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Summary statistical representations are aggregate
properties of the environment that are presumed to be
perceived automatically and preattentively. We
investigated two tasks presumed to involve these
representations: judgments of the centroid of a set of
spatially arrayed items and judgments of the mean size
of the items in the array. The question we ask is: When
similar information is required for both tasks, do
observers use it with equal postfilter efficiency (Sun,
Chubb, Wright, & Sperling, 2016)? We find that,
according to instructions, observers can either efficiently
utilize item size in making centroid judgments or ignore
it almost completely. Compared to centroid judgments,
however, observers estimating mean size incorporate
the size of individual items into the average with low
efficiency.

Introduction

When looking at a group of flying birds, we easily
detect the general direction the birds are flying, the
center of mass of the group, their approximate number,
and the average size of the birds. Most of the time these
perceptions occur preattentively—in just a fraction of a
second. Visual researchers refer to this ability as the
formation of a statistical summary representation. This
ability allows us to get the gist of a group of items by
effectively calculating the mean size of the objects in it,
their centroid, numerosity, and range, and the variance
of features like size, motion, location, and orientation
(Ariely, 2001; Chong & Treisman, 2003, 2005; Alvarez

& Oliva, 2008; Alvarez, 2011; Marchant, Simons, & de
Fockert, 2011; Robitaille & Harris, 2011).

The estimation of the mean size of a group of items
has provoked the interest of many visual researchers
studying summary statistical representations (Ariely,
2001; Chong & Treisman, 2003, 2005). A recurring
finding from this research is that observers can estimate
the average size of the items in a group relatively well,
certainly better than they can identify individual stimuli
displayed (Ariely, 2001). Building on these results and
previous research on mean size, one of the goals of this
article is to compare postfilter efficiency of size
estimation in two tasks: the mean-size task and the
centroid task (Drew, Chubb, & Sperling, 2010; Sun,
Chubb, Wright, & Sperling, 2016). Of particular
interest will be a variant of the centroid task in which
observers weight stimulus items in proportion to their
size, because in this weighting task observers must
make use of both location and size information.

Much of the previous research on mean-size
judgments has concluded that in making them, the
visual system relies on a global, parallel perception
mechanism. This suggests that observers incorporate
most, if not all, of the displayed items into the mean-
size estimate (Ariely, 2001; Chong & Treisman, 2003,
2005). Initially, Ariely (2001) found that observers were
able to judge the mean size of a group of disks better
than they were able to determine if a single disk was a
member of that set, independently of set size. In that
experiment, set size was varied (four, eight, 12, or 16
items) and four distinct sizes were used within each set.

In follow-up work, Chong and Treisman (2003,
2005) varied the heterogeneity of the disk sizes, the
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presentation mode (sequential vs. simultaneous), and
their numerosity and density. Across all these manip-
ulations, observers achieved results of 75% accuracy
with a difference in size between 6% and 8%. The fact
that these discriminations were performed following
relatively brief exposures (50–1,000 ms) and that
increasing the size of the sample set did not affect
performance led the researchers to conclude that the
estimation of mean size was based on including most, if
not all, of the items presented on the screen.

Recent research has supported the claim that the size
of an individual item cannot be measured with
complete accuracy in an ensemble representation such
as the perception of the mean size of a group (Im &
Halberda, 2013; Allik, Toom, Raidvee, Averin, &
Kreegipuu, 2013). However, this research has also
challenged the claim that observers used most or all of
the items presented in a display in judging the mean size
of a group of items (Myczek & Simons, 2008; Im &
Halberda, 2013; Allik et al., 2013), suggesting sub-
sampling as a possible strategy. In a subsampling
strategy, an otherwise ideal observer uses only a few
items from the full set displayed to make the mean-size
discrimination rather than attempting to include all of
the items presented in the display. Myczek and Simons
(2008) simulated the experiments of Ariely (2001) and
Chong and Treisman (2003, 2005) and suggested that
observers could be using subsampling as one of their
strategies when making the mean-size discriminations.
This interpretation assumes that all the errors in an
observer’s responses are due to the observer failing to
include all of the display items in their estimation.
However, this assumption can be misleading as a model
of human performance, since other sources of error are
almost certainly involved.

In this article, we present an experiment that
compares performance for two summary statistical
representations: centroid and mean size. We use a
postfilter efficiency analysis as a common framework to
compare performance across these two tasks. The
procedure used to estimate postfilter efficiency and the
differences between it and the measure originally
proposed for the centroid task by Sun et al. (2016) will
be described later, but for this discussion it can be
understood as a lower bound on the proportion of
information contained in the display that is incorpo-
rated into an observer’s judgment. Most importantly,
our interpretation of the postfilter efficiency analysis
emphasizes the idea that failure to register stimulus
items is only one source of error in these tasks.

Observers viewed sets of three or nine squares and
were then asked, in different sessions, to perform one of
three tasks: to estimate the centroid of the squares,
ignoring variations in item size; to estimate the centroid
of the squares, weighting items in proportion to their
size; or to estimate the mean size of the squares. For the

rest of this article, these three tasks will be referred as,
respectively, the equi-weighted centroid task, the size-
weighted centroid task, and the mean-size task. In these
tasks, the size of the squares was defined as the length of
a side, not the area (Solomon, Morgan, & Chubb, 2011).

