling et al. (1971) experiments. A central interior contained 4
small letters. A long sequence of briefly flashed arrays was presented at a rate of
4/sec. A critical array embedded in the middle of the sequence contained a
randomly chosen numeral target at one of the 16 outside locations and another
randomly chosen numeral at one of the 4 inside locations.

In the main experimental conditions, the subjects’ task was to detect both
targets: the subjects had to state the identity, location, and their confidence level
for each of the two targets. In some blocks of trials, they were told to give 90%
of their attention to the inside target and 10% to the outside target; in other
blocks, the instructions were reversed; and in still other blocks, subjects were
instructed to give equal attention to both classes of targets.

Some useful methodological innovations were incorporated in the analysis of
these data. Responses on which the lowest confidence was used (zero, ‘‘guess-
ing’") were found by chi-square tests to indeed be statistically independent of the
stimuli. This means the subjects really knew when they really didn’t know
(Sperling-and Melchner, 1976b, p. 209). Further, analysis of verifiable location
errors showed that more than 95% of the time when a target was mislocated, it
was mislocated at an adjacent horizontal or vertical (not diagonal) position.
Thus, a more rigorous criterion for true identifications could be used, namely,
correct identification response and confidence greater than zero and mislocation
not greater than one adjacent position. The data are displayed in Figure 4.4a.

The abscissa and ordinate represent the percent of correct identifications of
outside and inside targets, respectively, and each data point represents the aver-
age of 70150 trials. The data fall along a line of slope approximately —1,
indicating that as probability of identifying one class of target increases (accord-
ing to the instructional demand), it is compensated by an almost exactly equiv-
alent decrease in identification probability for the other class of targets. The
locus of all achievable joint performances on the two tasks (approximated by the
straight-line segments connecting the data points) is called an artention operating

5In all these experiments, stimuli are flashed very briefly and are disposed symmetrically around
the fixation point to induce subjects to maintain eye fixation and move attention rather than move
their eyes. See also footnote 4.



112 George Sperling

MWKSD xXJpPrwcC CMWFP
¥ 0 Y 3 G K
, K A J9

N J L gg D Yge Y
YPHTE URMTG XDEAU

z 1.0 < < AY

S N N \

& o8l \ N\

o N pY A\

°u Q 1 \

> O 0.6 |- \Y

[l

<4Z 04}

. (@ \,
g 02 ) NIE
& [ AN L1 1 i1 AN G

(o]
O 02 04 06 08 10 02 04 06 08 10 02 04 06 08 10
PROBABILITY OF CORRECT ITEM DETECTION (OUTSIDE)

Figure 4.4 Attention operating characteristics for three pairs of concurrent tasks. In (a), concur-
rent detection of large and small numeral targets is shown. The abscissa indicates the percentage of
correct identifications of the outside target; the ordinate indicates the percentage of correct identifica-
tions of the inside target. Isolated control conditions are indicated by darkened circles on coordinate
axes; the independence point is defined by the meeting of the perpendiculars drawn. through these
control points. Concurrent performance is indicated by open circles. Data are shown for one subject
(MJM) with two (or occasionally three) blocks of trials averaged for each data point. Attention
conditions, ordered from upper left to lower right, respectively, are 90% to the inside, equal, and
90% to the outside. The heavy line connecting the data points is the AOC. The broken line represents
the best-fitting straight line to the data. In (b), coordinates are the same as in (a), the outside task is
the same as in (a). The inside task is detection of a noise-obscured numeral target of the same size as
the outside target. In (c), the coordinates and the outside task are the same as in (a). The concurrent
inside task is detection of a letter target among three numeral distractors, instead of vice verse as in
(a) and (b). (Subject MIM, from Sperling and Melchner, 1978a.)

characteristic (AOC; Sperling & Melchner, 1976, 1978a),6 following the termi-
nology of signal detection theory. (For the history of receiver operating charac-
teristics [ROCs] see Swets, 1964.) The AOC is a particular instance of the
performance operating characteristic (POC) proposed by Norman & Bobrow
(1975).

. 6The first to use the term **Attention Operating Characteristic’” appears to have been Kinchla in
1969 in the title of an unpublished talk in rural Netherlands and in a privately circulated document
(cited in Kinchla, 1980). Curiously, his subsequent publications (Kinchla, 1977; Kinchla and Col-
lyer, 1974) argued against an AOC, proposing instead that attentional manipulations had no effect on
the subjects’ allocation of their information-processing resources, only on their decision criteria. The
attention allocation data of Figure 4.4, the AOC and its relation to the ROC, the attention-switching
model, and attendance theory were first reported at the Psychonomic Society, St. Louis, November
1975 (Sperling, 1975) and subsequently more completely at the Seventh Conference on Attention and
Performance, Gordes, France, and the International Congress of Physiology, Leningrad, USSR,
November 1976. Because of unanticipated publication delays, the data actually were published in the

4. Attention and Signal Detection 113

Control Conditions Two control conditions are especially important.

1. Control for memory overload: A series of trials was run in which the letter distractors were
replaced by dots. This made target identification trivially easy, and subjects never failed to report
both targets correctly. Thus, any errors subjects may make in experimental conditions are due to their
inability to detect the targets among distractors, not to their inability to report targets once detected.

2. Isolation condition, report of only one class of targets: In some blocks of trials, subjects were
instructed to report only outside targets and to ignore inside targets; and in other blocks, they received
the reverse instruction. These control data are graphed directly on the coordinate axes in Figure 4.4a.
That the probability of report is nearly equal in the two control tasks (inside, outside) is not a
coincidence; the character sizes and array sizes were chosen to match the tasks in difficulty.

Can Subjects Search Simultaneously for Large and Small Targets? If subjects
could search for both targets concurrently without loss, their performance in all
experimental conditions would fall on the independence point, the point at which
subjects identify both large and small targets concurrently as accurately as they
do in the corresponding control condition. (This is the upper right point of the

square in Figure 4.4a). Clearly, this point is not achieved; there always is some
loss.

Three Concurrent Pairs of Search Tasks In order to gauge the amount of loss,
it is informative to investigate other, related pairs of concurtent tasks. In all,
three pairs of tasks were studied. One task in each pair remained precisely the
same throughout: detection of a numeral among the outside letters. Three differ-
ent inside tasks were matched to this task in difficulty: (1) detection—identifica-
tion of a small inside target, (2) detection—identification of a normally-sized
inside numeral (where every inside character was obscured by a randomly chosen
“noise squiggle’’), and (3) detection—identification of a single target letter
among inside numerals.

The same control and experimental conditions as before were conducted with
these stimuli. Figure 4.4 shows the AOCs generated by these three pairs of tasks.
The distance of the AOC from the independence point is a measure of the
incompatibility of two tasks. Perfectly compatible tasks—performed as well
concurrently as in isolation—would fall on the independence point. Perfectly
incompatible tasks would fall somewhere on the straight line connecting the
isolated control performances.

The percent of isolated performance achieved by concurrent performance pro-
vides an index of compatibility between two tasks. Concurrent performance is
averaged over the component tasks under conditions of equal attention, that is, at
the point where the AOC curve—or surface in higher dimensional space—
crosses the line connecting the origin and the independence point. (Area under
the AQC is a better, but more complex, measure considered later in this chapter.)

Soviet Union (Sperling & Melchner, 1976a) 2 years earlier than in the United States (Sperling &
Melchner, 1978a, 1978b). These are the first published AOCs.
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For subject MJM, the most incompatible pair of tasks consists of (1) searching
for a numeral among letters concurrently with (2) searching for a letter among
numerals. These tasks are almost mutually exclusive, average concurrent perfor-
mance being about 54% of isolated performance. (By doing only one task or the
other, never both—even under concurrent instructions—50% of isolated perfor-
mance would be achieved, by definition.) The most compatible tasks are search-
ing for a numeral (on the outside) concurrently with searching for a numeral of
the same size obscured by noise (on the inside). Concurrent performance is about
82% of isolated performance. The original pair of tasks (searching for a large
numeral concurrently with searching for a small numeral) falls between with a
concurrent performance of 66% of isolated performance.

We have distinguished implicitly between the process by which performance
moves from one AOC to another (changing the component tasks) and the process
by which performance moves along a given AOC (increasing the amount of
attention allocated to one member of a concurrent task pair at the expense of the
other). To compare the compatibility of two pairs of tasks, we generally need
two AOCs (not just one point on each AOC). The situation is analogous to signal
detection theory in which, to compare the detectability of two signals, in general
two ROC:s are needed, not just one point on each. The relation of AOC to ROC is
developed fully in subsequent sections of this chapter.

Concurrent versus Compound Tasks
Concurrency in Partial-Report Procedures

AOC Graph

Consider the partial report procedure just described in which a subject views a
brief flash of a 2 X 4 letter array. The coordinates of an AOC graph are accuracy
of report of the top row versus accuracy of report of the bottom row.

Control Conditions

The isolated control condition would consist of a block of trials in which only
one particular row of the stimulus is presented. Unfortumately, there is a techni-
cal problem with this task. The problem with conducting blocks of trials or cuing
the subject too far in advance of the stimulus presentation is that his or her visual
fixation will drift involuntarily—if not actually jump—toward the requested row
(Kowler & Steinman, 1979, 1981), and such trials are thus not strictly compara-
ble to ones in which the eyes remain fixated between the two rows. An equiv-
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Figure 4.5 Concurrent reports of the top and the bottom row in a whole-report procedure. Filled
circles indicate data from one subject for two conditions: (1) give attention to and report the top row
first; and (2) give attention to and report the bottom row first. The light diagonal lines indicate equal
capacity contours (equal numbers of letters). Open circle indicates data from unconstrained whole
reports. Partially filled circle indicates data from partial reports of one row only. The extrapolation of
the partial-report data to the coordinate axes represents a lower bound on the performance that might
have been observed in an isolated control task. (Subject JC, from Sperling, 1959.)

alent but better isolated control task is telling the subject just 150 msec in
advance of each stimulus presentation which row to report. Either form of the
isolated control task leads to nearly perfect performance.

Concurrent Tasks

The concurrent condition would be a full report of both rows, with the instruc-
tion to direct attention primarily to the top row in some conditions and to the
bottom row in others. Sperling (1959, 1960) studied a closely related condition
that was interpreted by some subjects as the concurrent condition described here.
Data are shown in Figure 4.5 for one such subject.? This subject has a memory
capacity of 3.8 letters in whole reports. In unconstrained whole reports, the
subject normally reports the top row first (achieving 2.8 of 4 letters) and then the

7The AOC and partial report data of Figure 4.5 are averaged over four cue delays (0, 0.15, 0.30,
0.50 seconds) because performance did not vary between these short delays due to the strategy the
subject used. For partial reports (partially filled circle, Figure 4.5), accuracy is assumed to be equally
divided between top and bottom rows because the breakdown by row is no longer available. (Data
from Sperling, 1959, app. I, Tables 8, 11, 12.)
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bottom row (achieving 1.0 of 4). When requested, the subject can, remarkably,
allocate most of this capacity either to the top or to the bottom row, with residual
capacity falling to the remaining row without any loss. These data define sub-
ject’s AOC. Data from partial reports (reports of only one row) represent a lower
bound on the performance that might have been observed in an isolated control
task, and these data are illustrated in Figure 4.5, on the coordinate axes. (Looked
at in another way, the independence point, defined by the intersection of the
isolated control data on a graph like Figure 4.5, would lie on or beyond the
partial report. point.) In making whole reports, subjects show enormous loss
relative to the independence point because they can remember barely one row of
4 letters and independence would require them to remember 1.5 rows.

The whole report task is a concurrent task requiring concurrent reports of top
and bottom rows. In the component (control) task, the subject is prepared for and
reports only one row. This control task is equivalent to a partial report task in
which the signal indicating which row to report is given long in advance of the
stimulus presentation (prestimulus cue.) How are data of partial report tasks with
post-stimulus cues interpreted—a task in which the subject must be prepared for
both rows?

To represent partial-report data on an AOC graph as in Figure 4.5, the ac-
curacy of partial reports on the top row is graphed as the y coordinate and reports
of the bottom row as the x coordinate, even though x and y values represent
different trials rather than the same trial as in concurrent tasks. The control tasks
(theoretically, blocks of partial reports of only the top row or only the bottom
row but, in practice, partial reports with prestimulus cues) are the same as for the
concurrent task of reporting both rows.

The partial report data are interpreted as indicating that the subject has a
memory capacity of 6.1 letters, almost twice the whole report of 3.8 letters.
Unlike the whole report task, in the partial report task there is no trial in which
the subject actually reports 6 letters—the inference of a memory capacity of 6
letters is based on trials on which the subject reports only 3. Thus, the interpreta-

tion of the partial report task requires a theory about an assumed mental pro-
cess—visual memory.

Compound Tasks

Partial report is an example of an attention task that is only partially concur-
rent. Stimuli of both component tasks (upper row, lower row) are presented, and
only one component response (report of only one row) is made. A functionally
different type of task is involved in the search for one of two possible targets.
The stimulus from just one of the component tasks is presented (one target) and
the subject responds with a response chosen from just one of the component tasks
(a target name). This is an example of a compound task.

The analysis of compound tasks is fundamentally different from concurrent
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tasks. To characterize the difference, it is necessary first to define a task. A task
is a triple (S, R. U) of two sets (Stimulus, Response) and a Utility function that
assigns a real value to every stimulus—response pair (see Sperlmg,. 1983, for
details). A concurrent tasks is the sum of its component tasks. A stimulus and
response are chosen from every component task. In concurrent tasks, such as
driving a car and simultaneously listening to a newscast, performance‘on each
concurrent task is compared to performance on the same task in isolation.

A compound task is the union of its component tasks. Only a single stimulus
selected from any one of all the component tasks is presented on each trial, and
the subject responds with any response selected from any of the component
tasks. In concurrent tasks, the context that makes a particular task difficult is the
other task being performed on the same trial. In compound tasks, the context
occurs on other trials. The detection of Target 1 in the detection task is difficult
because, on other trials, Target 2 is presented and the subject must be prepared
for both. In the following, it will become clear that, to interpret data from
compound tasks, one needs first, a theory of stimulus uncertainty loss (lgss
that a statistically ideal detector with perfect memory and attention would gxl’gb-
it) and second, a theory of mental processing to deal with any residual, intrin-
sically human loss.

Concurrency, Compounding, and Processing Stages

Normally, information processing by an organism is regarded as reflecting the
operation of a chain of internal processes (a sequence of processing stages.) By
definition, concurrent tasks measure the throughput—from stimulus to re-
sponse—of the whole organism, that is, the whole chain. Compound tasks are
usually implicitly interpreted as being concurrent tasks for some subset of the
processing chain. Compound tasks are usually interpreted as being concurrent
tasks for some subset of the processing chain. For example, compound search for
two targets is described (incorrectly) as concurrent within a comparison stage
that matches stimuli against remembered targets.

The interpretation of concurrent tasks is easier than that of compounq tasks.
With concurrent tasks, one observes performance on the task in isolation aqd
then again on precisely the same task in the concurrent context (e.g., driving in
isolation and then driving plus listening to the radio). In concurrent tasks, the
input and output for all component tasks are observable on every trial. _

In compound tasks, only one component task is presented on c.ach tn.al.
Nevertheless, all the compound tasks under consideration here (vanet}es of sig-
nal detection, target localization, stimulus identification, choic'e react{on tm.le§)
are interpretable as being concurrent for a subset of the processing chain. This is
a favorable circumstance that simplifies interpretation of the performance of the
subset, but it is not the whole answer. The input or output of a subset of the
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processing chain—not both—can be observed because either or both are interior
to the organism and therefore unobservable. Ergo, to interpret such a compound
task, a theory is needed, no matter how trivial—a theory that (1) asserts which
subset is assumed to be concurrently exercised by the compound task and (2)
bridges the gap between the exercised subset and the rest of the processing chain.
When the compound task is not interpretable as being concurrent within the
critical stage, it will be even more cumbersome to relate performance of the
compound task to performance of component subtasks; and the theoretical bur-
den will be correspondingly greater.

Concurrency and Compounding in Search Tasks

Simultaneous Search for Different Alternative Targets

Search for Targets 1 and 2 versus Search for 1 or 2 Recall the search experi-
ment in which an observer searched for a numeral target (0, 1, 2, ..., 9)
among letter distractors. This search can be regarded as 10 simultaneous
searches. Previously, two of these tasks were considered: (1) search for a I and
(2) search for a 2. If performance of Task 1 versus Task 2 is plotted on an AOC
graph, the same problem arises as with partial report: searching for I or 2 is not
the same as searching for I and 2. In searching for I or 2, there are no trials on
which both Targets 1 and 2 are presented. Furthermore, the distractor items for
Target 1 are also the distractors for Target 2. Contrast this to Sperling and
Melchner’s (1978a) concurrent search for large and small numerals in which
each class of targets had its own distractor—large distractor letters for the large
numeral targets and small ones for the small targets.

A Model for Search The purpose of these examples is to illustrate first, that a
compound task and a concurrent task require basically different processing
mechanisms even when much of the same processing is involved; and second,
that a compound task is necessarily more difficult than the isolated control,
whereas performing two tasks concurrently is not necessarily more difficult than
performing an isolated control task.