When deciding on stimuli to use in this experiment,
we were concerned that observers, when presented with
filled squares, could use mean luminance in estimating
mean size. However, we were also concerned that
outline squares might not be detected, especially those
presented more peripherally. Because of these compet-
ing concerns, observers were presented with two types
of stimuli in separate conditions: outlined squares and
filled white squares. As we will show, performance was
similar for both classes of stimuli, supporting the
conclusion that observers were using size and not
luminance in their estimations.

In both centroid tasks used in this experiment (equi-
weighted and size-weighted), we asked observers to
estimate the center of mass (centroid) of a set of items.
In previous research (Drew et al., 2010; Sun et al.,
2016), observers could judge the centroid of a group of
dots when asked to attend to all dots or while selecting
stimuli with a specific feature, such as attending darker
dots versus lighter dots (Figure 1). Drew et al. (2010)
found that, with little training, observers were able to
accurately determine the required centroids with
efficiencies between 75% and 90%. These high efficien-
cies were obtained both when observers were asked to
attend to all the dots and when they were asked to
attend just to some targets. These results suggest that
centroid estimation is a highly efficient task.

In contrast, results from Myczek and Simons’s (2008)
simulations suggest that estimating mean size may be a
less efficient task. One of the simulations presented in
that experiment showed that an ideal observer, attending
to only two items out of a group of eight when estimating
mean size, could still perform as well as the observers in

Figure 1. Displays presented in the centroid task. Participants were

asked to determine the centroid of either all or a subset of these

items determined by their luminance. (A) A sample set of eight

dots. (B) A sample set of 16 dots. Reprinted from ‘‘Precise attention
filters for Weber contrast derived from centroid estimations,’’ by S.
Drew, C. Chubb, & G. Sperling, 2010, Journal of Vision, 10(10):20.

Copyright 2010 by ARVO. Reprinted with permission.
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experiments reported by Ariely (2001) and Chong and
Treisman (2003, 2005). In other words, the mean-size
task yields efficiency as low as 25% (or 2/8), much lower
than the efficiency estimations in the centroid task (75%–
90%) found by Sun et al. (2016).

In order to compare directly the efficiencies of these
two tasks, we designed an experiment that minimizes
the differences between them other than the summary
statistical representation to be estimated. For instance,
the versions of the mean-size and centroid tasks that
are typically studied have a procedural difference that
might complicate comparing their results. In most
studies of estimating mean size, observers submit
binary responses, pressing one of two keys to indicate
whether a probe disk is larger or smaller than the mean
size of the stimuli (Ariely, 2001). In other variations,
the observer is asked to judge which side of the screen
has the larger (or smaller) mean size by pressing a key
on the keyboard (Chong & Treisman, 2003, 2005). This
presented a major methodological difference between
the typical mean-size task and the centroid task, since
in the centroid task observers provide their responses in
a continuous fashion by moving the mouse and clicking
where they estimate the center of the mass is located.

To make the observer’s response in the mean-size
task similar to that in the centroid task, we presented
observers with a probe square whose initial size was
randomly selected by the computer and asked them to
indicate their response by moving the mouse to adjust

the size of the probe square until it matched their
remembered percept. Observers clicked on the mouse
when they felt they had reached the size that
represented their estimation of the group mean size.

Another difference between the mean-size and
centroid tasks is that they require the observer to
process different aspects of the stimuli: sizes or
locations. To explore this difference, we presented
observers with a variation of the centroid task that we
called the size-weighted centroid task. This task
requires a judgment based on two aspects of the
stimuli: Observers estimate the centroid giving pro-
portionally more weight to the larger squares. Good
performance—i.e., high efficiency—in this task requires
two things: that the observers register both the
locations and sizes of the stimuli accurately and that
they combine both types of information accurately
when estimating the centroid. Figure 2 shows how the
location of the centroid for a stimulus differs across
these two tasks.

Methods

Observers

Eight observers, including the first author, participat-
ed in the experiment. Four were novice observers, and
the other four were experienced with the centroid task.
All were students at the University of California, Irvine.
Four were female and four were male, between the ages
of 17 and 40 years. All observers reported having normal
or corrected-to-normal vision. The study was conducted
in accordance with the regulations of the Institutional
Review Board of the University of California, Irvine.

Apparatus and stimuli

The observer sat in an adjustable-height chair in a
dark room and viewed the stimuli on an iMac (Mac OS
X) with a 54-cm screen controlled by an ATI Radeon
HD 4670 graphics card from a distance of about 84 cm.
The stimuli were generated using the Psychophysics
Toolbox (Version 3.0.8; Brainard, 1997; Kleiner et al.,
2007) for MATLAB (Version 7.1).

Screenshots illustrating the two types of stimuli used
in this experiment are shown in Figure 3. The size of the
stimulus area was 500 3 500 pixels and the viewing
angle was approximately 158. The outlined squares
(Figure 3A) were constructed using white (116 cd/m2)
lines 2 pixels wide; the interior of each square matched
the gray background luminance (46 cd/m2). The other
stimuli (Figure 3B) were filled white squares (116 cd/
m2) on a gray (46 cd/m2) background. The display was

Figure 2. Example showing how the centroid response changes

when participants are asked to give equal weight to all the

items (equi-weighted task, EW) and to give more weight to

larger items (size-weighted task, SW) in the centroid task for a

set size of nine squares.
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constructed using squares of eight fixed sizes (0.238,
0.278, 0.348, 0.458, 0.528, 0.678, 0.818, 0.998). Each set
was created with sizes that were randomly selected
without replacement from a discrete triangular distri-
bution. The probability assigned to each of the eight
possible sizes to appear was, respectively, 5.63%,
10.25%, 14.75%, 19.38%, 19.38%, 14.75%, 10.25%, or
5.63%. This discrete distribution was constrained to
have only eight levels, because we wanted to be able to
estimate the influence of each level on the size and
centroid judgments. Given this constraint, this seemed
a reasonable approximation of the Gaussian distribu-
tion used to determine item location. The dispersion of
the location of the squares was determined by a
Gaussian distribution with a standard deviation of 110
pixels (1.988) centered in the middle of the screen. The
sampling from this distribution was constrained so that
the edges of two squares were never closer than 6 pixels
(0.118) to each other. In addition, because the standard
deviation of the distribution of the centroids would
normally be reduced by

ffiffiffi
3
p

when going from three to
nine stimuli, after the stimulus clouds were generated
their centroids were then translated to a location
separately chosen from a Gaussian distribution cen-
tered in the middle of the screen with a standard
deviation of 63.5 pixels (1.98).

Figure 4 shows the timeline of events for both the
centroid and the mean-size tasks (using filled squares).
The mask stimulus constructed for each trial consisted
of a 10310 jittered grid that filled the display area with
a random sample of squares of sizes drawn from the
triangular distribution used to generate the stimuli.

Procedure

The present study consisted of three tasks: the equi-
weighted centroid task, in which observers strove to
estimate the centroid of the stimulus array, giving equal
weight to all squares regardless of size; the size-
weighted centroid task, in which they strove to estimate
the centroid of the stimulus array weighting items in
proportion to their size, with size being defined as the
length of the square; and the mean-size task, in which
they were asked to determine the mean size of the
squares in the stimulus, ignoring their locations, by
adjusting the size of a single square. An initial screen
displayed the instructions for each session: whether to
assess the size-weighted centroid, the equi-weighted
centroid, or the mean size of the target stimuli. The
initial screen also displayed examples of each of the
stimulus sizes using the type of squares to be judged—
outlined or filled. At the start of each trial, which began
500 ms after the initial block screen or the feedback
from the previous trial ended, the observer was cued
with a screen containing just the cue square, a white
line that outlined the stimulus region (500 ms) and was
followed by the stimulus (250 ms); then came a blank
screen (50 ms), the mask (500 ms), another blank screen
(50 ms), and then the display that the observer used to
respond; finally, the feedback display was presented.
The feedback and response displays used for the
different tasks are described in the following. In all
tasks, the observer terminated the feedback screen by
pressing any key.

Figure 3. Two screenshots of the displays used in the experiment. (A) A set size of nine squares using outlined squares. (B) A set of

three squares using filled squares.
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Feedback and the response screens in the
centroid tasks

On the response screen for the centroid task, a white
cross appeared at the center of the display area. It
functioned as a cursor, tracking the movements of the
mouse. The appearance of this cursor prompted the
observer to move the mouse and click on the location
of the estimated centroid. After the location was
selected, a feedback screen followed. The feedback
screen redisplayed the stimulus used in that trial, and it
also had a white cross that showed the location the
observer chose as the centroid, as well as a black bull’s-
eye centered at the correct centroid location (Figure 5)
depending on the weighting function.

Feedback and the response screens in the
mean-size task

The initial response screen in the mean-size task
consisted of a probe square with a size randomly
selected from the range of the stimulus sizes. By moving
the mouse horizontally, the observer changed the size
of the probe square until its size matched the size of the
estimated mean of the stimuli. Moving the mouse to the
right made the probe square larger; moving the mouse

Figure 4. The timeline of a trial (from a nine-item condition using an example based on filled squares). The two final frames show two

possible (1) response screens and (2) feedback screens, one for the mean-size task and one for both the equi-weighted and size-

weighted centroid tasks.

Figure 5. Schematic representation of the feedback screen for

the equi-weighted centroid task, for a set size of nine (filled)

squares. The dark gray bull’s-eye represents the correct centroid

and the cross shows the observer’s response.

Journal of Vision (2019) 19(3):3, 1–14 Rodriguez-Cintron, Wright, Chubb, & Sperling 5

Downloaded from jov.arvojournals.org on 03/23/2019



to the left made it smaller; vertical movement was
ignored. The probe square was either outlined or filled,
to match the squares used in the current condition. The
observer terminated the response process with a mouse
click. An example of the feedback screen is shown in
Figure 6. The screen showed the stimulus used in that
trial and the probe square with the response. A white
outlined square showed the observer’s response. A
black outlined square showed the correct response.
Between these two outlined squares, the region in red
indicated the response error (Figure 6B).

Design

The conditions in this experiment were constructed
from the factorial combination of three factors: the
task (equi-weighted centroid, size-weighted centroid, or
mean size), the type of stimuli (outlined or filled), and
the set size (1, 3, or 9 squares). A session consisted of
two blocks—one per stimulus type—of the same task.
Across sessions, the task was varied using a 33 3 Latin
square, with the conditions for each observer taken
from a different row. The conditions specified by the
Latin square were mirrored twice, resulting in the
sequence A–B–C–C–B–A–A–B–C, so that each ob-
server ran nine sessions (three sessions per task). The
order of filled versus outlined stimuli within a session
was switched across the mirrored repetitions. We
monitored each observer’s mean squared error to
ensure that large improvements associated with learn-
ing did not occur after the first three sessions, which
were dropped from the analyses reported in the
following. A block consisted of 105 trials, five of which
were singleton trials on which only a single square was

presented. Singleton trials were included to estimate the
error due to processes that were not associated with
estimating the mean size or the centroid (e.g., response
motor error). On the remaining trials, groups of three
or nine squares were presented 50 times each. The order
of the numerosity condition within a block was
randomly determined.