Consideration is restricted here to the most favorable case for equivalence in
the compound-—concurrent comparison; namely, to a perception component for
which the compound task, search for I or 2, is concurrent (i.¢., a component that
performs the same operations whether confronted with searching for I or 2 or /
and 2. Consider, for example, a ‘‘perception’” component that executes com-
parisons between a feature list that represents a stimulus item (distractor or
target) and the feature lists in memory that represent the eligible target items (0,
1,2,...,9). It might sensibly program the same sequence of comparisons
whether it is confronted with 1 or 2 or I and 2 when the task ultimately is to
discover the location of I and/or 2.
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In order to analyze a subsequent decision component that acts on the output of
the perception component, this output must be defined. The required response in
both the concurrent and compound tasks is a location judgment. Therefore, it is
assumed that the output of the perception component consists of the best estimate
of the location of each possible target (I, 2), for example, I lower left and 2
upper right. In the concurrent task (search for I and 2), this is exactly what is
needed for a response, and the decision component merely needs to transmit the
location information for the eligible targets (I and 2) to a response mechanism.
In the compound task, this is inadequate information because there are two
possible responses (e.g., lower left, upper right). Thus, a sensible decision
component would ask the perception component to rate its outputs in terms of
confidence. Then, the decision component could choose the one among the
alternatives that maximized the expected payoff. Only if the a priori probabilities
of target occurrence were equal for all targets, and the payoffs were equal for all
correct responses and equal for all errors, would the highest confidence output
necessarily be chosen for response. Note that the confidence information—
essential to the compound task—is irrelevant to the concurrent task.

Performance in the compound task is inevitably inferior to performance in the
isolated control condition—even when there is no attentional loss of information.
This occurs because of occasional confusion of a distractor with an unpresented
target. For example, in a trial on which Targets 1 and 2 were eligible for
presentation, and Target 1 was presented, the subject might think Target 2
occurred somewhere in the search field and respond accordingly. The response, a
location judgment, would probably be wrong. This kind of error is avoided in the
isolated control condition when the subject knows that only Type 1 targets can
appear.

In both examples (partial report and visual search), the concurrent and the
compound versions of the tasks were interpreted as making similar demands on
an early stage (VIS or sensory memory in one case and perception or recognition
in the other) and making enormously different demands on later stages of memo-
ry and decision. This is hardly surprising given that these compound tasks were
invented in order to study early stages of information processing.

Conclusions The conclusions from the analysis thus far of concurrent and
compound tasks are

1. There necessarily is at least some loss in compound search for multiple targets compared to
search for a simple target.8 It requires a detection theory to determine whether or not experimental
data exhibit an additional loss due to attention.

2. Concurrent search does not necessarily show a loss compared to an isolated control.

3. In concurrent tasks, a task performed in isolation is the standard against which performance is
measured for precisely the same task in different concurrent combinations. Concurrent tasks can be

8Duncan (1980) makes similar observations of the performance losses that are inherent in increases
in the number of stimulus alternatives, increases that inevitably occur in going from an elementary
task to a compound task (of which the elementary task is a component).
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analyzed without resort to any information-processing theory. In this respect concurrent tasks are the
ideal tool for studying the splitting of attention between competing task demands because concurrent
tasks measure the input—output characteristics of the whole organism. There are two cautionary
provisions: (1) To avoid degenerate cases, the component tasks of a concurrent task must be com-
pletely discriminable—-the subject must be able to correctly say which task he or she has performed.
(2) Alternatives to attentional loss—such as response incompatibility—must be ruled out in control
experiments.

4. Performance in compound tasks cannot be analyzed without a theory about the intermediate
stages of information processing. When the assumptions, model, or theory about intermediate stages
are not controversial, they may be a small price to pay for learning about intérmediate stages. In fact,
the focus of compound tasks is inherently on the input—output characteristics of intermediate stages
of processing, and cleverly designed compound tasks (together with concurrent tasks) are the ideal
tool for unravelling the components of information processing.

Thus, concurrent tasks are appropriate for either macroscopic or microscopic
analysis, whereas compound tasks are inherently microscopic in analysis.

Compound and Concurrent Search of Multiple Locations

In this section, these principles are applied to one of the most studied problems
of visual attention—the ability (or lack of ability) of observers simultaneously to
monitor different locations in the visual field for the occurrence of some event.
Over how many locations in the visual field can attention be spread before
performance suffers in each local area? This question has already been consid-
ered in the numeral detection experiments (Figure 4.2 and 4.4). It is demon-
strated here that attempts to answer this question with classical incremental
stimuli run afoul of insidious methodological traps.

Mertens One of the first serious experimental attempts to measure the spread
of visual attention was by Mertens (1956). He required his observers to maintain
fixation faithfully on a central fixation mark. He then presented them with very
weak flashes of light to be detected. When subjects detected a flash, they indi-
cated so by pressing a button. In some blocks of trials, the flashes could occur at
any of four locations around fixation (northwest, southwest, southeast, or north-
east); in others, at only one (e.g., northeast; see Figure 4.6).

Mertens’s observers seemed to have slightly lower detection thresholds at an
unknown one of four locations than at one predetermined location. He con-
cluded, gamely, that it was more effective for the subject to allow visual atten-
tion to spread out over four locations than ‘‘to stress himself continually not to
ook in the direction of attention’’ (p. 1070). Unfortunately, Mertens was un-
aware of the rudiments of signal detection theory, and so there were flaws in his
procedure. His strange result was replicated once by Schuckman (1963) in an
experiment with the same difficulties as Mertens’ and by Howarth and Lowe
(1966), who found no effect of any kind of uncertainty—not of stimulus loca-
tion, size, or time of occurrence. Since then, the opposite result has been
obtained.
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Figure 4.6 Stimulus configurations in spread of attention studies: left columnn, focused configura-
tions; right column, spread-out configurations. Plus signs indicate fixation marks. Filled circles
indicate targets. Open circles indicate other locations at which a target can occur on other trials. (a)
Mertens’ display for yes—no detection judgments; the dashed circles indicate locations that, in some
conditions, contain visible pedestals (baseline illumination) even though no targets will appear there.
(b) Mertens’ display in which the target may occur in any of four locations; a particular target in the
northeast location is indicated. (c and d) Displays for, respectively, two-alternative and four-alterna-
tive forced-location judgments. (e and f) Cohn and Lasley’s displays for two-interval forced-choice

judgments; the ampersand lies between the display that occurs in the first interval (above) and in the
second interval (below).

Some contemporary approaches to spatial uncertainty in detection are now
considered in order of increasing complexity.

Forced-Location Judgments Consider the following Gedanken experiment. A
flash can occur in either of two locations® (east or west) in some sessions and in
any of four locations (Figure 4.6¢ and d) in other sessions. The accuracy of
naming the target location is measured and found to be higher in two-location

9See Footnotes 4 and 5.
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than in four-location sessions. Unfortunately, it requires a theory of guessing to
estimate the attention effect because visual detection accuracy is higher in two-
location than four-location stimuli even when the observer’s eyes are shut; and
for low-intensity stimuli, the guessing effect is predominant. This forced-loca-
tion judgment, for example, is the one used by Sperling et al. (1971) in the
search tasks described in a previous section (Figure 4.2).

Two-Interval Forced Choice To obviate guessing analysis, a two-alternative
forced-choice paradigm may be used (Cohn & Lasley, 1974). All trials are
composed of two intervals, and a target always occurs in one or the other of the
intervals. In some sessions, there are two possible locations in which the target
may occur; in others, there are four possible locations for the target.® Subjects
correctly identify the interval containing the target in the two-location trials.
Because chance guessing is the same in both kinds of trials, and four locations
usually are not monitored as accurately as two, there is an attentional loss in
attempting to monitor four locations. Simple? Wrong!

The problem in interpreting the results of the two-versus four-location experi-
ments is that, according to the most widely accepted theory, even a theoretically
ideal detector (one without attention or memory loss) would do worse on the
four-location trials than on the two-location trials. An attentional deficit is
proved only when the human’s loss is larger than the ideal detector’s loss. Thus,
the interpretation of these experiments hinges on the theory of ideal detectors.

An ideal detector operates according to a rule that has been proved optimal for
some desired outcome; for example, maximizing the percentage of correct re-
sponses. An ideal detector does not forget information and is limited only by the
quality of data it receives. The ideal detector concept may be extended to the case
in which the detector has internal noise, provided the noise does not vary as a

function of signals or tasks. How do ideal detectors apply to the present
experiment?

Detection Theory Assume that each location (i) being monitored produces an
amount of sensory noise n; on each trial where n; is a random variable. At the
target location (i) there is an additional signal (s) producing a net input of n; + 5.
The ideal detector would choose the location that had the largest net input: If
n; + s were greater than all other n; (i # T), a correct detection would occur; if
some other n; (i # T) happened to be the largest, false detection would occur. A
false detection might still, by chance, produce a correct response in a two-
interval forced choice if the false detection happened to occur in the same
interval as (but at another location than) the target. So stated, the theory is
simple. As soon as realistic complications are added—such as, (1) unequal signal

10Actually, Cohn and Lasley compared one versus four locations (not two versus four), but this has
no significance for the discussion here.
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probabilities, (2) unequal rewards for the various locations, (3) signal parameters
not known exactly, and (4) multiple observations (within an interval) at each
location—matters become more complex.!!

Largest Noise Sample 1 propose a simple way to grasp the statistical complex-
ity involved in multiple-location paradigms. Consider how an ideal detector
comes to make a mistake: the noise at some particular location exceeds the signal
plus noise at the target. It is necessary only to consider the location i that
produced the largest noise sample (n,) because this is the one that, if it exceeds n
+ s, produces the error. The largest noise sample will be the largest of three (in
the four-location monotiring task, Figure 4.6d) or the largest of seven (in the
two-interval, four-location monitoring task, Figure 4.6f). This compares to the
largest of one (Figure 4.6c) or the largest of three (Figure 4.6¢) in the two-
location monitoring tasks. The greater the number of equally distributed random
variables, the larger the maximum of the sample tends to be, and thus the more
likely it is to be the cause of an error. A response based on noise is not neces-
sarily wrong, but it is always less likely to be correct than a response based on
signal, which is correct by definition. The more locations there are to be
monitored, the more noise samples there will be; the more noise samples there
are, the more errors there will be. The particular advantage of looking at the
largest noise sample is that, although the distribution of the noise random vari-
able may be unknown, there are only three possible distributions of maxima
(Gumbel, 1958; Galambos, 1978). Thus when the number of locations is large,
the distribution of the maximum noise sample may be better known than that of
any individual sample.

Consequences of Stimulus Uncertainty The point of the preceding discussion
is that it is not possible to interpret the loss of accuracy in detection with
increases in the number of stimulus locations being monitored unless one has a
theory to determine whether the loss is greater than would be exhibited by an
ideal detector. This dependence on a theory (ideal detectors) is not surprising; a
little reflection shows that the paradigms considered here were exemplars of
compound tasks. The complexities of compound tasks can be avoided by concur-
rent tasks that have different, perhaps more tractable, problems. In the case of N
locations being monitored, concurrent means that each location has the same
probability of containing a target when it is viewed in the context of the other N
— 1 locations as it does in isolation. It also means that 0, 1, 2, . . . ntargets may
occur in a presentation instead of just O or 1 as in most compound tasks.
Obviously, a large number of targets would pose memory and recognition prob-
lems as well as detection problems; fortunately, there are paradigms to provide

11Some of these complexities are dealt with, for example, by Swets (this volume), Green and
Swets (1966), and Shaw and Shaw (1977).
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the data to estimate these sources of interference. Furthermore, the occurrence
(or detection) of a target makes the detection of a second target more difficult
(Gilliom & Sorkin, 1974; Pohlmann & Sorkin, 1976; Sorkin, Pastore &
Pohlmann, 1972; Sorkin, Pohlman & Gilliom, 1973; Sorkin, Pohlmann &
Woods, 1976; Schneider & Shiffrin, 1977; Sperling & Melchner, 1978b, p.
681).

Concurrent versus Compound Tasks: Summary
and Conclusions

Concurrent and compound are just two categories of tasks. It is certainly easy
to create new tasks that are neither concurrent nor compound and that are ar-
bitrarily close to either one or the other category. Clearly the concur-
rent—compound distinction could be obscured or made unimportant. Neverthe-
less, the paradigms that are in use today do fall into these categories. What of
practical importance can be concluded about the four cases generated by the two
paradigms (concurrent and compound) and the two outcomes (loss or no loss
relative to the control task)?

No Loss

When there is an insignificant amount of loss in either paradigm, the conclu-
sion is simple: there is no loss. That is, the component tasks of the concurrent
combination of tasks can be carried out without loss; and the asserted component

processes underlying performance in compound tasks could be carried out with-
out loss.

Loss in Concurrent Tasks

Loss in concurrent tasks means an actual, human performance loss in one or
more of the concurrent tasks. We emphasize human loss because ideal detectors
would not show a loss. In a driving—listening task, the performance loss itself is
the datum of interest. In concurrent psychophysical tasks, the fact of a loss often
is not in itself of interest—the underlying processes are. Thus we may want to
know whether the real performance loss is due to an overburdening of detection,
recognition, memory, or response processes. Such questions are not answered in
just one experiment. For example, Sperling and Melchner’s four variations in
targets and distractors greatly helped to eliminate memory or response processes
as the determinants of performance loss in their concurrent tasks. Usually, more
than just one paradigm is needed; and because compound tasks deal with inferred
processes, they can be useful in arriving at answers about component processes.
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Loss in Compound Tasks

The null hypothesis for compound tasks is the performance loss shown by an
ideal detector. To infer an attention deficit, recognition failure, a memory lapse,
response interference, or any intrinsically human loss requires first rejecting the
null hypothesis. On the other hand, the null hypothesis for concurrent tasks is
that there is no loss; observation of any loss is informative about intrinstic human
functions.

To this summary two provisos must be added: (1) Concurrent tasks lose their
good properties when the component tasks become indiscriminable from each
other (a degenerate case). (2) The parameters of a human sensory system—even
when it is behaving like an ideal detector—are intrinsically human and may even
interest more people than just the psychophysicists. But the distinction between
ideal detectors and theories that postulate additional losses is crucial, as is the
relation of these theories to the tasks (concurrent and compound) that give rise to
them. The purpose of the metaphors and examples of this section has been to
emblazon these distinctions in the mind of the reader so that they may serve as
guideposts in his or her encounters with the frequently confusing literature on
attention.

Optimization Theory

The Interpretation of Performance Operating
Characteristics

Attending Example

Nonoverlapping Classes Consider a student who wishes to attend two classes:
a class in Nursing, offered between noon and 2:00 p.m., and a class in Spanish
offered between 3:00 and 5:00 p.m. The classes are offered in two different
classrooms that are adjacent to each other. The student can run from one class to
another in a negligible amount of time, but once the student leaves a classroom,
the student may not return. At the end of the semester, the student takes a final
examination in each class. Each instructor asks one question about each lecture
on the examination. The times within a lecture during which the tested material
was discussed are distributed randomly and uniformly over the lecture period. If
the student happened to be present at the instant the relevant material was
presented, the student will be able to answer the question correctly, otherwise the
student will fail that question.

The student’s only strategic option is the choice of switching time from one
class to the other. Clearly, if the student switches from Class 1 to Class 2 anytime
between 2:00 and 3:00 p.m., he or she will score 100% on both examinations.
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Figure 4.7 Attendance example, nonoverlapping classes. (a) Scheduled times for two classes, (1)
and (2). The height of the Class 1 and Class 2 functions represents the instantaneous density of
information being offered in each class. The abscissa represents time (in hours), and a particular
class-switching time (2:30) is indicated by 1. under the abscissa. (b) Joint performance (performance
operating characteristic—POC) for the two classes in (a). The ordinates indicate performance on
examinations for each class, 1 and 2, respectively, and the classroom-switching times are indicated
near the points on the POC that represent the joint performance on the two examinations.

Figure 4.7a illustrates the two class periods, and Figure 4.7b the attendance
operating characteristic, which is another instance of a performance operating
characteristic (POC). Joint performance for a switch between 2:00 and 3:00 p.m.
is represented at the independence point. The student’s expected performance!2
as a function of switch times is illustrated in Figure 4.7b.

The independence point represents the only reasonable strategy for this class
schedule. The top and the right hand limbs of the POC represent foolish strat-
egies. The left side and bottom of Figure 4.7b represent perverse strategies. By
sitting in Classroom 2 from noon to 2:30 (while nothing is happening there) and
then switching over to Classroom 1 and spending the remainder of the time there,
the student could achieve a score of exactly zero on both examinations! Having
acknowledged that perverse strategies exist, their study is now relegated to
another branch of psychology, and attention here is focused on the search for
optimal strategies. ‘

Overlapping Classes: Iso-utility Contours Consider now a more perplexing
example: Class 1 is scheduled from noon to 3:00 p.m., and Class 2 is scheduled
from 2:00 to 4:00 p.m.; the classroom-switching rule and examinations remain as

12]n this example, information is viewed as though it is presented at an instant in time and the
stochastic variability in responses is neglected, thereby treating expected outcomes as though they
were actual outcomes. These are technical details that would unnecessarily complicate the exposition
for those readers who are not fluent in probability theory and that are not essential for those readers
who are.
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before. Now there is a real scheduling conflict. The attending operating charac-
teristic in Figure 4.8 shows the outcome of the various allowable switching
strategies. The student cannot expect to perform perfectly on both examinations.
The student can perform perfectly in Class 1 and achieve a score of 50% in Class
2, perform perfectly in Class 2 and achieve a score of 66.7% in Class 1, or
achieve something in between. Again, the student can devise strategies, but these
are not considered here. How is the student to decide among the reasonable
strategies? .

To choose a strategy, it is necessary to know the utility of the strategy. For
example, suppose that these two classes contribute equally to the student’s over-
all grade point average—the higher the average is, the greater the utility will be.
The utility function is

W(x,, ;) = lOO(x,2+ x,) ’ 4.1
where x, is score on Class 1 and u(x,, x,) is utility. (Because utility is known
only to an arbitrary, strictly increasing monotonic transformation; the concern
with scale factors here is only to clarify the example.)

The optimal strategy is to attend all of Class 2 and as much of Class | as
possible, thereby achieving an average of 83.3%. This and other implications of
the particular utility function 4.1 are made intuitively obvious by plotting the
utility function together with the operating characteristic!? as in Figure 4.8. The
utility of each strategy can now be computed. That is, utility can now be written
as a function of the class-switching time (z_) by writing the examination scores as
a function of ¢,. Therefore,

() = so| Mindle I, minté — 10 D] o< <,

where min(a, b) is defined as the smaller (minimum) of a and b, and ¢, is
measured in hours (with noon taken as zero).

The diagonal lines in Figure 4.8b represent iso-utility contours. Utility () can
be computed for every point in the joint performance space (x,, x,) whether or
not that point is achievable. The parameters used to label iso-utility contours

13Graphs displaying operating characteristics together with iso-utility contours have long been
widely used in economic theory and were introduced to psychology via the study of attention by
Navon and Gopher (1979). The concept of utility is central to signal detection theory (e.g., Swets,
Tanner, & Birdsall, 1961), and ROCs have been graphed together with various performance criteria
(Swets, 1973); but the only prior graph of an ROC together with iso-utility contours is in Metz, Starr,
Lusted, and Rossman (1975, Figure S, p. 420). The attendance example was proposed by Sperling
and Melchner (1978b).
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Figure 4.8 Attendance example, overlapping classes: (a) density of information offered in Class-
es 1 and 2 as a function of time; (b) joint performance (POC) for the classes in (a). The iso-utility
contours represent the loci of equal contributions to the cumulative grade point average. (c) Same
POC as (b). The contours divide the space into pass—fail regions and the parameter represents the
minimum passing grade required in both courses.

indicate their utility. The attendance operating characteristic can be followed as it
crosses these contours until it touches the maximum utility contour it can reach.
The highest contour reached is 83.3%; this occurs with a class-switching time of
2:00 p.m. and results from a perfect score in Class 2 jointly with 66.7% in Class
1. The reason for the relative neglect of Class 1 is that useful information has
higher density per unit time in Class 2 than in Class 1, and therefore the marginal
utility of attending Class 2 is greater than that of Class 1. The student should
exchange time in Class 1 for time in Class 2 whenever possible.

Suppose that what matters is not grade point average but simply passing all the
courses. The utility is 1.0 if both courses are passed, and 0 otherwise. Figure
4.8c illustrates utility graphs for three minimum required passing grades (50%,
67%, and 80%). The curves in Figure 4.8c are not iso-utility contours as before,
but divisions of the graph into two regions: pass and fail. For convenience, the
three boundaries under consideration are represented on one graph. All the
reasonable strategies suffice when the minimum passing grade is 50%; two-thirds
of the reasonable strategies are adequate with a2 minimum passing grade of 67%;
only one strategy will achieve 80%, which is the highest grade simultaneously
achievable in both courses. To achieve a grade of 80%, the student attends 80%
of each class;4 that is, he or she switches from Class 1 to Class 2 after 2.4 hours
in Class 1 (at 2:24 p.m.). Ironically, this strategy, which is the only one that will
able the student to pass both courses when a passing grade of 80% is required, is
the only strategy that would cause the student to fail both courses when a passing
grade of 80.1% is required.

14See Footnote 12.
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Signal Detection Theory: Receiver Operating
Characteristic

In the classroom example, the assumption that information is transmitted by the
instructor uniformly over the whole scheduled class period is unrealistic. More
realistic assumptions would be that instructors take a while to ‘‘warm up’’ before
they reach their maximum exposition rate; and, having once reached this rate, they
begin to tire, at first slowly, and then severely. Figure 4.9a shows estimated
instructor information rates for two classes: Nursing from noon to 5:00 p.m. and
Spanish from 1:00 p.m. to 4:00 p.m. Figure 4.9b shows the attendance operating
characteristic for the student who attempts to take both classes. With these more
realistic assumptions, the previously straight-lined POCs now describe smooth
curves. The information rate during class period i, P/(t), is assumed to be zero
when class is not in session and to be nonnegative during class. The total
amount of information (E;) presented in aclass [E; = [finish p (1) df] is assumed
to exist and be bounded. For the attending strategy, in which a student attends
Class 1 from its start until time ¢ and then attends Class 2 until its finish, the
amount of information E; accumulated in each class is given by

E, = f “ pdt  and E,= f pa(0) dt.
— c
Information accumulates only from the starting time ¢, of the class; however,
because E, (¢) is zero for t < ¢, it is convenient to write the integral from — to
¢ rather than from ¢,. The same holds true for Class 2. The POC is a graph of E,
versus E, as c¢ varies.

The information rates for Nursing (n) and Spanish (s) shown in Figure 4.9a
are analogous to the conditional probability distributions given noise n, p,(¢),
and signal plus noise, s + n, p_(¢), in signal detection theory (Green & Swets,
1966). Typically, these conditional distributions are assumed to be normal prob-
ability density functions, but this is not essential to the theory. On any trial %, the
stimulus produces an effect z, described by a sample from the appropriate dis-
tribution (p,, p,), and the observer reports ‘‘signal’’ if £, > ¢ and ‘‘noise’’
otherwise. In signal detection theory, c is called the criterion. The probabilities
of hits P_ and of false alarms Q,, are given by

P, = jwps(x)dx, and Q, = fml’n(x)dx-

[

A graph of P, versus Q,, (Figure 4.9¢) is called a receiver operating characteristic
(ROQ).
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Figure 4.9 (a) Normal assumptions for information density in two classes, Nursing (n) and
Spanish'(s) as a function of time (t) in hours after noon. (b) Attendance Operating Characteristic for a
student who switches from Class n to Class s at various times. Representative values of switching
times are indicated adjacent to the POC, and the abscissa P, and ordinate P; indicate performance
(examination scores) in the two classes, Nursing (n) and Spanish (s), respectively. (c) A Receiver
Operating Characteristic (ROC) for the distributions illustrated in (a). The density functions p,(#) and
ps(1) are interpreted as the conditional distributions of noise alone and of signal plus noise on the
sensory continuum f, and the abscissa Q, and ordinate P, represent false alarms and hits, respec-
tively. Panel b, the mirror image of Panel c, is now interpreted as a decision operating characteristic,
when it is applied to a discrimination or to a signal detection experiment. See text for details.

Decision Operating Characteristic

The ROC and POC graphic conventions produce mirror images of each other
(compare Figures 4.9b and 4.9c). In fact, the ROC uses a counter-intuitive
convention: it plots good performance on signal trials (hits) versus bad perfor-
mance on noise trials (false alarms). The mirror image graph of an ROC (1) is
mathematically equivalent; (2) plots good performance on signal trials versus
good performance on noise trials; (3) follows the usual convention of graphing
good performance up and to the right; and, therefore, (4) is psychologically
easier to grasp. Let P, = 1 — Q. A graph of P_ versus P,, correct detections
(hits) versus correct rejections, is the graph that illustrates good performance in
the conventional way and is mathematically isomorphic to the AOC. Although
signal detection theory originally was applied to the discrimination of signals
from noise, the formalism of the theory applies equally well to other cases. For
example, signal detection theory applies well to discrimination experiments in
which an observer’s task is to discriminate two stimuli (e.g., tones of 1000 Hz
and 1001 Hz) as opposed to discriminating one stimulus from zero. Because the
general case is discrimination (of which discrimination from zero—detection—is
a subcase) the P_ versus P, representation is appropriately called a discrimination
operating characteristic (cf. Sperling & Melchner, 1978b) or a decision operating
characteristic (DOC). The AOC, ROC, and DOC are members of a much more

general category, that of performance operating characteristics, POCs (Norman
& Bobrow, 1975).
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SWORDS

B
PLOWSHARES

Figure 4.10 Production possibility frontier (p — p’) and iso-utility contours for the primitive
swords—plowshares economy. The nearly flat utility contours at the extreme right indicate that large
changes in (surplus) plowshares can be compensated by small changes in (scarce) swords; similarly,
the nearly vertical contours at the upper left indicate that large amounts of (surplus) swords would be
traded for just a few (scarce) plowshares.

Economic Analogy

Consider a primitive society in which there are two occupations, agriculture
and war. All the farmers could in principle become warriors, and all the warriors
could in principle be farmers; although obviously there are some persons who
would be better farmers than warriors, and vice versa. The strength of the army is
measured in units of ‘‘swords’” and the productivity of the agricultural sector in
units of ‘‘plowshares.”” Consider the joint productivity (swords, plowshares) as
the fraction of the labor force that devotes itself to farming varies from 1.0 to 0.
The graph of swords versus plowshares has various names; here, it is designated
a production possibility frontier (Samuelson, 1980). When graphed as in Figure
4.10, the production possibility frontier is concave foward the origin. This
means, for example, that if the society were to alter the fraction of farmers from
1.0 t0 0.95, it would decrease plowshares by less than the increase in swords (see
lower right portion of production possibility frontier in Figure 4.10). It is as-
sumed that the first persons to change occupations would be among the worst
farmers; that is, persons who were relatively more efficient as warriors than as
farmers. Similarly, if the fraction of warriors were to increase from 0.95 to 1.0,
it would increase the number of swords only slightly because the very last to join
the army would be the least efficient. This tendency to concavity toward the
origin is a general property of POCs, which is discussed in more detail later in
the chapter.

The production possibility frontier is something that is computed by the sys-
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tems analysts and economic experts in the society—the technocrats. Insofar as
such things can be measured, the production possibility frontier has the status of
an objective fact: A particular allocation of resources leads to a corresponding
output. On the other hand, the utility of any joint combination of swords and
plowshares is something that people express through their politicians. In this
instance, utility has the status of a preference or an opinion, although it may be
formed on the basis of a logical examintion of objective facts. Suppose, for
example, the society were devoted entirely to agriculture. This would tempt
some of the more opportunistic neighbors to expropriate the agricultural produce
by force, and so the industrious citizens might starve in spite of (or perhaps
because of) their efficient production. Converting even a few farmers to warriors
might create an effective deterrent. The notion of utility applies not only to
production that is possible but also to any production. Suppose a society had a
thousand times more plowshares than could be consumed and not a single war-
rior. It would gladly trade many surplus plowshares for just a few swords.
Similarly, a society that had an enormous surplus of swords but no plowshares—
to avert possible starvation in case the neighbors had the same paucity of
plowshares—would be willing to trade many swords for a few plowshares. From
these considerations, it follows that equal utility contours are concave away from
the origin.

The solution for the society—once it has decided on its utility function—is to
maximize utility, which it can do by moving along the production possibility
frontier until it touches the highest iso-utility contour. At this optimal point, the
utility contour and the production contour will be tangent to each other and have
the same slope. This is classical economic theory. Modern macroeconomic theo-
ry deals with many complex additions to this model that may prevent an optimum
from being achieved, but these are beyond the scope of the present discussion.
Note, however, that the guns versus butter trade-off just described has numerous
other economic analogies. For example, should an automobile company man-
ufacture large or small cars? Should a scarce resource be consumed now or saved
for later? Finding the optimum point along various trade-offs is at the heart of
economic theory, and specialized branches of mathematics (such as linear pro-
gramming) have been developed to deal with the problems of optimization. In
the next section, the equivalences between trade-offs and optimization in signal
detection, in concurrent tasks, and in economic theory are explored.

Optimization in Signal Detection, Attending, Attention,
Economics, and Motivation

Signal Detection Theory

Consider the conditional distributions of noise and of signal plus noise in
classical signal detection theory. Let the likelihood ratio (Ir) for an observation
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(x; the internal sensory representation of the stimulus on a particular trial) be the
conditional probability of signal given x divided by the conditional probability of
noise given x; that is,!3

= p:+n(‘x)
) == &

In the examples considered here, the conditional density functions p,, , and p,,
are arranged in order of increasing likelihood ratio on the sensory continuum (x).
Figure 4.11 shows p_, , and p,, as normal density functions—the usual assump-
tions of classical signal detection theory. The criterion c represents the value of x
corresponding to the Ir below which the observer responds ‘‘noise,’’ and above
which the observer responds ‘‘signal.”” The DOC (mirror image ROC) at the
upper right of Figure 4.11 represents the joint performance on n trials and s + n
trials as c is varied from — to .

The logorithm of the likelihood ratio is illustrated in Figure 4.11, column 3.
The reason for illustrating the log Ir rather than Ir itself is that log Ir is symmetric
around Ir = 0, which reflects the actual symmetry of treatment of Ir and Ir—!,
and that log Ir occurs in many statistical treatments. )

The normalized distance between the mean of n and of s + n density functions
is the d' statistic of signal detection theory. The area under the DOC,
Area(DOC), is a more general statistic, which is simply related to d’ for those
special cases where d' makes sense, but is itself useful in more cases. The
interpretation of Area(DOC) is

Area(DOC) = P (x

s+n

> x,).

That is, Area(DOC) is the probability that a random sample drawn from the
distribution p, , ,, exceeds a sample drawn from p,,. According to a simple signal
detection theory model, Area(DOC) is the probability of a correct choice in a

- two-alternative, forced-choice task (Green & Swets, 1966). More generally,

Area(DOC) is a nonparametric measure of the amount by which the s + n
distribution dominates (is to the right of) the n distribution. Statistics for
Area(DOC) are given in Bamber (1975).

Signal detection theory and decision theory differ only in nomenclature—not
in any critical conceptual or substantive way. Both are special cases of theories

15The statement defining Ir is correct for discrete probabilities but needs to be technically elabo-
rated for the continuous probability density functions. The equation is correct for either the discrete or
continuous case with appropriate interpretation of p;,,, p, In the formal treatment of signal
detection theory, the sensory variable x usually is discarded as quickly as possible and replaced by Ir
(because all decisions are based on the value of Ir). However, when the emphasis is on the sensory
contintum under investigation, it is more useful to formulate the theory directly in terms of this
continnum—the approach taken here.
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for compound tasks. The remaining theories outlined in Figure 4.11 are resource
theories for concurrent tasks.

Attendance Theory

Attendance Theory deals with two or more classes offered during overlapping
time periods. The conditional distributions represent the usefulness of informa-
tion offered at a time x for each of the courses, respectively. The decision axis of
signal detection theory becomes a time axis in attendance theory. At early times,
information is more useful for Course 1; at later times, it becomes more useful
for Course 2.

The likelihood ratio (Ir) of signal detection theory is now interpreted as a
usefulness ratio—the higher Ir is, the more useful information for Course 2 will
be relative to Course 1—whereas criterion and DOC of signal detection theory
become the classroom-switching time and AOC of attendance theory. The area
under the DOC has an interesting interpretation in attendance theory. Let z; be
the time when a bit of information sampled randomly from Class 1 was offered,
and t, the corresponding time for Class 2. Then, the area under the AOC is given
by Area(AOC) = plt, > t,]. The Area(AOC) is a measure of how much later
Class 2 is than Class 1 in terms of the time at which classroom information
actually is offered. In order for Area(AOC) to have this useful interpretation in
resource theories, the coordinates of the operating graph must be normalized to
maximum possible performance, which is equivalent to normalizing the density
functions to unit area. '
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In economic theory, the signal detection theory decision axis of ‘‘observa-
tions”’ (ordered in terms of their likelihood of indicating n or s + n) is replaced
by an ordering of resources (ordered according to their usefulness for the compet-
ing production goals of the economy). For example, in the swords—plowshares
example, the decision axis might represent an ordering of all the laborers in the
country. Those whose usefulness as farmers (relative to warriors) was greatest
would be represented at the left side of the axis; those whose usefulness as
warriors was greatest would be represented on the right side.

The economic analog to the likelihood ratio of signal detection theory is
sometimes called the objective substitution rate; in this example, it represents the
rate at which swords (or warriors) can be substituted for or converted into
plowshares (or farmers). The distribution p,,(x) represents the net effectiveness as
farmers of all the laborers whose objective substitution rate (or usefulness ratio)
was x. The function p, , ,(x) represents the effectiveness of this same group of
laborers as warriors. The decision criterion ¢ corresponds to the decision to
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characteristic is the shaded area in the rightmost graph. In economic consumption and in motivation theory, the shape of the n, s density functions is usually assumed

interpretation of the decision variable, x. The performance operating characteristic (POC) is the curve indicated in the graph; the area under the operating
to be different than in the other theories, as is illustrated.
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assign all laborers with usefulness ratio less than ¢ to farming and the remainder
to fighting. The DOC of signal detection theory, generated as ¢ varies from —
to +c0, corresponds to the production possibility frontier of economic theory,
similarly generated.

The decision axis in economic theory need not represent merely labor. In the
present example, it could represent some other resource—such as mining and
manufacturing operations. For example, mines and other industries could be
ordered according to how effective their production was in the manufacture of

swords relative to the manufacture of plowshares. Or a single factory could make '

such an ordering of its internal production facilities. In all these cases, as the
decision criterion ¢ to allocate resources to plowshares or to swords varies over
its full range, it will trace out the production possibility frontier.