Analysis

The data from all three tasks were analyzed using
procedures similar to those described by Sun et al.
(2016), with minor modifications for the data from the
mean-size task. The first step in these analyses
generates estimates of the observer’s attention filter fu.
An observer’s attention filter is the vector of weights
(one for each of the eight square widths used in our
stimuli) used by the observer when performing a task
with a particular target filter u. The three tasks in this
experiment are based on two target filters. In the equi-
weighted centroid task, the target filter u gives equal
weight to the squares of all eight widths w—i.e.,
u wið Þ ¼ 1=8, for all i from 1 to 8. In the size-weighted
centroid task and the mean-size task, the target filter u
gives weight to each square equal to its size:

u wið Þ ¼ wi

�X
i

wi:

In the centroid task with target filter u wð Þ, the
correct response T on a given trial has x- and y-
coordinates

Tx ¼
P

i u wið ÞxiP
i u wið Þ

and Ty ¼
P

i u wið ÞyiP
i u wið Þ

; ð1Þ

where the sum is over all squares i in the display, wi is
the width of square i, and xi and yi are the x- and y-
coordinates of its location. Typically, however, the
response of the observer deviates from this target
location.

We assume that the x- and y-coordinates of the
observer’s response on trial t are given by

Rt;x ¼ lt;x þQt;x and Rt;y ¼ lt;y þQt;y; ð2Þ

where Qt;x and Qt;y are independent, normally distrib-
uted random variables with mean 0 and some standard
deviation r, and for some function fu(w) we have

lt;x ¼
P

i fu wt;i

� �
xt;iP

i fu wt;i

� � and lt;y ¼
P

i fu wt;i

� �
yt;iP

i fu wt;i

� � : ð3Þ

In Equation 3, wt;i, xt;i, and yt;i are the width and x-
and y-coordinates of the ith square in the stimulus on
trial t, and fu wð Þ is the attention filter that the observer
uses to perform the task.

Figure 6. (A) Feedback screen for the mean-size task with a set

of nine outlined squares. The black outline is the correct mean

size; the red outline around the single square on the side

represents the observer’s error; the white outline is the

observer’s response. (B) A zoomed-in schematic representation

of the feedback square in the mean-size task.
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Similarly, in the mean-size task with target function
u, we assume that the observer’s response on trial t is

Rt ¼ lt þQt;

where Qt is a normally distributed random variable
with mean 0 and some standard deviation r, and

lt ¼
1

N

X
i

fu wt;i

� �
; ð4Þ

where N is the number of squares in the display (either
three or nine, depending on the condition) and fu is the
attention filter achieved by the observer in this task.

A Bayesian procedure was used to derive parameter
estimates. This method used a Markov-chain Monte
Carlo simulation to extract a sample of vectors from
the joint posterior density characterizing the model
parameters (Gelman et al., 2014). Each iteration of this
process required evaluation of the likelihood function
(or more properly, of the log of the likelihood
function). The likelihood function for the centroid-task
model given in Equations 2 and 3 is

K fu; r
� �

¼
Y
t

1

2pr2

3 exp
� Rt;x � lt;x

� �2 � Rt;y � lt;y

� �2
2r2

" #
; ð5Þ

where the product is over all trials t. And similarly, the
likelihood function for the mean-size task is

K fu;r
� �

¼
Y
t

1ffiffiffiffiffiffi
2p
p

r
exp

� Rt � ltð Þ2

2r2

" #
: ð6Þ

For simplicity, we use uniform prior distributions on
all parameters whose bounds are well outside what
might reasonably be expected.

In any Markov-chain Monte Carlo process, one
starts with some arbitrary guess at the parameter vector
V (which will eventually be thrown away) and sets
S1 ¼ V. (In the current application, the vector V
contains guesses at the eight values of the function fu as
well as a guess at r.) Then one iterates the following
steps some large number Niter of times:

Pick a candidate parameter vector C in the
neighborhood of the last sample Sn�1. Then for

P ¼ K Cð Þ
K Sn�1ð Þ ;

if P . 1, set Sn ¼ C; otherwise, set

Sn ¼
C with probability P
Sn�1 with probability 1� P

�
:

Provided that the procedure for choosing candidates
satisfies certain conditions, as Niter goes to infinity this

process produces a sample from the posterior joint
density characterizing the model parameter vectors
(Hastings, 1970). For both the size and centroid
analyses, the initial values of fu wið Þ ¼ 1=8 for all i, and
the initial value of r was 10. To ensure that the samples
of this process used to generate estimates were stable,
Niter was 20,000 and the first 10,000 samples were
discarded. To ensure that the samples used to generate
estimates were independent, of the remaining 10,000
samples only every 40th was retained.

A key measure that we have adapted from Sun et al.
(2016) to characterize the results of this experiment is
postfilter efficiency. Postfilter efficiency is particularly
useful because it is a measure that can be used to
compare the response error observed in tasks as
disparate as the centroid and mean-size tasks. Sun et al.
developed this measure for centroid data but simply
called it efficiency. Here we use postfilter efficiency to
emphasize that this value was estimated as the
proportion of the stimulus squares that would need to
be processed by an ideal observer using the observer’s
estimated attention filter fu rather than the target filter
u. The value of postfilter efficiency ranges from 0 to 1.
Because this is the estimate for an ideal observer, it is a
lower bound on the proportion of squares that would
have been processed by the actual observer.