These economic examples show that the concept of resource can be quite
general; it may refer to labor, to production facilities, to available capital, or to
some combination of all these and other resources. When many resources are
involved, matters can be quite complex; and the discovery of an ordering may be
nontrivial. Some of the complexities are considered later in the chapter, but they

should not obscure the general principles elaborated here about how resources
are allocated.

Finally, the area under the production possibility frontier has a similar in-
terpretation to the areas under the DOC and AOC: it represents the probability
that a randomly chosen sword-resource will be more useful for sword production
than a randomly chosen plowshare resource would be for sword production. It is
a measure of the extent to which skills or facilities (e.g., for farming, for
fighting) are segregated into different people or facilities as opposed to coexist-
ing in the same person or facility.

Motivation Theory and Economic Consumption Theory

The terms used in studies of animal motivation and consumer economics are
quite parallel. Economic consumption theory is somewhat different from produc-
tion theory because, in consumption, there is only one resource (money) that can
be allocated to satisfy various different desires. Similarly, in the typical animal
motivation experiment (see Rachlin & Burkhard’s, 1978, review), the single
resource is time; a hungry and thirsty rat has to allocate its limited session time to
working for food rewards or for water rewards. ’

In the usual case, the satisfaction value (marginal utility) of each additional
reward increment diminishes with the amount x already consumed, at least for
large x. This nonlinear resource-utility function u(x) leads to a curved POC. Let
the resource-utility function u,(x) represent the utility for reward system i of an

4. Attention and Signal Detection 137

amount x of the disposable resource. It is assumed that the u,(x) are monotonic,
nondecreasing functions of x and that x is bounded (0 = x = B). The bound B is
the budget limit; for example, the rat’s total session time or the human’s total
disposable money. The aim is to find a critical quantity ¢ of the resource such
that when c¢ is allocated to Reward 1 and the remainder B — c is allocated to
Reward 2, the total utility u,(c) + u,(B — ¢) is maximized. This expenditure
yields the most preferred consumer bundle. The density functions, p; (x), po(x),
of Figure 4.11 can be interpreted as marginal utilities—the derivatives (d/dx)
u,(x), (d/dx) uy,(B — x) of the resource-utility functions. Note that, as drawn in
Figure 4.11 the marginal utility function (d/dx) i;(x) is cumulated from left to
right and (d/dx) u,(x) is cumulated from right to left. In consumption theory, the
likelihood ratio represents the ratio of marginal utilities of an incremental expen-
diture for Rewards 1 and 2 at the budget allocation x. The performance operating
characteristic is called a budget line or an appetite operating characteristic. It
represents the joint utilities u,(x) and u,(B — x) of expenditures x, B — x,
respectively, for the two rewards. The particular formulation given in the preced-
ing—in terms of (d/dx) u,(x), (d/dx) u,(B — x)-—is only one of several ways of
generating the budget line. !¢ More natural ways to generate the same budget line
using nonlinear resource-utility functions are considered later in this chapter (see
Figures 4.21 and 4.22 and the subsequent discussion under the subheading
‘“Single-Resource Pool’’ on p. 166).

The area under the budget line or under the appetite operating characteristic
represents the nonsubstitutability of the competing rewards (e.g., food and
water). The minimum area (area under the negative diagonal) indicates com-
pletely substitutable rewards (e.g., waters with different but equally acceptable
flavors); the maximum area indicates nonsubstitutable rewards (e.g., water and
dry food). That is, rewards are nonsubstitutable if, in a control experiment in
which an animal is offered only reward A or only reward B for } hour, it
consumes them in the same ratio as in a 1-hour concurrent session in which it is
offered access to both (cf. classroom example of Figure 4.7). Rewards are
substitutable to the extent that, in the concurrent experimental session, the ani-
mal can be induced to vary the proportion of alternative rewards consumed from
the proportion consumed in the isolated control sessions.

Attention Theory

Concurrent Tasks The allocation of mental resources (attention) determines
which of several concurrent cognitive tasks are performed more or less well; just

16See Coombs and Avrunin (1977) for various sets of conditions that generate trade offs.
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as in economic theory, the allocation of economic resources—Ilabor, capital, raw
materials, and the like—determines which manufacturing goals are achieved.
This analogy of attention to economic production theory was proposed by Navon
and Gopher (1979). The critical aspect of the attention analogy is the interpreta-
tion of the decision axis x as an ordering of resources—in the case of attention,
mental processing resources. The mental resources for which the usefulness ratio
x (usefulness for Task 2 divided by usefulness for Task 1) is lowest are repre-
sented at the extreme left of the resource axis (Figure 4.11). Thus, the resource
axis is directly analogous to a likelihood decision axis of signal detection theory.
The conditional density function p,(x) represents the usefulness to Task 1 of
resources as a function of their usefulness ratio x; p,(x) represents the usefulness
of resources to Task 2. The decision eriterion ¢ represents the decision by the
subject to allocate mental resources with usefulness ratio less than ¢ to Task 1
and the remainder to Task 2. The attention operating characteristic is traced out
as c is varied over its range. The area under the AOC represents the probability
that a resource, chosen at random from all those useful for Task 2, really is more
useful for Task 2 than a randomly chosen Task 1 resource would have been. It is
a nonparametric measure of the extent to which separate—as opposed to inter-
changeable—resources are involved in performing the two tasks.

Compound Tasks Attentional manipulations (e.g., instructions to attend to
Task 1 versus Task 2) can be interpreted as controlling resource allocation only
in concurrent tasks. In compound tasks, because of the effects of stimulus uncer-
tainty, the attentional manipulation must first be viewed as a decision manipula-
tion (as in signal detection or decision theory). The starting hypothesis for
compound tasks is that precisely the same resources are used under all conditions
of attention; the quality of data input to and output by these processes does not
vary with selective attention, only the decision made on the basis of the data
output varies. If, after stimulus uncertainty has been accounted for, there is a
residual effect of attention in a compound task; then, obviously, resource analy-
sis would be appropriate for this residual effect.

What Are Mental Resources? There are two approaches to this question. The
first is that it is not necessary to know what mental resources are. They have the
status of a random variable much like the decision variable of signal detection
theory. All the power and prediction of signal detection theory work whether or
not the psychological (mental) dimensions of the decision variable are known
precisely. All the power of optimization theory is available to predict and de-
scribe performance in concurrent tasks even when it is not known precisely
where these tasks conflict. On the other hand, I would not be a cognitive
psychologist if I did not have a very special interest in learning precisely what
particular mental resources were involved in cognitive functions.
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With respect to particular mental resources, the critical resources for which
there is competition vary with the task. In the partial-whole report tasks, the
critical resource was short-term memory (STM); it had a limited capacity, and
that capacity was allocated to items from one stimulus row or the other according
to the task demand. This memory resource seems to be quite interchangeable.

In search tasks, the critical resource probably is a processing resource involved
in making comparisons. A stimulus item at one location in the visual field can be
compared to a memory representation of a target at the same time that another
item in another part of the field is being compared to a representation of another
target (Sperling, et al., 1971). However, the extent to which such comparisons
can occur simultaneously and the extent to which they draw from a common pool
of resources depends on many factors, among the most important of which is the
familiarity of the target and the extent to which special resources have been
developed for highly specific targets (see also Schneider et al., this volume).
Later in this chapter, a powerful technique to investigate whether resources from
a common pool can be evenly shared by two tasks or whether they are switched
in all-or-none fashion from one task to the other on different trials is examined.
First, however, consequences of the unified decision theory that has been pre-
sented here are examined further.

Iso-Utility Contours

Iso-utility contours are a powerful heuristic device for studying optimization;
that is, for investigating which of a number of alternative procedures or param-
eters produces the maximum utility or most preferred outcome. Iso-utility con-
tours have long been commonplace in economic theory.!” Navon and Gopher
(1979) introduced iso-utility contours into the study of attention; in this chapter,
they were introduced in the classroom example. Here, their use to signal detec-
tion theory experiments (DOC, ROC) and to related situations is introduced.

In a typical signal detection task, a2 X 2 payoff matrix describes the utility of
stimulus—response (S—R) outcomes. Let the payoff values be a and j respec-
tively, for ‘‘signal’’ and ‘‘noise’” responses on noise trials, and h and m, respec-
tively on signal trials, representing false alarms, correct rejections, hits, and
misses. If the fraction of signals is o (thus the fraction of noise trials is 1 — a),
and probability of an *‘s”” response given s is p(‘‘s”’|s), and analogously for the
other conditional probabilities; the expected utility Eu is

7]so-utility contours are also referred to as “‘equal-utility contours’ and *‘indifference curves’
(Samuelson, 1980). According to Due (1951, p. 92), the indifference curve approach ‘‘was sug-
gested in writings of Pareto (1909) and by the Russian economist Slutzky (1915),”* and popularized
by Hicks and Allen (1934).
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Figure 4.12 (a and b) Iso-utility contours in a signal detection task. In (a), the abscissa indicates
the probability of a correct rejection response, given the stimulus was noise, and the ordinate
indicates the probability of a correct detection response, given the stimulus was signal. In this
example, the a priori probability a of a signal stimulus is 0.75; 1 — @, the a priori probability of a
noise stimulus, is 0.25; the utility is 1.0 for correct responses and zero for wrong ones; and the
expected (utility) payof for the joint performances—p(*‘S"’|S) and p(**N"*|N)—is represented by the
labeled iso-utility contours. The DOC illustrated is for equal variance normal distributions with a d’
of 1.0 (cf., Figure 4.10). Panel b is the same as Panel a, except a = 0.25.

Eu = o [hp(“*s”’|s) + mp(“‘n’’ls)
+ (1 — ) [ap(*‘s”’n) + jp(“‘n”|n)). “4.2)

Given a particular payoff matrix, Equation 4.2 gives the expected utility for
every possible performance level—p(*‘s’’}s) and p(‘‘n’’|n). (See Equation 4.1 in
the attendance example.) In fact, the limits of achievable performance levels are
described by the DOC, which is a graph of p(*‘s”’|s), p(*‘n”’|n) pairs obtained as
some nonstimulus parameter of the experiment that is varied. (The phrase “‘limit
of performance’ is used here because the subject can always do worse by
‘making deliberate errors or by following a nonoptimal decision strategy.)

To illustrate the effect of a on performance, a particular payoff matrix is
chosen; for example, wrong responses a and m earn zero and correct responses j
and h earn V dollars per trial. In brief: a = m = 0 and j = h = V > 0. Figure
4.12a illustrates iso-utility contours for o = .75 and Figure 4.12b illustrates iso-
utility contours for « = .25. The parameter on the contours is the expected utility
per trial. Expected utility as defined by the payoff matrix and Equation 4.2 is
computable for all values of p(*‘s’’|s) p(*n”’|n), not just achievable values. The

iso-utility contours are straight lines with slope § easily calculable from Equation
4.2:
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Suppose the outcomes of a trial are symmetrical with respect to s and n for both
errors and correct responses. Then the iso-utility slope is simply the ratio of the
two a priori stimulus probabilities, — (1 — a)/o . In the two examples in Figure
4.12a and b, the slopes are —3 and —1/3. )

A typical DOC based on the assumption of equal-variance Normal distribu-
tions for n, s + n is also illustrated in Figure 4.12. It is quite obvious graphically
that the criterion should be adjusted quite differently to achieve the optimal
performance with a = 0.25 and o = 0.75. The expected utility of each strategy
(criterion value) can also be estimated from the graph so that the cost of, for
example, not changing the criterion (c) when a changes can be quickly assessed.
The optimal strategy has an expected utility of 0.78 per trial. This is only
marginally better than 0.75, the utility that could be achieved by simply naming
the a priori more probable stimulus on each trial without actually observing the
stimulus. For Normally distributed signal and noise, it always pays to observe
the stimulus because the likelihood ratio varies between 0 and . But there are
many distributions—such as the logistic distribution, which is very similar to the
Normal—for which the likelihood ratio is bounded. For stimuli characterized by
such distributions, when the a priori probabilities are very asymmetrical, it
would be better not to observe the stimulus but merely to use the a priori
information. ‘

The value of a priori information is the expected value of a trial with this
information minus the value of a trial without it. In the example in Figure 4.12,
suppose that an observer has no information about the a priori stimulus proba-
bilities and therefore sets the decision criterion symmetrically (at a likelihood
ratio equal to 1.0). The expected probability of a correct response would be 0.69,
which (in this example) is also the number of utility units (V) the observer would
expect to earn on each trial. Note that 0.69 is the highest achievable expected
probability of a correct response with equally probable stimuli or with unequally
probable stimuli when the probability is unknown. The a priori information that
one stimulus is three times more probable than the other enables the observer to
achieve an expected probability of a correct response of 0.75 without even
observing the stimulus and 0.78 if he or she chooses to actually observe it. The a
priori information alone is thus worth more (0.75) than the opportunity of view-
ing the stimulus without a priori information (0.69). In the present example,
therefore, the a priori information about stimulus probabilities is worth at least
0.25 utility units (0.75 — 0.50) per trial when the observer does not bother to
look at the stimulus, and is worth 0.09 units (0.78 — 0.69) if the observer bothers
to observe the stimulus. Finally, it is obvious that good- detection of signal
stimuli p(‘‘S”’|s) = 1, can be profitably traded off for good detection of noise
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stimuli, p(“n”ln) = 1, when there are more noise than signal stimuli, and vice
versa.

All these properties and relations of variables in signal detection are, of
course, derivable algebraically; and they are well known. The aim here is to
illustrate them in a new way so that previously unobserved similarities between
optimization in the various situations (detection, discrimination, attendance, at-
tention, economics, etc.) will be made obvious.

Reaction-Time Trade-Offs

Simple Reaction Time with Alternative Stimuli

Consider the following experiment by Posner, Nissen, and Ogden (1978). A
subject views a fixation point between two locations, left and rlght where a light
flash may appear on a given trial. Whichever flash appears, the subject is to
respond as quickly as possible by pressing a key. Occasional blank trials (no
flash) are introduced to reduce anticipatory responses (responses before the
flash). This is a go/no-go reaction-time experiment in which the subject must
respond (“‘go’”) when any stimulus is presented and must not respond (*‘no-go’*)
on catch trials. The experimental manipulation of concern here is the fraction a
of stimulus-containing trials on which the left stimulus appears. Posner et al.
investigated three conditions—trials in which a was, respectively, 0.80, 0.50,
and 0.20. Although trials with different « traditionally have been run in separate
blocks (Audley, 1973; Falmagne, Cohen & Dwivedi, 1975; Link, 1975; Wel-
ford, 1980), Posner et al. ran them mixed together, using a pre-cue before each
trial to inform the subject of a. The pre-cue procedure (with varying interval of

pre-cue to reaction stimulus) is used to determine how quickly the pre-cue can

influence the subjects’ response. When the pre-cue is given well in advance, as
in the present experiment, the mixed procedure is equivalent to the traditional,
blocked procedure.

Posner et al.’s experiment is analyzed here as a two-task compound experi-
ment in which the two component tasks are (1) press the key when the left flash
appears, and (2) press the (same) key when the right flash appears. The outcome
of the experiment, the reaction time for each of the two component tasks in the
three conditions, is represented in Figure 4.13a. (Except for a slowing of reaction
time, thére was no important difference between the reaction times in this Don-
ders Type 3 experiment and in a disjunctive reaction-time experiment in which
the subject had to press a left key in response to the left flash and a right key in
response to the right flash.) So far, the only measure of performance considered
here has been accuracy—usually, the fraction of correct detections, correct iden-
tifications, or correct answers. In the following, the dependent measure is mean
reaction time; errors that occur when the observer responds beforé the stimulus
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Figure 4.13 Simple reaction times for two alternative stimuli. The same data (from Posner et al.

* 1978, Figure 5) are represented in all panels. (a) Conventional representation of simple reaction times

(RT) to a flash of a Left (L) or a Right (R) stimulus light with three different warning cues: I and r,
indicating 80% probability of Left and Right lights, respectively, and n, indicating a neutral (uninfor-
mative) cue. In Panels b, c, and d, the data of (a) are regraphed as a POC. The coordinates represent
simple reaction times to the Left and Right stimuli, respectively, and are oriented to show good
performance up and to the right. The iso-utility contours in panels b, ¢, and d each represent equal
mean reaction times as indicated, that is, each point along the contour represents a joint performance
to Left and Right stimuli for which the overall mean reaction time is the value indicated on the
contour, ¥ = aRTeq + (I = a)RTRigne. In (b}, the iso-utility contours represent a weighting of
performance appropriate to the stimulus probabilities in effect with cue I u = 0.8[RT o +
0.2RTgignd- (c), the iso-utility contours represent a weighting of performance appropriate to the
stimulus probabilities in effect with cue n: u# = 0.5[RTy g + RT; Right)- In (d), the iso-utility contours
represent a weighting of performance appropriate to the stimulus probabilities in effect with cue r:
= 02RTL,ﬁ + O.SRTRigm.
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occurs, fails to respond within a reasonable time period, or responds on a catch
trial are ignored for the moment. Fast reaction times represent good performance;
following the convention of this chapter, they are represented up and to the right
in Figure 4.13.

Iso-Utility Contours for Reaction Times What are the utilities in Posner et
al.’s experiment? Unfortunately, the authors did not define these explicitly for
the subjects, so it is necessary to guess. Suppose that utility varies in direct
inverse proportion to the reaction time: The faster the reaction is, the higher the
utility will be; and vice versa. With this assumption, the utility u of any perfor-
mance—pair of reaction times (RT)g, RT ;z,)—Can be computed as a function
of a, the proportion of left stimuli:

u = —[0RT,p + (1 = QRT 50 4.3)

The utility function (Equation 4.3) is defined in terms of minus one times the
reaction times because smaller values of reaction time represent better perfor-
mance, and utility, by definition, increases as performance improves. Iso-utility
functions based on Equation 4.3 are illustrated in Figure 4.13b, c, and d for the
three values of a for which data are available. Note that the utility functions
(Figure 4.13b, c, and d) are similar to those in typical signal detection tasks, but
the data are not, in that the data seem to fall on a straight rather than a curved
line. Straight-line data in this experiment, as in Sperling and Melchner’s (1978a)
attention study, have special significance: They suggest that a mixture of just two
states rather than a continuum of states is sufficient to account for the data. This
point is taken up in detail later in the chapter.

Posner et al.’s observers seem to operate sensibly with respect to the utility
function (Equation 4.3) optimizing their performance in each case (Figure 4.13b,
¢, and d). Note that informative precues enable the observers to shorten their
mean reaction times substantially over the mean reaction time to uninformative
cues. A valid cue (e.g., left warning followed by left light) ‘‘benefits’’ reaction
time (by speeding it up) by about the same amount as in invalid cue ‘‘costs’’
reaction time (by slowing it down). The important point—overlooked by Posner
et al.—is not that the costs and benefits of knowing « when « equals 0.2 or 0.8
happen to be approximately symmetrical, but that the benefits are available on
80% of the trials, whereas the costs are paid only on 20%. Thus, the mean
reaction time improves with unsymmetrical stimulus probabilities in a way that is
completely analogous to the improvement of s/n detection accuracy with asym-
metric stimulus probabilities, as considered in the preceding section.!8

18The cost and benefits in choice (as opposed to simple) reaction-time tasks have been extensively
analyzed by numerous investigators. For a review of experiments, see Audiey (1973); for a review of
the random walk model’s (RWM) predictions, see Link (1975); for examples of other models, see
Green and Luce (1973).
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Simple Reaction Time with Alternative Stimuli: A Compound Task Finally, the
careful reader will have observed that Posner er al.’s task, like the signal detec-
tion tasks, is a compound task. On one trial, the observer never receives both a
left and right stimulus to which independent responses must be made. A closely
related task, which would be concurrent, is responding with the left hand to left
stimuli and with the right hand to right stimuli when both stimuli could occur.on
the same trial. The concurrent tasks would make it possible to determine whether
an observer can simultaneously perform two tasks concurrently as readily as one
by providing the opportunity to compare concurrent performance to performance
in single-task control experiments. This is the ideal task for studying attention,
although it may present problems when conflicts arise in the motor system
(Kantowitz, 1974). Posner et al.’s compound task does not enable us to come to
any such conclusion about the ability to perform two tasks simultaneously. The
compound reaction-time situation in which either a left or right signal occurs on
each trial is analogous to signal detection in which either noise or signal plus
noise occurs on each trial. Recall that signal detection theory assumes there is no
loss of information by the observer; an ideal detector (matched to the observer’s
performance on the simple task) would show a loss similar to the observer’s
when presented with the compound task. In the ideal detector, only the decision
criterion changes as the payoff matrix and the a priori signal probability are
varied rather than the quality of the information. Is it possible, in Posner et al.’s
task, that performance varies with instructions and payoffs and yet the quality of
perceived information remains invariant? The following question arises: Is a
subject slower to react when there are two locations to monitor because the
subject cannot process information as efficiently from two as from one location,
or does the subject’s slower reaction merely reflect the same loss that an ideal
detector with no information loss would show in the same situation? As with all
compound tasks, a theory is necessary to decide these questions.

Before going on to a theory, it is worth noting that if any performance deficit is
observed in a compound task (relative to any of the component tasks) then a full
POC could be generated (i.e., a range of costs and benefits observed). To
illustrate this point, consider the two-choice reaction-time experiment. This is a
compound task with two component tasks, each a simple reaction-time task.
(Each simple reaction-time Task i requires Response i for Stimulus i). Suppose it
is known that simple reaction times are faster than choice reaction times for at
least one set of a priori probabilities of the occurrence of the component tasks in
the compound. That is, suppose Task 1 is slowed in the choice reaction time
relative to simple reaction time. Let the a priori probability of Task 1 in the
compound be increased to, for example, .9999. A Gedanken éxperiment is per-
formed using this new compound task. A session consist of 1000 trials. Only
once in any 10 sessions will the subject experience a component task other than
Task 1. This is a very slow way to gather data about Task 2, but it is as efficient
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for Task 1 as the simple reaction-time Task 1. Moreover, the data from this
compound Task 1 will not differ significantly from the simple Task 1 data
because in more than 9 of 10 sessions the simple and compound task have exactly
the same stimuli and required responses. Insofar as simple reaction times and
choice reaction times are ever different, manipulating a priori probability allows
a smooth transition over this range of differences. Thus once it has been observed
that choice reaction time is slower than simple reaction time, the POC and
costs/benefits for choice reaction times are not a discovery, but rather follow
immediately from the procedure for measuring them. Probability manipulations
in choice reaction time have been extensively analyzed in the literature (Audley,
1973; Link, 1975; Welford, 1980); therefore the discussion here focuses on a
theory for the simple reaction time with alternative stimuli, which has not been
so extensively treated.

Random Walk Model for Simple Reaction Time with Alternative Stimuli A
simple theory for reaction time, closely related to signal detection theory, is the
random walk model (RWM) (Link & Heath, 1975; see also Laming, 1968).
Signal detection theory is a theory for the perception and decision component in
detection tasks; the RWM is a theory for the perception and response-decision
component in reaction-time tasks. Without going into full detail, the principle of
the RWM can be summarized as follows: An ideal detector accumulates informa-
tion from the start of a trial. When the information exceeds a threshold, the
appropriate response is made. Each new increment of information is assumed to
be somewhat unreliable so that the cumulative balance of all the information may
waver between the alternatives—that is, execute a random walk. A strategy
consists of a choice of response threshold (the distance from the starting point to
the absorbing boundary) for each of the alternative responses.

The response threshold is adjusted so that an optimum compromise is made
between several incompatible criteria. The response threshold is set high to avoid
accidental incorrect responses (due to some randomness in the incoming infor-
mation), but not so high that the reaction time is too long. (The higher the
threshold is, the longer it will take, on the average, to reach it.) These relations
are illustrated in Figure 4.14. A priori information that a stimulus is probable will
cause the threshold for the corresponding response to be set lower (thereby
decreasing reaction time) without a corresponding loss in accuracy. A priori
information that a stimulus is unlikely forces the threshold to be raised in order to
avoid errors. (The response threshold is changed by changing A or C or both
together.)

In order to apply a RWM to Posner’s task, it is necessary to choose one from
among the many candidate configurations. For a single location being monitored
in a go/no-go reaction time, I propose a RWM with two boundaries: a near one
for the “‘go’” responses and another; much further boundary for the occasional
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Figure 4.14 Random walk models for reaction-time paradigms. In (a), an illustration of a random
walk model (RWM) for a choice reaction time with two alternative stimuli (Left, Right) is shown. A
possible random walk that leads to initiation of a Left response is represented by the heavy jagged
line; a possible random walk that leads to initiation of a Right response is represented by the light
jagged line. When a random walk reaches a boundary, the reaction-time (RT) response is initiated.
The sensitivity of the process is controlled by the parameter A (which is set in accordance with the
penalties for errors and the rewards for speed, etc.). The bias is reflected in the starting point C
(which is determined primarily by the expectation of Left versus Right stimuli). When C is in
accordance with the expectation of predominantly Left stimuli (as illustrated), then RTs to Left
stimuli will be faster than to Right stimuli (as illustrated). In (b), a random walk fora GO/NO GO RT
experiment with a RIGHT stimulus light is shown. The inner, heavy boundaries A, are used when
this is the only active RW. The outer boundaries A, are used when there is one other active random
walk (such as [c]); that is, when both LEFT and RIGHT stimulus lights are being monitored. A
possible RW that initiates a GO response is shown as a heavy line; and a possible RW that leads to a
no response, NO-GO, is shown as a light line. In (c), a random walk for a GO/NO-GO RT
experiment with a LEFT stimulus light is shown. Posner, Nissen, and Ogden’s (1978) experiment
involves both left and right stimulus lights; the first RW to reach the A, or A’, boundary initiates the
response. In (d), a random walk for a Left—Right choice reaction time involving the same stimuli as
in (b) and (c). The starting point indicates a strong Right bias; otherwise, the L minus R random walk
in (d) is similar to that in (a).
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‘‘no-go’’ response. The no-go boundary has little influence on the simple go/no-
go experiment: Catch (no-go) trials are rare, the subject is not rewarded for a
quick no-go decision (in fact, this decision speed is not explicitly measured); and
if the boundary is very far, only very seldom will it be crossed on go trials.
Monitoring two locations is modeled by two simultaneous, independent go/no-
go random walks; the response being triggered by the first completion. Because
two random walks would produce more false reactions (on catch trials or prema-
ture responses) thar one walk, the boundaries must be moved away (4, to A,) to
maintain the same accuracy in performance. Therefore, monitoring two locations
produces slower decisions than monitoring just one. The explanation is exactly
analogous to the previous explanation of the difficulty in searching for two
targets (I or 2) instead of one target. Recall that the concurrent task of searching
for I and 2 did not have this problem. Nor would the concurrent task of present-
ing stimuli independently for responses with the left and right hands. The concur-
rent reaction-time task is composed of two simple component reaction-time
tasks: (1) respond with the left hand to a left stimulus, and (2) respond with the
right hand to a right stimulus. The concurrent reaction-time task—in which both
left and right stimuli might occur on any given trial—is quite different from the
usual choice reaction-time task, which is a compound task: Either the left or the
right stimulus occurs, but never both together. The concurrent task is modeled by
two independent random walks. The choice (compound) reaction-time task can
be modeled in a manner equivalent to Link’s (1975) by taking as the RW the
difference of the two individual right and left walks considered here (see Figure
4.14).

The point of this discussion is not to provide a definitive model of trade-offs in
multistimulus go/no-go reaction times, but to demonstrate a particular class of
ideal detectors (RWM:s) that exhibit trade-offs similar to those of the subjects in
Posner et al.’s combined task. In the RWM, a loss of information quality is
represented as a slowing of the random walk—it takes longer to accumulate the
same amount of information. The attentional question is: When subjects monitor
two locations instead of one, do they show more of a performance loss than the
simple RWM predicts—a loss that must be described as a slowing of the walk
rather than merely an adjustment of the response thresholds? Obviously, this is a
very difficult question to answer—so difficult, it suggests that the concurrent
task analog to Posner er al.’s (1978) experiment should be reconsidered—the
concurrent task requires no model for its interpretation.

Conclusion To study attention (the allocation of processing resources) without
the burden of a model, use concurrent tasks and abhor compound tasks. To study
decision making under uncertainty (the otpimal compromise between incompati-
ble goals when the incoming data are noisy or incomplete), compound tasks are
appropriate. Optimization theory (POCs, iso-utility contours, etc.) is applicable
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in formally similar ways whether the problem is resource allocation (concurrent
tasks) or noise (compound tasks).

Speed—Accuracy Trade-Off (SATO)

Consider the following kinds of reaction-time experiments. On each trial, a
subject is presented a stimulus that he or she must classify into one of two (or
more categories) as quickly as possible. For example, the subject may be shown
a letter string and asked to press a reaction key with the left hand if it is a word or
another key with the right hand if it is not a word (lexical decision task; Rubens-
tein, Garfield, & Millikan, 1970; Rubenstein, Lewis, & Rubenstein, 1971a,
1971b). Or the subject may be asked to classify as red or green a colored patch
that has an irrelevant color name written on it (Stroop effect; Stroop, 1935;
Kahneman & Treisman, this volume). Or the subject may be asked to classify
stimuli by means of a card-sorting task, placing cards as quickly as possible into
different piles according to category. Note that all these tasks are compound (not
concurrent) tasks; the subject is presented only one of the possible stimuli and
makes only one of the alternative responses on any one trial.

In all reaction-time tasks, subjects typically have been asked to respond as
quickly as possible while making as few mistakes as possible. These are clearly
incompatible goals; subjects could go faster by accepting more mistakes, or they
could reduce errors by increasing their reaction times. The ambiguity of the ‘‘fast
and accurate’’ instruction is well known: and, in contemporary experiments, the
subject is rewarded according to a well-specified payoff matrix for quick correct
responses and penalized for errors.

In addition to the straightforward, classical reaction-time procedure two varia-
tions should be considered: the deadline procedure and the Reed—Wickelg-
ren—Dosher cued-response procedure. In the former the subject is given a time
limit (the deadline) within which he or she must respond in order to avoid an
explicit penalty (Fitts, 1966). In the Reed-Wickelgren—Dosher cued-response
procedure (Dosher, 1976; 1981; Reed, 1973; Wickelgren, Corbett, & Dosher,
1980); a “‘respond now’’ cue follows the stimulus with a variable delay, with the
subject having to respond within a brief interval (deadline) thereafter.

To induce the subject to respond more quickly in the three procedures (classi-
cal reaction-time, deadline, and cued-response), the rewards for fast responses
and the penalties for slow responses are increased, the deadline is shortened, or
the delay of the response cue is decreased. To induce the subject to be more
accurate, the penalty for errors is increased, the response deadline is increased,
or the delay of the ‘‘respond now’’ cue is incréased. Thus, given precisely the
same stimuli, subjects can be induced to be either fast and inaccurate or slow and
accurate. The range of performance of which a subject is capable defines his or
her speed—accuracy trade-off (SATO).
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Figure 4.15 A speed-accuracy trade-off (SAT) in a two-alternative reaction-time experiment with
various deadlines. The abscissa is the speed (zero minus reaction time), and the ordinate is the
probability of a correct response. Iso-utility contours are illustrated for a deadline of 300 msec,
corresponding to the rightmost data point. They are equally appropriate for a cued-response pro-
cedure. (Data are computed from Pachella and Fisher, 1972)

Example of a Speed-Accuracy Trade-off and Utility Function A typical
SATO is illustrated in Figure 4.15. Data are from a two-choice reaction-time
fexperiment (Pachella & Fisher, 1972) with deadlines of 300, 400, 700 msec, and
infinity. Both accuracy and speed are averaged over all responses; accuracy is
rcprese.nted by the proportion of correct responses, and speed is represented by
Z€ro minus the mean reaction time. Notice that good performance (fast, accurate)
is again represented up and to the right. Whenever payoffs are defined in terms of
individual responses rather than in terms of averages over a session, to represent
the utility functions along with the SATO on a graph of accuracy versus speed
requires additional information about the distribution of individual reaction times
and errors. However, for the deadline or cued-response procedures, the form of
the l{tility function is so simple that it will not be much influenced by the
re'actlon-time distribution. A representative utility function!® is illustrated in
Figure 4.15. Utility is proportional to the number of correct responses, with a
very high penalty for late responses (i.e., responses that exceed the deadline in
the deadline procedure or that fall beyond the “‘respond now’’ deadline in the

19Pachella and Fisher (1972) used a tone to indicate to subjects that they had responded within the
dead.line and visual feedback (an arrow) to indicate the correctness of their response, but they did not
explicitly assign values to the various outcomes of the trial. At least some of their subjects failed to
follow instructions to be as accurate as possible; responding far in advance of the deadline, presum-
ably because of an incorrect (but quite natural) assumption that quicker reaction times were better
th.al'l slow ones or (equivalently) because of impatience. Therefore, the right halves of the actual
utility functions in Figure 4.15 are not quite horizontal. The data in Figure 4.15 are derived from

Pachella and Fisher’s measure of information transmitted by assuming complete symmetry between
alternative responses.
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“‘respond now’’ procedure). A high utility is achieved by combining high ac-
curacy with a very small fraction of late responses. Responding sooner than
required yields no additional award; thus, the iso-utility contour is horizontal for
short reaction times. A small increase in late responses must be compensated by
a large increase in accuracy; thus, the iso-utility function is almost vertical near
deadline time (in the deadline procedure) or the cue plus deadline time in the
cued-response procedure.

In all nonpathological cases, the POC is concave down, the iso-utility contour
is concave up, and the two curves are tangent to each other at the optimum point.
In the deadline and cued-response procedures, the corners of the iso-utility
cantours (where the tangent point will be) tend to be almost vertically above each
other; demonstrating the overriding importance of speed (relative to accuracy) in
determining the operating point on the SATO.

According to optimization theory—even with the ordinary, ambiguous ‘speed
plus accuracy’’ instruction—the subject operates at the optimal point on his or
her SATO; with ambiguous instructions, the optimum is determined by the
subject’s implicit utility function. Insofar as different points on a SATO can be
measured, the reasoning just described can be reversed and the tangent relation
between the SATO and the iso-utility contour can be used to discover the shape
of the subject’s implicit iso-utility contours.

Finally, it should be noted that multiresponse reaction-time experiments can-
not be represented completely in a single, one-dimensional SATO. For example,
the speed and accuracy of particular response alternatives can be varied inversely
even as overall performance remains relatively unaffected—the problem to
which RWMs are addressed. However, in symmetrical situations, where the
difficulty and payoffs for the various alternative responses in the compound task
are approximately equal; the SATO as defined here has interesting and useful
properties—some of which are considered in the next section.