Postfilter efficiency estimates were obtained using the
fminsearch univariate optimization function in MAT-
LAB. To evaluate a proposed value of postfilter
efficiency, 100 decimations of the stimulus cloud used
on each trial were generated. For every decimation,
each square in the cloud had a probability equal to the
postfilter efficiency value of being included in the
centroid (or size) calculation. The observer’s estimated
attention filter was used to weight the included squares
in that calculation. The difference between the esti-
mated centroids (sizes) and the actual responses was
combined across decimations and trials to guide the
optimization process.

Figure 7 illustrates how the efficiency analysis works.
Figure 7A shows a nine-item stimulus in the equi-
weighted centroid task. The bull’s-eye indicates the
target centroid. To get a sense of how the efficiency
calculation works, consider Figure 7B, which shows an
example in which an ideal observer, processing this
display with an efficiency of 0.89, has based the
centroid estimate on a random subset of eight from the
nine tokens, producing an estimate that is in this case
slightly shifted from the true estimate. Because the
decimation is done independently for each item in the
display, the ideal observer operating with an efficiency
of 0.89 would not always process eight tokens; this is
simply the expected number of items processed, since 8
¼ 9 3 0.89. However, since it is the probability that an
item is decimated that is fixed, sometimes the simulated
ideal observer would be expected to process eight or
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even all nine tokens, and sometimes fewer than eight.
As shown in Figure 7C, an ideal observer operating
with an efficiency of 0.22 would be expected to produce
the centroid estimate using only two tokens, although it
could be more or less, and so would be expected to
produce a larger error. These examples show a
particular subset of the stimuli being used in the
centroid calculation; however, as already described, the
actual estimation was averaged over 100 subsets for the
stimulus cloud used on each trial.

Sun et al. (2016) describe efficiency as a lower bound
on the number of squares processed by the observer.
This is because the observer’s response is likely to be
corrupted by sources of error other than decimation of
the stimulus. For example, the locations or sizes of
squares may be registered incorrectly, or the memory of
the centroid estimate may deteriorate before the
response can be completed. The efficiency statistic
treats the error from all of these sources as if it resulted
only from random decimation of squares from the
display. However, with this caveat of interpretation,
efficiency provides a useful way to compare the
response error produced in different tasks.

Results

All observers ran nine sessions—three per task. We
measured the root mean square error (RMSE) of the
responses in each session and compared them. The
RMSE was stable for the last six sessions, and for most
observers it was stable and constant for all nine

sessions. For all observers, only the data from the last
six sessions are reported here.

We expected experts to be better than unpracticed
observers at least in the centroid task. The actual
difference was small; the observed efficiencies were 0.88
and 0.85, respectively, D¼ 0.03, SD¼ 0.09, t(6)¼ 0.523,
p¼ 0.62, Bayes factor BF¼ 0.764.1 The main effect of
stimulus type was negligible. Because there are also no
reliable interactions involving stimulus type or level of
expertise, the reported results are collapsed across these
factors. Also, to simplify the summary, we will consider
the data from the singleton trials separately, so that for
most of the summaries only results for trials with three
and nine items are reported. Finally, we will focus on
two preplanned contrasts for the task factor: one
comparing the results in the equi-weighted and size-
weighted centroid tasks, and one comparing the results
of the size-weighted centroid task and the mean-size
task.

Postfilter efficiency

Observers achieved higher, and almost identical,
postfilter efficiencies in the two centroid tasks, and
lower efficiencies in the mean-size task (Figure 8). The
preplanned contrast comparing both centroid tasks
suggests that efficiencies for the size-weighted centroid
task are essentially identical to those from the equi-
weighted centroid task, D ¼ 0.01, SD ¼ 0.02, t(7)¼
1.460, p ¼ 0.188, BF¼ 0.74. The preplanned contrast
comparing the postfilter efficiency for the size-weighted
centroid task with that for the mean-size task very
strongly suggests that observers were able to use size

Figure 7. (A) An equi-weighted centroid estimation with an efficiency value of 1. (B) A typical equi-weighted centroid estimation with

an efficiency value of 0.89. Note that the 0.89 efficiency indicates that at a minimum eight items out of the nine are included in the

estimation. The observer’s response shown by the black bull’s-eye is still close to the correct response, which is shown by the gray

bull’s-eye. (C) A typical response when the efficiency is 0.22. In this example, the observer’s centroid estimate (black bull’s-eye) is far

from the correct response (gray bull’s-eye).
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more effectively when estimating the centroid of a
group of squares than when estimating the mean size of
the same group, D¼ 0.35, SD¼ 0.15, t(7)¼ 6.485, p ,
0.001, BF¼ 45.9.

Figure 8 also shows that observers achieved higher
efficiencies when presented with three items than when
presented with nine items. A t test provided evidence
for a reduction of postfilter efficiency with increased
numerosity (Figure 8) for all three tasks, D¼�0.14, SD
¼ 0.08, t(7) ¼�4.810, p ¼ 0.002, BF¼ 24.06.

No interactions were found between stimulus type
and numerosity, stimulus type and task, numerosity
and task, or stimulus type, task, and numerosity. The
biggest t value associated with any of these interactions
was 1.42, with a p value of 0.198 and a BF of 0.71.