Strategy Mixture in Operating Characteristics

On all the operating characteristics considered so far, a strategy is defined as
the choice by which a subject or an economy arrives at a particular point on the
operating characteristic. In attendance theory, strategy is the choice of class-
room-switching time; in signal detection theory, it is the criterion above which a
sample will be called a ‘‘signal’’; in attention theory and economics, it is the
choice of how to allocate resources between competing tasks or industries; and in
speed accuracy trade-offs, it is the choice of speed and accuracy level (which,
according to random walk theory, is mediated by the choice of boundaries—see
Figure 4.14). Consider two strategies, S, and Sy, represented by two distinct
points a, b on an operating characteristic (Figure 4.16b). Suppose on some
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Figure 4.16 () Six Performance Operating Characteristics: (AOC) Attendance: (ROC) Receiver,
(DOC), Discrimination or Decision; (AOC) Attention; (RT) Reaction Time Trade-off; (SATO) Speed
Accuracy Trade-off; and (PF) economic Production Possibility Frontier. (b) Close-up view of a
curved segment of an operating characteristic—the points a and b represent performance achieved by
Strategies S, and Sy, and the point x represents performance on a mixture of occasions on which S,
and Sy, are used, with S, being used on a fraction (o) of occasions and Sy on the remaining fraction (1
- a) of occasions.

fraction (o) of the trials, the subject uses Strategy S, and on the remaining
fraction (1 — o) of trials used Strategy . The observed performance x would lie

along the straight line connecting Performances a and b. The distance from b to x
is proportioned to «; that is,

x-bl_ «
la-x| 1T-a

and of course x = a for a = 1.

The property of strategy mixtures, that they lie along the line connecting them
in a POC graph, can easily be generalized: The net result of a mixture of
strategies is a point that represents the center of gravity of the mixture. That is,
letS,, S, . . ., Syrepresent N strategies each of which produces a performance
on each of M tasks (P,, . . . 2Py oo Ppyy)-Lete,0=0,and 3N ;=1
represent the proportion of trials on which strategy S is engaged. Then the
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mixture of strategies S = Za;S; produces the performance P ., P,., . . . , Py,
where

N
(Pl,,Pz.,...,PM.)z zaj(P|j1P2j9'-')

Jj=1

= CP,;, 2Py 0 . . 1)

1j?
Primarily, the interest here is in mixtures of just two strategies; so, higher
dimensional generalizations can be dispensed with, and the equation can be
simply summarized as: The mixture of two strategies lies on the straight line
connecting them.

Contingency Analysis: Attendance Example

To explore the properties of strategy mixtures, consider an extreme attendance
example. Two courses are offered at precisely overlapping time periods, for
example, noon until 1:00 p.m. Suppose a student attends only Course 1 (S,). The
student’s performance is perfect on examinations for Class 1, and zero for Class
2. Another student who attends only Class 2 (S,) has perfect performance for
Class 2, and zero for Class 1. To produce an equal mixture of the strategies
(S;A2), a third student flips a fair coin each day before class to determine which
class to attend. The third student’s performance with §,,, is 50% on examina-
tions for each course. On the other hand, a fourth student attends Class 1 from
noon to 12:30 and Class 2 from 12:30 to 1:00-—a pure strategy. The fourth
student also scores 50% on each class’s examinations. How can the third stu-
dent’s mixture of strategies be discriminated from the fourth student’s pure
strategy?

When a POC is strictly concave, then a mixture of strategies lies on a straight
line away from the curved POC. Insofar as an intermediate point y on a POC lies
above the line representing the mixture of its neighbors (a and b) it cannot
represent the mixture of strategies that gave rise to a and b but represents a new
strategy. This procedure can be generalized. Suppose it is established that at least
N straight-line segments are required to generate a curved POC. Then there are at
least N + 1 different strategies. In the limit (for example, in the usual signal
detection case with normal distributions assumed for noise and signal plus noise
and with a continuously variable criterion), an infinite number of strategies is
assumed.

The problem with using the shape of the POC to infer the number or existence
of possible intermediate strategies is that it is a statistically weak test when the
POC is not very curved, and it is useless when the POC is straight (as it is in the
classroom example just described). Nevertheless, a strong differentiation of the
mixed and intermediate pure strategy is possible by considering joint perfor-
mance on the two tasks. Consider the examination questions asked about the
material covered on a particular day in each classroom. For simplicity, assume
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Figure 4.17 Contingency analysis of strategy mixture in a classroom attendance example. (a)
Representation of information being offered in two classes scheduled at precisely the same time. (b)
Contingency table representing the joint probability of answering two examination questions cor-
rectly. Question 1 is drawn at random from material offered in Class 1 and Question 2 from material
offered in Class 2 on the same day. W and R represent wrong and right answers, respectively. It is
assumed that if the student was in the classroom at the time the material was presented, he or she
would answer the examination question correctly. (c) Representation of a (pure) strategy in which, on
" each day, a student switches from one classroom to the other midway through the class period. (d)
Contingency table for the strategy in (c). (¢) Representation of a mixture of strategies in which a
student attends either one class or the other on each day (i.e., the student switches from Class 1 to
Class 2 either in the first or at the last instant of each class). (f) Contingency matrix for the mixed
strategy in (e). .

that just one question is asked by each instructor. There are four possible out-
comes of the joint response to these questions: A student can correctly answer
both, neither, or one question from either one of the two classes. These outcomes
are represented in the 2 X 2 contingency table shown in Figure 4.17a and b. In
the mixed strategy, in which the third student attends all of one class or the other,
the student always answers the question from the attended class correctly and
fails the other question. Over the whole examination with questions asked about
many days, the student’s performance will average out to 50% in each class, but
the student never answers both or misses both (Figure 4.17 e and f).
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On the other hand, if it is assurned that instructors construct their examination
questions independently and that they are equally likely to probe information
offered in the first half as in the second half of the class period, then the fourth
student (who switches classes halfway through the period) is as likely to answer
any examination question as any other. This student’s pure strategy results in a
contingency matrix in which all cells have equal probability. Thus, the pure
strategy results in a contingency matrix in which there is statistical independence
and zero correlation between the two performaances. The mixed strategy results
in a contingency matrix with statistic dependence and maximum negative cor-
relation. In summary, the classroom example shows that a pure and a mixed
strategy can be powerfully discriminated even when they fall on precisely the
same point of a POC.

Generalized Mixtures of Statistics

The preceding argument can be generalized somewhat: The mixture of two
strategies results not only in a mixture of the probabilities of a correct response in
each strategy, but also in a linear combination of all the statistics that character-
ize the two strategies being mixed. In the classroom example, there was a matrix
characterizing each component (S, S,) of the mixed strategy; the mixed strategy
itself was characterized by the mixture (combination) of the matrices characteriz-
ing the components (Figure 4.17). Strategy mixture is mixture indeed.

Strategy Mixture in Attention Operating Characteristics

The AOCs (Figure 4.14) reported by Sperling and Melchner (1978a) are
nearly straight lines. The extreme strategies are ‘‘give 90% of your attention to
the inside’’ and ‘‘give 90% of your attention to the outside,’” respectively. The
equal attention strategy is near the midpoint of these extremes. One may ask, can
the contingency matrix tell us whether the ‘‘equal attention’’ strategy is a pure
strategy (attention sharing) or whether it is a mixture of switching between the
extremes.

The answers differ a little for the different task combinations: In no case are
the data powerful enough to reject the switching (mixture) hypothesis; the shar-
ing hypothesis can be rejected for concurrent search for large and for small
targets, and for concurrent search for numerals and for letters. For the concurrent
search of noise-masked and normal numerals, performance is so close to the
independence point that the mixed strategy and pure strategy predictions of the
equal-attention matrix do not differ enough to make a discrimination feasible.
Although mixture cannot be rejected for any individual subject or condition, all
the data deviate somewhat from the pure mixture predictions in the direction of
sharing. Thus, the most likely conclusion is that strategies entering into the
mixture in the equal-attention conditions are not quite as extreme as the strategies
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Figure 4.18 (a) Representation of a threshold in signal detection theory. The decision criterion ¢
cannot be moved to the left of the point on the abscissa indicated by T. Shaded area indicates
forbidden criteria. Of course the observer can always respond ‘‘signal’” even without observing the
stimulus; this is represented by a criterion at a. A response of ‘‘noise’’ to all stimuli is represented by
a criterion at b. In (b) the decision operating characteristic (DOC) representation of the three decision
criteria (a, b, and ¢) in (a) is shown. The shaded area indicates portions of the DOC along which
threshold theory asserts no pure strategy can exist; performance within the shaded area is achievable
only by strategy mixtures.

employed in the give-90%-of-your-attention conditions. In other words, there are
more than two strategies: Equal attention is achieved by switching between
strategies that allocate more resources to one or the other class of target, but not
such an extreme allocation as is the case with the instruction, ‘‘give 90% of your
attention”’ to one class of target.

Strategy Mixture in Signal Detection Theory

The threshold model is the most common source of the (implicit) assertion of
strategy mixture in signal detection experiments. Essentially, an observer thresh-
old means that the subject cannot adopt the full range of criteria; small values of
nor s + n on the subject’s ‘‘internal sensory continuum’’ are all treated alike
(Figure 4.18). Whether this is due to a decision criterion that cannot normally be
induced below the high threshold or whether it is due to a sensory process that
simply transmits the value zero whenever the summed value of input plus pro-
cess-noise falls below the threshold is immaterial for the present analysis. The
~ net outcome is that the DOC would have an interruption (shaded area, Figure
4.18b) unless the subject employed a mixture of strategies to bridge the gap
between the strategy, ‘‘always say ‘signal,’”’ and the strategy, ‘‘say ‘signal’ if
the decision variable is above threshold.”’

In its strongest form, threshold theory also asserts that all signals above thresh-
old are treated alike—for the purposes of detection, that is, the unshaded area of
Figure 4.18b between b and c also is forbidden. The strong form of high thresh-
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old theory is an assertion that the DOC consists of three points derived from pure
strategies: two degenerate extremes and one intermediate point. All other points
that may be observed on a DOC are based on strategy mixtures that liec on the
straight-line segments connecting pure strategies. More complicated forms of
threshold models (such as two thresholds: low and high) are equivalent to asser-
tions that the DOC consists of more than two straight-line segments, or of some
straight lines plus some curved sections, etc. Still more complicated models
(e.g., Krantz, 1969), which include both probabilistic thresholds (a stimulus
confusion process) and probabilistic responses (a response confusion process) are
not considered here and, in fact, are better considered in a more general scaling
context (Shepard, 1958). .

Any curve can be approximated by straight-line segments, and smooth
curves—such as DOCs typically are—can be well approximated by very few line
segments. From a DOC alone, it is impossible in practice to distinguish a thresh-
old theory (N pure strategies plus mixtures) from an infinitely variable criterion
theory (only pure strategies). The difficulty arises because the signal detection
experiment is a compound (not concurrent) paradigm. There is only one stimulus
presented on each trial; therefore, there is no possibility of a contingency analysis
such as that which distinguished pure from mixed strategies in the concurrent
tasks of attendance and attention theory.

The Objective Study of Strategy Mixture

Phenomenological Approach To resolve the issue of pure versus mixed strat-
egies in signal detection (and similar compound tasks) requires going beyond the
data that are usually collected. I propose three methods of resolution: phe-
nomenological, mathematical, and experimental. The phenomenological ap-
proach is the simplest: Ask the subjects directly whether they are mixing strat-
egies. This method does not convince skeptics who argue that subjects’ answers
could be uninformed, misinformed, or (worst of all) deliberately deceitful.

Mathematical Approach The proposed mathematical approach relies on confi-
dence ratings: Instead of a simple yes or no, the subject uses one of J (typically, 5
*+ 2) responses ranging from ‘‘certain n,”” to ‘‘probably n,”” to ‘‘certain s’
(Egan, 1975). Consider a mixed-list detection experiment in which, on each
trial, either noise (n) or a signal of intensity i (s;) is presented, and the subject
makes a confidence rating response j. The signal intensity on each trial is chosen
randomly from a set of / — 1 different, nonzero intensity values so that, with
noise, there are I different stimuli. The data consist of the I X J response matrix,
R(j) (the proportion of trials on which stimulus i elicits response j). A row of this
matrix represents the profile (distribution) of confidences elicited by stimulus i.

Let k be the state of the subject produced by stimulus i; for example, k is the
value produced by the stimulus on the subject’s internal sensory continuum.
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Threshold theory asserts that (1) there is a small number K of internal states, and
the probability that stimulus i produces state & is p,(k); (2) each internal state k is
characterized by a profile f,(j) of confidence ratings that the subject produces at
random when the subject is in state k; (3) the observed confidence rating profile
R ()) elicited by a stimulis i will be the mixture of profiles f, that represents the
proportion of times the observer is in state k when i is presented.

K
R() = kE PXGTAG)
=1

Thus, threshold theory is an assertion about the rank of the matrix R. For
example, for K = 3, it asserts that even if the experimenter had used 10 different
stimuli ¢ = 10), the apparently different observed confidence profiles Ryj)
would be derivable from just 3 fundamental profiles f,(j) that represent the K
internal states.

This formulation of threshold theory makes it equivalent to some of the most
studied problems of psychology and mathematics. For example, in test theory,
row i of the matrix (which represented a stimulus) becomes a subject, i. And the
column j (which represented the proportion of times the confidence rating j was
used) becomes a score on Test j. Internal states k become factors f,(j), and K-
state threshold theory becomes the assertion that scores of the subjects on the
various tests are explained by a small number K of factors, for which the loadings
of tests f;(j) and the loadings of subjects p,(k) on the factors are required. From
this vantage point, factor analysis of confidence ratings is an appropriate method
for analyzing internal states, the number of internal states being at least as large
as the number of factors needed to account for the data. Alternative approaches
for deriving the minimum number of internal states in discrete-state models have
been proposed by Bamber and van Santen (1983) and by van Santen and Bamber
(1981), who derive statistical methods (unavailable in factor analysis) for testing
the: models.

With a small but important modification in the confidence rating procedure,
other powerful analytic methods can be brought into play. The confidence rating
method uses an arbitrary number of confidence rating levels that are unrelated,
and uses no explicit correction method to reinforce the subject for using ratings
optimally. Suppose the number of confidence levels is made equal to the number
of stimuli. Then the confidence experiment becomes so nearly equivalent to an
identification experiment that the confidence scale might as well be replaced with
the stimulus names (i.e., their relative intensities). For example, with 9 signals
and noise, the confidence ratings 0, 1, . . . 9 are equivalent to noise followed by
the stimulus names, in order of increasing intensity. The subject does essentially
the same thing whether stating a confidence or stating a belief that some particu-
lar stimulus occurred (Sperling, 1965). The resulting S—R confusion matrix can
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be analyzed, for example, by multidimensional scaling to yield a representation
of the threshold stimuli embedded in Euclidian space (see Sperling, Figure 12, p.
160, in Levitt, 1972). The multidimensional representation does not directly
answer the theoretical question of how many discrete internal states there are, but
it does provide a means of answering many questions relating to discriminability
of threshold stimuli.

Experimental Approach: The Contrived Control Finally, one may study the
subject’s ability to perform in accordance with an N-threshold theory in a case
where the N-discriminable thresholds are not in doubt. That is, two experiments
that should produce equivalent results if the threshold theory were correct are
conducted. The first experiment is the original signal detection experiment, for
example, presentation of either a weak stimulus or noise with equal probability
on each trial. The subject is required to give confidence ratings on a 7-point
scale. Suppose that the analysis by high-threshold theory suggests that the signal
exceeds the high threshold 0.7 of the time, and noise exceeds the threshold 0.1 of
the time.

A control experiment can now be contrived that is matched in all respects to
the original threshold experiment except one: The control has a highly visible
stimulus, say 10 jnds over threshold. The subject would unfailingly detect this
stimulus; so it can safely be assumed that when the stimulus is presented, it
exceeds the subject’s high threshold. Because in the original experiment, the
subject’s high threshold was exceeded on 0.7 of the signal trials, in the contrived
control experiment, the strong stimulus is presented on 0.7 of the signal trials,
and a blank is presented on the remaining signal trials. (A signal trial means that
the subject is told (after responding) that a signal was presented.) On 0.9 of the
noise trials, the blank is presented; and on the remaining 0.1 of the noise trials,
the strong stimulus is presented (to correspond to the subject’s internal state
following a false detection). For equal probabilities of signal and noise trials, this
means that after 0.25 = 0.3/(0.9 + 0.3) of the blanks, the subject is told that the
signal had been presented (to correspond to the misses in the original experi-
ment). After 0.125 = 0.1/(0.7 + 0.1) of the strong stimuli, the subject is told
that noise had been presented. To make this feedback plausible, the subject is
told that the apparatus does not work reliably, and that the task is to base
responses—a confidence level—on what the apparatus had been programmed to
do, not on what it actually did (because the apparatus failures are manifest).

The contrived control experiment yields a subject whose internal states, given
“‘signal’’ or ‘‘noise,”” are known. The subject’s strategy in the use of confidence
ratings, for example, can be studied directly and not merely inferentially. For
that matter, a three-state or even an N-state threshold theory can be mimicked by
an appropriately contrived control experiment with three or with N highly dis-
criminable stimuli. Insofar as subjects behave similarly in contrived control
experiments and in the actual signal detection experiments, it substantiates the N-
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state threshold models; insofar as subjects are unable to maintain the complex
strategies ascribed to them by the N-state theorists, it defeats such N-state mod-
els. In either case, these procedures provide an objective experimental approach
to the study of strategy and strategy mixtures.