Influence functions

Figure 9 shows the influence functions for both
centroid tasks, averaged across observers and collapsed
across level of expertise and stimulus type. In the size-
weighted centroid task, the slope of the ideal influence
function is 1. The average data follow this ideal closely.
With nine squares, observers tended to overweight the
larger squares and underweight the smaller squares
relative to this ideal, but with three squares they
produced the opposite pattern. In the equi-weighted
centroid task, observers were asked to give equal
weight to all squares independently of their sizes, so the
ideal influence should have a slope of 0. Although the

resulting influence functions are flatter than those for
the size-weighted centroid task, observers substantially
underweighted the smaller squares and overweighted
the larger ones. We have omitted a figure showing the
mean influence functions for the mean-size task because
the influence functions estimated for each observer are
not well constrained by the data; this makes sense with
postfilter efficiency values of 0.5. The wide confidence
intervals obtained for this task make these data hard to
interpret.

To precisely characterize the difference between the
influence functions across task and numerosity and to
create a summary that could be applied to the mean-
size task, we used linear regression to estimate the slope
of the influence function in each condition. Figure 10
provides a summary of the slope estimates from this
analysis. The means shown by the bars in the figure
confirm the general impressions provided by Figure 9
for the equi-weighted and size-weighted centroid tasks.
As shown by the summary at the bottom of Figure 10,
the slope estimates for the equi-weighted centroid task
are close to 0 and do not differ with numerosity.
Because there is little variability across observers, the
mean of these slopes collapsed across numerosity is
clearly different from the ideal of 0, but the confidence
intervals show how close to 0 it is—slope¼ 0.085, 95%
confidence interval (CI) [0.068, 0.10], t(7)¼ 11.98, p ¼
0.0000, BF ¼ 141.169. There is substantially more
variability across observers in the slope estimates for

Figure 8. Mean efficiencies for all eight observers as a function

of set size for equi- and size-weighted centroid judgments and

for mean-size judgments. The filled plotting symbols represent

the mean across observers in each condition; the Xs are the

efficiencies for each observer. The error bars display the 95%

confidence intervals for the averages.

Figure 9. Influence as a function of stimulus size for the two

centroid tasks. These plots are averaged across observers and

stimulus types. The intervals are 95% confidence intervals based

on the variation across observers. The black dashed lines

represent the ideal influence: slope ¼ 0 for the equi-weighted

task and 1 for the size-weighted task.
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the size-weighted centroid task. Despite this variability,
there is a reliable numerosity effect. However, as shown
in Figure 10, the slope is not distinguishable from the
expected slope of 1 for numerosity 3 or 9, and this
result still holds if the estimates for numerosities 3 and
9 are averaged—slope¼ 1.055, 95% CI [0.76, 1.33], t(7)
¼ 0.43, p ¼ 0.68, BF ¼ 0.485.

As noted previously, there was substantial variability
in the influence-function estimates for the mean-size
task both within and across observers. Despite this
variability, Figure 10 includes a summary of the slope
estimates for the mean-size task. Not surprisingly, these
slopes vary more across observers than in the size-

weighted centroid task, with slope estimates ranging
from less than �1 to more than 1.5. With this caveat,
we note several things based on these slope estimates.
First, there is no evidence for an effect of numerosity
on them. Second, averaged across numerosity, the slope
in the mean-size task differs reliably from 1, the
expected value in this task—slope ¼ 0.270, 95% CI
[�0.35, 0.89], t(7)¼�2.790, p¼ 0.030, BF ¼ 3.980.
Further, averaging across numerosity in both cases, the
slope in the mean-size task differs reliably from that in
the size-weighted centroid task, D¼�0.78, SD¼ 0.71,
t(7)¼�3.113, p ¼ 0.017, BF¼ 4.32.

Discussion

The central result here is that efficiencies were high in
both centroid tasks, but substantially lower in the
mean-size task. Based on previous literature, these
results were expected for the mean-size task and the
equi-weighted centroid task. The simulations reported
by Myczek and Simons (2008) suggested that the
estimate of the mean size of a group of items is
obtained with low postfilter efficiency. Also, previous
research from our lab (Drew et al., 2010; Sun et al.,
2016) found that equi-weighted centroids could be
estimated with high postfilter efficiency. The surprising
result is that locating the centroid while weighting items
in proportion to their size can also be done with high
postfilter efficiency. This is surprising because one
might expect that postfilter efficiency the in size-
weighted centroid task would be no better than the
lesser of the two obtained in the mean-size task and the
equi-weighted centroid task. Our results show that
observers achieved almost identical high efficiencies in
the two centroid tasks and that the postfilter efficiency
was much lower in the mean-size task. However, this
implies, counterintuitively, that a summary statistical
representation based on a combination of two distinct
kinds of information—location and size—appears to be
substantially easier for observers than a summary
statistical representation based on only one of these
components (size).

These results suggest that estimation of mean size is
different and perhaps more difficult for observers than
a centroid task that also involves size information.
First, the high efficiencies achieved in the size-weighted
centroid task show that both location and size
information are accurately registered for most, if not
all, of the squares. Second, the influence-function
analysis suggests that although observers can achieve a
weighting rule that accurately gauges the sizes of
display squares in the size-weighted centroid task, they
are unable to achieve such a weighting rule in the mean-
size task.

Figure 10. The influence-function slope for all three tasks,

summarized separately for three and nine items. The summary

at the bottom of the figure displays results from two sets of t

tests. The upper sets of results are for data collapsed across

stimulus type (filled/outlined squares) but separated by

numerosity; those in the lower set examine the effect of

numerosity. Note that, for the mean-size and size-weighted

centroid tasks, the ideal slopes should be equal to 1, so the null

hypotheses for these tests are highlighted in gray. In the equi-

weighted centroid task, the ideal slopes should be equal to 0, so

it is the tests for this null hypothesis that are highlighted in gray.
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Figure 11 shows the RMSE for the mean-size task in
degrees of visual angle, broken out by number of items
on the abscissa. Each of the colored lines connecting the
X plotting symbols reflects the data from one observer.
The black circles show the mean error, for each
numerosity, averaged across observers. The black solid
line is the best linear fit. The data for the three- and nine-
item conditions are a ‘‘raw’’ version of the data used as
the basis for the postfilter efficiency analysis; this is a
raw summary because it does not depend on the
influence-function analysis. The singleton data were not
included in the postfilter efficiency analysis. Given that
the stimulus items ranged in size from 0.228 to 0.998, the
standard deviation of 0.178, 95% CI [0.158, 0.198], of the
singletons suggests that observers were able to perceive
and then recall a single size fairly accurately with the
adjustment procedure used here.

Because the spacing on the abscissa of Figure 11 is
logarithmic, it appears that the mean-size error
increases linearly with the logarithm of the numbers of
items—slope ¼ 0.033, 95% CI [0.020, 0.046], t(7)¼
5.927, p ¼ 0.001, BF¼ 63.97. What makes this

observation striking is that it suggests that something
other than the misperception of the sizes of the items
must be contributing to the error observed in the three-
and nine-item conditions. We reach this conclusion
because the mean-size error due to misperception of
item sizes would be expected to decrease as 1 over the
square root of the number of observations (items).
Under the extreme assumption that all singleton error
is due to size misperception, the dashed black line
shows the predicted RMSE. Another possibility is that
rather than being due to size misperception, the error in
the mean-size task arises from ‘‘late’’ sources—i.e.,
error depending on processes that come after the mean-
size estimate has been created. Two examples of late
sources of error are memory errors that result from
having to keep a perceived mean size in memory while
making the response and reproduction errors that arise
because of problems correctly reproducing the correctly
remembered mean size. One characteristic of late error
is that it should not depend on the number of items
included in the mean. Thus, an alternative but equally
extreme model based on the assumption that all size
error arises from late sources predicts that the dashed
line in Figure 11 should be flat. However, neither size
misperception errors, late errors, nor some combina-
tion of the two predict the observed increase in the
RMSE with an increasing number of items. This
argument suggests that there is some other component
of error in the mean-size task that produces the
observed increase in RMSE with n.

One clue that at least some of the error in the mean-
size task results from the misperception of size is that,
not surprisingly, the variability of the error increased
with the size of the item being reproduced. To quantify
this, a Markov-chain Monte Carlo simulation was used
to fit a three-parameter model to the singleton data
from the mean-size task. The three parameters were
bias (the amount that an observer systematically over-
or underestimated the size of the item) and the two
parameters of a linear model for the standard deviation
of the size response error (an additive term and a
slope). This analysis showed that there may have been a
slight bias—in this case, a tendency for observers to
underestimate the true item size, �0.0428, 95% CI
[�0.0928, 0.0088], t(7)¼�1.979, p¼ 0.088, BF¼ 0.80—
but the evidence for this is weak. There was evidence
for an additive component of the standard deviation of
the error, 0.0628, 95% CI [0.0318, 0.0948], t(7)¼ 4.691, p
¼ 0.002, BF ¼ 21.53, and even stronger evidence that
the standard deviation of the size error also increased
as the size of the item being estimated increased, 0.106,
95% CI [0.072, 0.140], t(7)¼ 7.300, p ¼ 0.00016, BF¼
182.9. One way to get a sense of the relative importance
of the additive and multiplicative contributions to the
standard deviation is to compare the contribution of
the multiplicative component for an average-size item

Figure 11. Root mean square error in the mean-size task as a

function of number of items (on a log scale). The X plotting

symbols connected by colored lines are the data from each of

the eight observers. The black circles are the means over

observers. The solid black line is the best-fitting linear function.

The dashed line represents the results of a simulation that

assumes that all of the error in the mean-size task is due to

misperception of item sizes. This simulation was run separately

for each observer. Based on a linear function fitted to the

singleton data for that observer relating the standard deviation

of the estimated size to the actual size, for each trial, 50

separate samples of the perceived size of each item were drawn

and averaged to construct mean-size estimates. Root mean

square error was then computed by comparing the estimate for

each sample to the true mean size, pooling across samples and

trials within the three- and nine-item conditions. The displayed

results are averaged over observers.
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(0.4858) with that of the additive component: 0.4858 3
0.106/0.0628¼ 1.19. This suggests that the additive and
multiplicative components contribute about equally to
the standard deviation of the size estimation error for
the singletons, with the multiplicative component
possibly being slightly stronger.