Strategy Mixture in Speed—Accuracy Trade-Offs

The assertion of strategy mixture in SATOs comes most commonly in the
guise of the fast-guess model. This model applies, for example, to two-choice
reaction-time experiments in which the subject is presented on each trial with one
of two alternative stimuli and is required to make the corresponding one of two
responses as quickly as possible. For example, in Ollman’s (1966) and Yellott’s
(1967, 1971) theory, the subject is asserted to respond to the stimulus with a
normal reaction time on some fraction 1 — o of the trials, and on the remaining
trials « the subject responds as quickly as possible (simple reaction time) accord-
ing to a predetermined guess at what the stimulus might be. On fast-guess trials,
the subject is correct with only chance accuracy (p = 0.5) but with very short
reaction times; on the remaining trials, the subject has long reaction times and a
correspondingly higher percentage of correct responses. When the experimenter
demands from the subject an even lower average reaction time, the subject
complies by increasing the proportion o of fast guesses.

The fast-guess model is equivalent to the assertion that the SATO is composed
of a straight-line segment the end points of which represent the two strategies,
the honest strategy and the fast-guess strategy. An alternative hypothesis to fast
guess would be that the subject chooses a pure strategy appropriate to each
payoff matrix—a process that could be modeled, for example, by boundary
changes in a random walk model. This alternative strategy might generate either
a curved or a straight-line SATO. As in all the previous cases, it is not efficient to
discriminate pure from mixed strategies by close examination of the curvature of
the operating characteristic. In the case of the SATO, associated with each point
on the SATO are not only the mean reaction-time and mean accuracy (which
define the point), but also two reaction-time distributions—one for correct re-
sponses and one for errors.2® The fast-guess model not only requires the SATO
to be a straight line, but also requires the reaction-time distributions associated
with each point to be a mixture of the reaction-time distributions associated with
the extreme points. This is a powerful test to discriminate between strategy
mixtures and pure strategies?! that is formally similar to the test for mixture of

20In the case of unsymmetric stimuli or responses, there are even more reaction-time distributions
to be considered; but that is beyond thie scope of the present treatment (see, for example, Link and
Heath, 1975).

2tMixtures of two probability density functions p(x} = p;(x) + (1 — a)pz(x) have the interesting
property (Falmagne, 1968) that there is at least one value—x,, the fixed point of the random
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strategies in confidence ratings discussed in the preceding. Furthermore, con-
tingency matrices also apply to the SATO. In a pure strategy, reaction speed and
accuracy are uncorrelated or weakly related. In a mixed strategy, however, there
is a strong negative correlation of accuracy with speed exactly analogous to the
negative correlation of performance on Task 1 with Task 2 in the attendance and
in the attention contingency matrices.

Mixed Strategies in Production

Consider the primitive plowshares—swords economy. Suppose it is decided to
devote half of the economy to each goal. Does it make any difference whether on
every odd-numbered day of the year, the whole economy is devoted to agricul-
ture, and on every even-numbered day, the economy is devoted to defense
production (mixed strategy) versus the case in which on all days, the resources
are divided in half and equally devoted to each goal (pure strategy)? Certainly!
The pure strategy is far more efficient in terms of the production facilities
needed. But even if production facilities were not at issue and only the availabili-
ty of labor was, it would still be more efficient to divide labor equally on every
day than to alternate days. The reason is that if even one laborer were more
efficient at making plowshares than swords, it would be efficient to assign this
laborer to the task for which he or she were better suited. By similar reasoning
regarding any resource, a pure strategy is preferable whenever resources are not
completely equal and interchangeable with respect to the economic goals. This is
the line of argument used previously to demonstrate that economic production
possibility frontiers are always concave toward the origin. A mixed strategy does
not take advantage of the curvature; it always lies closer to the origin and is of
lower utility than the corresponding pure strategy (Figure 4.16b). There is inher-
ent superiority in a pure strategy—optimal for the situation—over a mixture of
less than optimal strategies.

Given the economic superiority of pure over mixed strategies, it is pertinent to
ask, What limitation in allocation of mental processing resources prevents the
utilization of pure strategies in human divided attention tasks? One possible
answer is that there is a single processor or process involved in concurrent tasks,
and that there is a changeover delay incurred in switching this resource from task
to task. Switching the resource within a trial produces unacceptable costs. An
analogous problem occurs in computer time-sharing systems in switching from
one user to another. There is an overhead cost (time and memory) incurred in
swapping a second user’s program into the central processor unit (CPU), and the

variable—for which the associated probability density does not change as the mixture ratio « varies.
Whenever this occurs pi(xg) = po(xg). The existence of a fixed point in probability distributions is
analogous to a fixed point in the absorption spectra of a putative mixture of two chemicals formed,
for example, by decomposition of one into the other.
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first user’s program out into a buffer until it again gains access to the CPU.
Trying to divide time too finely results in too many swaps per second with a
corresponding, disproportionately high overhead cost. In the limit, no useful
work is accomplished—only swapping is achieved. Changeover costs have some
interesting consequences in other economies as well; these are considered in the
next section.

Path Dependence in Performance Operating
Characteristics

Path Dependence in Classroom Attendance

The simplest situation in which to discover effects of changeover costs is the
classroom example. Suppose that when a student was ready to run from Class 1
to Class 2, the second class were located not in an adjacent room but in a
different building, and the trip between classes would consume 5 minutes. Clear-
ly, there would be no point in switching from Class 1 to Class 2 unless the
information being offered in Class 2 were so much more valuable that it could
compensate for the lost time.

The effect of a changeover cost is to maintain the status quo. The student
remains in the present classroom, even when another class would be slightly
more useful, because the additional utility is insufficient to compensate for the
changeover cost. The student’s presence in current classroom reflects not only
the current utility of the competing classes, it also reflects the past history that
brought the student to the class in the first place. A class that was useful in the
recent past holds students even after its utility has slipped below that of its
competitors. This phenomenon is called path dependence. It is ubiquitous in
psychology, although only since the 1970s has it begun to be appreciated outside
the realm of clinical psychology. It is sometimes referred to as hysteresis—a
reference to the electromagnetic phenomenon in which a magnetic substance
tends to retain its previous magnetic orientation even after an oppositely directed
external magnetic field has been applied, a field that—had the previous magnetic
orientation been neutral—would have been sufficient to induce a change. Of
course, hysteresis can be overcome; it simply requires a stronger external mag-
netic field. Energy is lost in a hysteresis cycle related to the amount of path
dependence, with no energy being lost when there is no hysteresis (see Figure
4.19a). The classroom dilemma is analogous. Students can be induced to switch
classes, provided the required differential benefit is sufficient to overcome the
cost. The classroom-switching cost—lost information during changeover—is
somewhat analogous to lost energy in hysteresis. (A better analogy with magnet-
ic hysteresis is the loss in information due to the student’s being in a nonoptimal
classroom (see Figure 4.19b). When classes are adjacent and there is no
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Figure 4.19 Examples of path-dependence. In (a), hysteresis in a piece of magnetized iron is
shown. The electric field is initially neutral (open circle) and then varies back and forth between a
and b, indicated on the abscissa. The ordinate indicates the induced magnetic orientation of the
microcrystals in the iron. The curved arrows indicate the flow of time. In (b), hysteresis in the
classroom is shown. Two courses are offered; the ratio of their utility to the student w(Class
2)/u(Class 1) is varied periodically during a very long class period. Initially (open circle), the
inexperienced student is midway between classes. As the information being offered in Class 2 is
becoming more valuable than in Class 1, the student runs to Class 2 and remains there; subsequently,
Class 1 becomes more valuable so the student runs to it; when the utility of Class 1 subsides, the
student returns to Class 2; etc. Information is completely lost during transit (heavily shaded area) and
partially lost during the time the student lingers in the less informative class (clear center rectangle).
In (c), the classroom strategy of the upperclassman is shown. Being smarter than an iron crystal or a
freshman, this student anticipates the future course of events. When in Class 2, as its utility dimin-
ishes, he or she leaves while it is still more valuable than Class 1, knowing that by the time of arrival
in Class 2 the relative utility will have reversed. This student loses information only as a result of
transit (shaded area), never by being in the wrong classroom. In (d), the catastrophe theory represen-
tation of the events in (b) is shown. The upper surface represents Class 2, the lower surface Class 1.
The abscissa represents the control parameter, the utility ratio u(Class 2)/u(Class 1). When u is varied
and a fold in the surface is reached, the student cannot reverse direction. So, the student jumps to the
other surface and continues there. The jump is the ‘“catastrophe’’ of catastrophe theory.
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changeover delay, there also is no path dependence, no hysteresis, and no lost
information. The student’s strategy at any and every instant of time can be
optimal for that instant.

There is an interesting heuristic representation of path-dependent effects in
catastrophe theory (Thom, 1975a; 1975b; Zeeman, 1976). The student’s current
classroom may be thought of as the dependent variable, which is under the
control of an independent variable—the utility ratio of the material offered in the
two competing classes. As the utility ratio changes, the state changes—as de-
scribed in the preceding and as illustrated in Figure 4.19d. The *‘catastrophe’’
occurs when the student switches from one surface (classroom) to the other at a
fold in the surface. A useful aspect of the catastrophe theory representation is that
all possible equilibrium states and the relations between them are clearly shown.
A limitation of the catastrophe theory representation is that neither the dynamic
aspects of the situation nor the underlying processes are represented. By itself, a
catastrophe theory representation is an insufficient description of a dynamic
system (Sussman & Zahler, 1978).22

Path Dependence in Economics

I do not know of an analog to changeover costs in signal detection theory; but
in economic theory, changeover costs (obviously) are extremely significant. For
example, according to the preceding argument, it would be expected that as
demand for small cars began to grow in the 1970s, the American automobile
manufacturers would have continued to make too many large cars because of the
retooling expense and risks involved in changing over from the manufacture of
large to small cars (see Figure 4.19b). In fact, contemporary economic decisions
seldom can afford to wait until they are caused by events themselves; almost
always, it is the anticipation of predicted events and of trends that drives eco-
nomic decisions (see Figure 4.19c). The incorporation of expectations into eco-
nomic theory so complicates the theory that it can hardly serve as a simple
illustrative example. Whether automobile manufacturers retooled early or late
depended on their expectations of future market forces. Because it is not known
what these expectations were nor how they were derived, the automobile retool-
ing problem is hardly the simple changeover analogy that it superficially appears
to be. .

Path Dependence in Attention

The moral from economics for the study of human attention is that sophisti-
cated performance requires correspondingly sophisticated theory. Sperling and

22See Sperling (1970b) for illustrative examples of the relations between path dependence and
multiple stable states. See Sperling (1981) for the relation of catastrophe theory to the just-discussed
phenomena and for references.
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Figure 4.20 Path-dependence in a partial report experiment. Accuracy of partial reports for 10
blocks of trials conducted in one session. Arrows indicate the sequence of blocks. Bar at right
indicates accuracy of whole reports. Stimulus exposure is indicated at lower left. Descending cue-
delay series (open circles) corresponds to the strategy, *‘attend equally to both rows’’, and ascending
series (closed circles) corresponds to the strategy, *‘attend primarily to the top row.”’ The loop is not
closed at the left in these data because the session ended; but from other data, it is clear that with
continued exposure to prior cues (—0.10 seconds) the subject will switch to ‘‘equal attention,”’ that
is, jump to top curve. (Subject ROR from Sperling, 1960.)

Melchner’s (1976, 1978b) observation that visual attention tended to be switched
rather than shared suggested that there was a single, serial central processor that
avoided switching between tasks within a trial in order to avoid the changeover
cost; and thus, within a trial, the processor was devoted almost entirely to one
task or the other. The single processor hypothesis is the most ubiquitous theory
of attention. However, in this instance, it is too simple and leaves too many
questions unanswered. How does one account for the imperfect but nonetheless
substantial performance on the secondary task? Further, in follow-up experi-
ments in which different sizes of targets occurred in the same or in nearby places,
Sperling and Harris (Note 4) failed to find significant effects of attention instruc-
tions; performance was at the independence point. A similar result is reported by
Hoffman and Nelson (1981). In case it is not already obvious, the reader is
reminded that not all questions are answered in this chapter.

Rather than close this section on a question, it seems useful to remind the
reader that path dependence between trials has an honorable, but sporadic, histo-
ry in the experimental psychology of attention under the pseudonyms of ‘‘set’
and “Einstellung.”’ In the realm of the examples of visual attention discussed
here, for example, Sperling (1960) exhibited data from a subject with textbook
hysteresis who failed to switch soon enough between ‘‘equal attention’’ strat-
egies and ‘‘guessing’’ strategies as the conditions favoring one or the other of
these strategies were gradually altered between blocks (Figure 4.20). Figure 4.1
showed this subject earlier in training using a single (pure) strategy.
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Figure 4.21 A two-dimensional strategy covers an area in operating space. (a) Three classes that
draw on precisely the same resource pool. In an extension of previous examples, the density of
information offered in each class (ordinate, INFO) is allowed to differ although the three information
density functions differ only by a scale factor. (b) The amount of information a student acquires from
Class 1 and Class 2 as the classroom-switching time from Class 1 to 2 is varied (the student also
spends some units of time, indicated as the parameter, in Class 3 during which the student attends
neither Class 1 nor 2). '

Single and Multiple Resources

Single-Resource Pool

Multidimensional Strategies In the attendance analogy, a single-resource pool
is exemplified by a set of competing courses offered at a particular time (e.g.,
noon to 1:00 p.m.) in all of which there is the same temporal distribution of
information. Thus, all the competing courses use the same resource pool (the
time from noon to 1:00 p.m.) with the same effectiveness, except possibly for an
arbitrary scale factor that reflects the fact that performance measurements in
different tasks may be incommensurate (Figure 4.21a). If the distribution of
information over time fr) were not uniform, it would be possible to monoton-
ically transform time from seconds into new units—resource units—which have
the property that s of the daily lesson is covered in each resource milliunit.
Insofar as a student’s performance in a course is directly proportional to the
number of resource milliunits for which the student has attended that course (the
only assumption so far), it is trivial to compute performance when the student
divides the total time between N classes. We simply add up the milliunits spent in
each classroom i to determine the performance P; in that class.

4. Attention and Signal Detection 167

Dimensions The dimensionality of operating space equals the number of inde-
pendent performance measurements. In nearly all the examples of this chapter,
performance was measured on two tasks and operating space was two-dimen-
sional. In the three-class example of Figure 4.21, operating space is three-
dimensional. In two-alternative choice reaction-time experiments, operating
space is four-dimensional (two speeds, two accuracies), although only the most
significant two of the four dimensions have been considered in this chapter.

The trade-off between performance on two tasks—determined by a single
decision criterion or a single resource-allocation parameter—is one-dimensional,
a line—the POC—in two-dimensional operating space. When there are two
independent strategy decisions, as in the allocation of time to three overlapping
classes, the POC is a two-dimensional area in operating space—a plane in this
example. Figure 4.21b illustrates various possible POCs as one strategy is varied
and the other is held constant. When two strategies both vary as a consequence of
an experimental manipulation, the experimentally determined POC can be al-
most any regular or irregular curve, being restricted only to lying on the POC
surface, (e.g., the right triangle in the bottom left of Figure 4.21b).

Nonlinear Resource~Performance Function A slightly more complicated, re-
alistic condition in which performance is monotonic with—but not directly pro-
portional to—the number of resource units is represented by a nonlinear re-
source—performance function. These are the considerations introduced by
Norman and Bobrow (1975) in their resource—performance function. For exam-
ple, suppose the instructor tends to repeat material at random intervals. If it is
assumed that listening to the repetition is wasted time, the student’s performance
increases slower than a linear function of milliunits because repetitions become
more probable the more class units are accumulated (Figure 4.22). With repeti-
tion permitted, the marginal utility of a milliunit of class participation is a
positively decreasing function of the amount of participation already accumulat-
ed. This assumption leads to a curved AOC.23 The monotonic but nonlinear
increase of performance with resource milliunits of participation is dealt with by
several analytical methods, most notably conjoint measurement (Krantz, 1969)
and monotonic analysis of variance (Carroll, 1972; Kruskal, 1965). These derive
the nonlinear resource~performance transformation and ferret out the underlying
additive structure in resource milliunits. In conclusion, when there is only one

23]f the instructor repeats material between classes (on different days) as well as within a single
class period, even the mixture of strategies would not be represented as a straight line. This would
correspond to dependent trials in attention or in signal detection experiments. Although dependent
trials do occur in psychophysical methods such as in the method of limits or in threshold tracking, the
discussion here is confined to independent trials or, equivalently, independent topics covered in
different class periods.
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Figure 4.22 Consequences of a nonlinear resource—performance function. (a) Two classes are
offered at precisely the same time. In (b), the resource—performance function in which an instructor
repeats himself or herself within a class period is shown. When the student attends the entire class
(attendance is 1.0), the performance also is 1.0. If the class were longer, performance would
asymptote at the dashed horizontal line. In (c), the Attendance Operating Characteristic generated as
classroom-switching time c varies is shown. When the student mixes two strategies, switching some
days at ) and other days at c,, the student’s performance lies along the straight-line segment w
(within-day repetition). If the instructor were equally likely to repeat material between days as within
a day, the mixed strategy would actually lie along the segment b because the whole term would be, in
effect, one long class period rather than a sequence of independent periods or trials. In (d), a third
class is offered at precisely the same hours as the first two. If the student did not attend Class 3, the
POC for Class 2 versus Class 1 will be unchanged from (c) as indicated by the POC labelled *0”’. If
the student’s participation in Class 3 increased (the curve parameter in (d), the POC would become
straighter and be shifted toward the origin.

underlying resource pool shared in the same relative proportions by all the
competing tasks, then, with linear resource—performance functions, description
is perfectly straight forward; with nonlinear resource—performance functions,
adequate methods exist for discovering and describing this situation.

Multiple-Resource Pools: Substitutability and Interference

Consider two tasks, Task 1 and Task 2. Let u(r) be the utility of the resource 7
for Task i. For example, in the attendance example, a resource r is a particular
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time interval [z, #,]. In the single-resource pool, the utility ratio u,(r)/u,(r) is
exactly the same for all ». In the multiple-resource pool, u,(r)/u,(r) varies with
r—the situation considered in most of the previous examples of this chapter.
How can the existence of multiple-resource pools be demonstrated formally.

Demonstration of Multiple Resources As has been shown in the previous
sections, curvature of the POC is not a sufficient condition for concluding that
there are multiple-resources; curvature could result from a'nonlinear resource—
performance function.

The most direct demonstration of multiple-resource pools is by way of an
interaction involving the differential effect of a third task on performance in the
first two tasks (see Wickens, Chapter 3, this volume). An excellent analysis and
totally different kinds of examples are provided by Rachlin, Green, Kagel, and
Battallo (1976) and Rachlin and Burkhardt (1978). Consider a rat given access to
a dry solid food S1 and a liquid food L1. The rat spends, let us say, an equal
amount of time consuming S1 and L1. Eating and drinking, respectively, can be
regarded as two tasks, and consumption time as the dependent performance
variable similar to a performance in attention or in classroom attendance tasks.
The food and liquid dispensers are at different locations so the rat cannot simul-
taneously eat and drink; it has to choose to perform either one ‘‘task,’’ or the
other, or neither. When a second solid food S2 (a third task) is introduced, it
interferes with consumption of S1 but not with L1. Similarly, a second liquid L2
interferes with consumption of L1 but not with S1 or 2.

It is hardly news that solid foods and fluids satisfy different appetites. Howev-
er, casting a rat’s motives into formal economic terms was an original and useful
contribution by Rachlin and his co-workers (Rachlin, Batallio, Kagel, & Green,
1981; Rachlin & Burkhardt, 1978; Rachlin, Kagel, & Battalio, 1980). The
subsequent treatment here differs somewhat from theirs. Figure 4.23 illustrates
the three POCs appetite operating characteristics, for food S1 versus liquid L1
with the parameters: no competing task, competing L2, and competing S2. To
generate points along an appetite operating characteristic, the relative amounts of
deprivation (hunger or thirst) are varied. The POCs of Figure 4.23 cross each
other in striking contrast to the POCs of Figures 4.21 and 4.22, which are
parallel. The crossed POCs would require an interaction term in the analysis of
variance, as can be seen from the more usual representation of such data in
Figure 4.23b, and such data defeat any single-factor model.

The key economic concept is substitutability. Two different solid foods can
substitute for each other, but eating and drinking are relatively nonsubstitutable
(Rachlin et al., 1976). Nonsubstitutability was treated earlier in this chapter. It
occurred in the first attendance example (Figure 4.8c) in which a student had to
pass each of two courses in order to graduate. This was contrasted to the case of
grade point average (Figure 4.8b) in which courses are completely substitutable;
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Figure 4.23 A demonstration of performance as a function of utility and interference, specifical-
ly, dry food and liquid consumption as determined by hunger and thirst and by alternative food and
drink. In (a), the abscissa indicates the quantity of a dry, solid food S1; and the ordinate indicates the
amount of liquid (L1) consumed by a hungry and thirsty rat. The open circle labeled zero (0) indicates
that §1 and L1 were the only offerings, the circle labeled S2 indicates a second solid food S2 was
offered along with S1 and L1, and the circle labeled L2 indicates a second liquid (L2) was offered
with S1 and L1. In (b), a conventional representation of the data in (a) is illustrated 1o show
interaction. The abscissa indicates what was being consumed (51, L1), the ordinate indicates the
amount consumed (of L1 or S1), and the parameter indicates the third alternative (zero, §2, L2). In
(c), the appetite operating characteristics is shown. Coordinates are the same as in (a). Animals are
offered §1, L1, and one of 0, 52, or L2 in different sessions. Triangles indicate hypothetical data from

animals that are more thirsty (water deprived) than hungry (food deprived), and squares indicate more
food than water deprivation.

a high grade in one can compensate for a low grade in the other. In the case of
pass—fail, courses are completely nonsubstitutable because both have to be

passed and good performance on one cannot compensate for failing performance
in the other.

Interference In these examples, substitutability is a property of the utility
function. Interference ultimately affects the utility that is achieved, but inter-
ference is best considered at the level of individual performance in each of the
concurrent tasks. For example, in the animal experiments, eating and drinking
interfere with each other in a physical sense; the animal would need two heads at
opposite ends of its body to simultaneously eat and drink. Interference between
two classes has been the point of all the classroom examples; attending one class
totally interferes with attendance at the other. To see the interference effects of a
third class, consider first two classes, one from noon until 1:00 p-m. and the
other from 1:00 until 2:00 p.m. A third class scheduled from noon until 1:00
would interfere only with performance on Class 1; a class scheduled from 1:00
until 2:00 p.m. would interfere only with Class 2; a class scheduled between
12:30 and 1:30 would interfere with both Classes 1 and 2. This last class is
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analogous to a liquid food, such as milk, that depresses both eating of S1 and
drinking of L1.24

Beyond variations in the content of a course itself, the classroom analogy
admits two operations to manipulate the time spent in a classroom: (1) varying
the relative utilities of the courses being offered and (2) varying the particular
assortment of courses offered. These operations are referred to here as varying
utility and interference, respectively. In the case of specific appetites, varying
utility is most easily accomplished by specific deprivation; food has greater
utility for a hungry animal than a sated one. Interference is accomplished by
varying the assortment of foods and activities offered. The interference-gener-
ated data by themselves are somewhat cumbersome, both in collection and in
utilization; so it is preferable to have access to both utility and interference data
in constructing a resource model.

Interference data are probably the most widely collected data in analyzing
mental processing resources. The AOC is an elementary interference method
involving just two tasks. The extension to a full-fledged interference method
would involve additional tasks. In detection experiments, such as Sperling and
Melchner’s (1978a) visual search task for numerals and/or letters, appropriate
third tasks might involve memory loads (items that the subject was required to
maintain in memory for subsequent recall during the search phase of the trial),
irrelevant targets (targetlike items to be. ignored that appear outside of the delim-
ited search area), irrelevant auditory stimuili, etc. The various Stroop phenomena
discussed by Kahneman and Treisman (Chapter 2, this volume) represent ex-
haustive studies of interference phenomena.

For exploiting interference data, factor analysis is an appropriate mathematical

:model. The appetite preference test is analogous to a battery of test items, such as

the component tests of an IQ test. Each combination of competing tasks (e.g.,
L1, S1, §2) is analogous to a subject who has certain traits and abilities (e.g., L1,
S1, S2). The factor analysis attempts to arrive at the minimum number of under-
lying factors needed to represent these abilities (appetites) and test items (foods
and drinks). Even though factor analysis is a far more formidable techitique than
is demanded by any of the data currently available, it is useful to keep the
interference methods and the corresponding analyses in mind when confronting
these data.

24To complete the analogy between specific appetites and classroom attendance, additional as-
sumptions are necessary. For example, assume classes offered between 12:00 and 1:00 are science
classes, classes offered between 1:00 and 2:00 are language classes, and the student must ultimately
pass both a science and a language examination. Assume it matters little to the student’s performance
which particular combination of classes in a category are elected. Science classes (solid food) are
then substitutable for each other as are language classes (liquid foods).
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Measuring the Reaction Time of a Shift
of Attention

Previous sections of this chapter have been concerned with the spatial distribu-
tion of attention during stable periods when the spatial distribution is not chang-
ing. This section is concerned with the dynamics of changing attention and with
the comparison of attentional dynamics to the dynamics of motor responses. The
reaction time of a motor response is the time from the onset of the reaction
stimulus to the onset of the required response. Both the stimulus, for example, a
light flash, and the response, for example, pressing a key, are trivial to measure.
In the case of attention, the stimulus is easy to measure; but measuring the
attention response requires ingenuity. Attention is the allocation of mental pro-
cessing resoyrees; hence, an attention response is a shift in resource allocation.
The shift is not directly observable, but it can be inferred from its consequences.
Because the concern here is with an attention response that involves *‘grabbing”’
an item from a list, the attention procedure is introduced with an analogous
procedure for measuring the reaction time of a motor ‘“‘grabbing’’ response.

Measuring the ‘‘Grabbing”’ Response

Imagine a subject who is seated adjacent to a conveyor belt. on which balls are
passing by while observing a screen on which stimuli are flashed. As soon as a
visual target appears on the screen, the subject reaches through a small opening
that permits access to the conveyor belt and grabs the first possible ball. The balls
are numbered and arranged such that, for example, the ball numbered 1 passes
the opening exactly 0.1 seconds after the target, the ball numbered 2 passes the
opening exactly 0.2 seconds after the target, and so on. From the number of the
ball that the subject grabbed, the reaction time of the grabbing response can be
inferred exactly. Of course, the subject also would know the reaction time.
Imagine a long sequence of trials on which the subject has consistently grabbed
Ball 5. On the next trial, the subject grabs Ball 6 or perhaps even Ball 7. When
the subject is asked the number of the ball, the subject might be ashamed to tell
the truth and might say 5. To keep the subject honest, the numbers must be
scrambled on the balls so that the experimenter can know from the number what
the grabbing time was, but the subject cannot. In fact, a random one of the
numbers could even be omitted on each trial. If the subject ever reported grab-
bing a ball with that number, the experimenter would know immediately there
was a flaw in the procedure.

The subject reports the number on the ball only seconds after it actually was
grabbed. The reaction time of the response, which actually had occurred much
earlier, can be inferred from the reported number. The latency of the subject’s
verbal report has little to do with the latency of the grabbing response; the content
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of the verbal report is what reveals the grabbing reaction time. Obviously, this is
an indirect method of measuring a reaction time. A high-speed film of the
subject’s movements could have been made. From a study of the film, it could
have been determined directly when the subject’s hand first began to move, when
it first made contact with the passing ball, when the ball first was lifted from the
conveyer, and so on. These are direct measures.

In the case of motor reaction times, there is a choice of direct or indirect
measures of reaction time. In the case of attention responses, there is no visible
response—nothing that can be photographed; there are only indirect measures.
On the other hand, little is lost in the indirect measurement. Not only the mean,
but also the variance and, in fact, the whole reaction-time distribution are ob-
tained by the indirect method. The responses are perforce quantized into discrete
times—there are balls passing only every 0.1 seconds—but this is neither a
serious problem nor a necessary aspect of the indirect procedure.

Attention Reaction Time Distributions

To measure the reaction of a shift of visual attention, Sperling and Reeves
(1980)° used the following procedure. The subject maintained fixation on a
fixation mark throughout a trial (see Sperling & Reeves, 1980, p. 349). To the
left of fixation, a target appeared. In one series of experiments, the target was
chosen at random from a letter C, a letter U, or an outline square. The target was
embedded in a stream of distractors (consisting of the other letters of the alpha-
bet) that were flashed briefly, one on top of the other, at a rate of one charac-
ter/218 msec. At the right of fixation, a stream of numerals occurred (one on top
of the other) at either a fast rate of from one numeral/75 msec; or, in other
conditions, at rates as slow as one numeral/240 msec (see Figure 4.24).

The subject’s task was to detect the target in the letter stream and then to report
the first numeral he or she could from the numeral stream. The task implicitly
required the subject to attend to the letter stream until the target was detected and
then to shift attention to the numeral stream in order to grab’’ the earliest
numeral. The identity of the reported numeral is important only insofar as—Ilike
the number on the billiard ball—it indicates the numeral’s temporal position. The
time from the onset of the target to the onset of the named numeral defines the
attention reaction time on that trial. From a block of trials, an entire attention
reaction-time distribution is obtained.

25Many investigators have attempted to measure the speed of attentional processes. Sperling and
Reeves (1976, 1978, 1980) were the first to pose the problem as one of measuring the reaction time of
an attention response, to formally propose the indirect procedure, to use this indirect procedure to
generate the reaction-time distribution of an attentional response, to publish an attention reaction-
time distribution, and to present side-by-side comparisons of attention reaction-time and motor
reaction-time distributions made in response to the same stimuli.
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Figure 4.24 Measuring the reaction time of a shift of visual attention: procedures and typical
results. Stimulus streams are shown at the left. The subject sees only the letters, the fixation dots, and
the numerals. Each row represents a single display, briefly flashed and superimposed on the preced-
ing display. The target letter is a C. The critical set of numerals and the critical reaction-time periods
are indicated. The finger (motor) reaction-time key is indicated by MRT, and the attention-shift
reaction (9) is indicated by ART. Feedback indicates the answer display (first six numerals of the
critical set) shown to the subject after the ART response. The results show the actual observed MRT
distribution and the observed ART distribution (proportion of times a numeral corresponding to each
position is named) for 414 trials in this particular condition; that is, a letter stream rate of 4.6/sec,
target C, and a numeral rate of 9.1/sec, in which report of one letter is tested in subject AR. (After
Sperling and Reeves, 1980, Figure 17.1.)
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There are certain important procedural considerations. In measuring a simple
motor reaction time, for example, the interval between the warning stimulus or
trial initiation and the occurrence of the target is varied randomly so that the
reaction-time experiment does not degenerate into an experiment in time estima-
tion. Moreover, the experimenter cannot simply instruct the subject to *‘respond
as quickly as possible.”” There must be explicit contingencies so that responses
that occur before the target stimulus are punished as premature “‘anticipations,’’
and responses occurring too late are punished for being ‘‘slow.”” The effect of
such restrictions is to define a critical interval within which the response is
supposed to occur, (e.g., from 100 to 800 msec after target occurrence), and to
reward the subject for responding as early as possible within the critical interval.

Similarly, in measuring an attention reaction time, one cannot simply instruct
the subject to name the earliest numeral possible. Rather, a critical interval is
defined; and the subject is instructed to grab the earliest possible numeral from
that interval. As with the motor reaction-time procedure, the beginning of the
critical interval is placed so early that it cannot be achieved by a legitimate
response. An additional complication in the attention reaction-time procedure is
that the numerals within the critical interval, as well as the one or two before and-
after it, are all arranged to be different so that the numeral’s identity unam-
biguously indicates its position in the stream.

Using the motor reaction-time and attention reaction-time methods as out-
lined, Reeves (1977) simultaneously measured motor reaction times and atten-
tion reaction times for 3 subjects in 17 conditions, obtaining a total of over 50
pairs of attention reaction-time and motor reaction-time distributions. A repre-
sentative pair of motor reaction-time and attention reaction-time distributions is
illustrated in Figure 4.24. Although they are measured in completely different
ways—motor reaction time by a direct method and attention reaction time by an
indirect method—they are quite comparable in terms of their mean and variance.
These data are typical of the attention reaction-time procedure when the numeral
stream occurs at a high rate (7/sec or faster); with slow numeral rates, attention
reaction times become shorter than motor reaction times. Attention reaction
times respond similarly to motor reaction times with manipulations of target
difficulty (motor reaction times and attention reaction times get slower for hard-
to-detect targets) or target probability (motor reaction times and attention reac-
tion times get faster as the likelihood of a target increases). The interested reader
will find a theory for these and other interesting features of motor reaction-time
and attention reaction-time distributions in Sperling and Reeves (1980).

The point of the present discussion is that the indirect method yields measures
of attention reaction times—unobservable responses—that are no less reliable
and no more difficult to obtain than directly observable motor reaction times.
Unobservable does not mean unmeasurable. The way to measure a reallocation
of mental processing resources is by its effect—by how soon the reallocated
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resources have an effect. This indirect method can, in principle, be extended to
any of the attentional tasks described in this book.

Optimization: A Last- Word

Optimization—finding the most favorable compromise between conflicting goals
or demands—nhas been the unifying principle throughout this chapter. It is a
Darwinian principle. In the classroom attendance example, optimization in-
volved the best choice of which class to attend when there were schedule con-
flicts. In signal detection tasks, it was the choice of a criterion that optimized the
expected rewards for correct responses minus the expected costs for errors. It is
essential to recognize that in all real situations there is imperfect information, and
errors are possible. The signal detection theory of optimization is applicable far
beyond the case of humans detecting threshold auditory signals in noise. The
same optimization principles apply, for example, to seeds that must decide
whether to sprout now or to wait for a better time, to juries that must balance the
risk of punishing an innocent person against the risk to society of releasing a
criminal, or to a human body’s immunological system that must decide whether
an unknown substance is a dangerous germ to be fought off or a part of itself to
be left alone. The principles of optimum decision making transpose to cases of
optimum resource allocation in selective attention—such as the optimal location
of mental processing resources to one of several competing tasks, or of economic
behavior—such as that of animals in motivation and reinforcement experiments;
or, originally and ultimately, of economic issues—such as the optimal allocation
of resources by consumers, by industries, and by entire societies.

With respect to psychology, application of the calculus of optimization repre-
sents an explicit reintroduction of purpose to the explanation of human perfor-
mance by once again explaining behavior in terms of its goals. Explicit knowl-
edge of the utility function is necessary to understand the decision process in
signal detection tasks or the allocation of mental processing resources in atten-
tional tasks—decisions that are governed by utility. In this respect, optimization
theory is a link between many branches of psychology, and it will link the
psychology of the future to the neglected psychology of the past in which pur-
pose once had been an essential ingredient of psychological theory.
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