In the singleton task, size responses were strongly
correlated with item size (r¼ 0.86). That correlation,
along with the previous comparison showing that the
multiplicative component made a substantial contribu-
tion to the overall error in size judgments for singletons,
gives us confidence that observers were able to perceive
the size differences of the stimuli used and report sizes
using the response method employed in this experiment.
Another window on the accuracy with which the item
sizes could be perceived in the stimulus displays is
provided by a comparison of the results in the size-
weighted and equi-weighted centroid tasks. This com-
parison was done by extending the postfilter efficiency
analysis (see the description in the Analysis subsection
under Methods) to allow for the perturbation of item
sizes. For each observer, the analysis of the data from
the size-weighted centroid task used the estimated
postfilter efficiency from the equi-weighted centroid
task as a fixed value determining what proportion of the
items in a stimulus cloud would be retained after the
simulated decimation process. In addition, in this
expanded analysis the size of each stimulus item was
randomly perturbed prior to computing the simulated
centroid judgment. The size perturbations were drawn
from a Gaussian distribution with mean 0 and a
standard deviation that depended on item size. The
MATLAB optimization function fmincon() was used to
estimate the slope and intercept of a linear function
relating the standard deviation of item perturbation to
item size so that the centroid response error produced in
the simulation matched that produced by the observer
in the size-weighted centroid task.

Starting with the approximation that the centroid
response error in the equi-weighted task does not reflect
the size variation of the stimulus items, if one also
accepts the assumption that additional centroid re-
sponse error observed in the size-weighted task is only
due to incorporating size information into the centroid
judgments (and not, for example, the recruitment of
some completely different centroid judgment process),
then the size error estimated by this expanded analysis
provides an upper bound on the variability in
misperception of size for these stimuli. This is an upper
bound because all of the additional centroid response
error in the size-weighted task is ascribed to size
misperception; however, it seems plausible that some of
the additional error is introduced by the process of
forming a size-weighted centroid.

For the size-weighted centroid of three items, this
elaboration of our postfilter efficiency analysis esti-

mated the additive component of the size misperception
error to be 0.0538, 95% CI [0.0338, 0.0748], t(7)¼ 6.085,
p¼ 0.0005, BF¼ 72.78; for nine items it was 0.0448,
95% CI [0.0338, 0.0558], t(7)¼ 9.366, p¼ 0.0000, BF ¼
692.5. Because there is only weak evidence for a
difference between these estimates, D¼ 0.0108, 95% CI
[�0.0068, 0.0268], t(7)¼ 1.490, p¼ 0.180, BF¼ 1.314, we
will consider their average, 0.0498, 95% CI [0.0348,
0.0638], t(7)¼ 7.837, p¼ 0.0001, BF¼ 265.4. The slope
relating the size misperception error to item size for the
three-item task was 0.050, 95% CI [0.002, 0.099], t(7)¼
2.445, p¼0.044, BF¼2.073; for nine items it was 0.038,
95% CI [�0.010, 0.085], t(7)¼ 1.859, p¼ 0.105, BF ¼
1.102. Because there is only weak evidence for a
difference between these estimates, D ¼ 0.013, 95% CI
[�0.069, 0.094], t(7)¼ 0.369, p¼ 0.723, BF¼ 0.356, we
will consider their average, 0.044, 95% CI [0.018,
0.070], t(7)¼ 4.045, p¼ 0.005, BF ¼ 11.473. What is
striking here is that the estimate of the additive
component of the size misperception error computed in
this way is similar to that estimated previously for the
singleton trials in the mean-size task—0.0498 versus
0.0628, D ¼ 0.0148, 95% CI [�0.0258, 0.0538], t(7)¼
0.850, p ¼ 0.423, BF¼ 0.451—but the slope of the
multiplicative component is substantially smaller: 0.049
versus 0.106, D ¼ 0.057, 95% CI [0.022, 0.093], t(7)¼
3.804, p ¼ 0.007, BF¼ 8.975. We interpret this as
evidence that the information about the size of the
stimulus items in the size-weighted centroid task is
more accurate than that incorporated into the mean-
size judgments.

If, as these analyses of the of the size-weighted
centroid task suggest, the sizes (and locations) of up to
nine items can be perceived accurately and incorpo-
rated effectively into a centroid judgment, why are the
mean-size judgments so inefficient? The foregoing
analysis suggests that, at least in part, this reflects
degradation in the quality of the size information
available to the mean-size calculation. However, the
data summarized in Figure 11 suggest that the problem
goes further than this. One possibility is that the
calculation of the mean size itself is a substantial source
of error. The fact that size information can be used
effectively in the size-weighted centroid task suggests
that the brain has processes that can accurately
perceive and calculate with this information, but
apparently the mean-size responses do not tap these
processes. Ours is not the only demonstration that
comparing the mean size of a set of items with the size
of a single item could be problematic; Chong and
Treisman (2003) have found reduced thresholds when
asking observers to compare the mean size of two
stimulus arrays, even when they were presented
sequentially. One speculation about the source of this
difference between the centroid and mean-size tasks is
that the centroid judgments may be produced by a
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mechanism in the dorsal visual pathway, whose
purpose is to guide movements (Goodale & Milner,
1992). In this interpretation, mean-size judgments
result from a ventral mechanism that either has poor
access to size information or combines that information
inefficiently.

An issue that presents a potential complication for
the interpretation of these results is that, depending on
the task, observers may be registering size in different
ways. Because it is a reproduction task, the mean-size
task requires observers to register and then produce
their judgment using absolute sizes. By contrast, in the
size-weighted centroid task they could be using relative
sizes; it is possible to perform this task perfectly well
with size information that preserves only the propor-
tional sizes of the stimuli. We should point out,
however, both that there is nothing in our results that
suggests that observers were, in fact, using relative size
estimates in the size-weighted centroid task and that we
unaware of any literature that shows that using such
relative sizes would be easier than actually using
absolute sizes. Also, as discussed previously in the
analysis of the singleton data from the mean-size task,
there is evidence that suggests that, at least in this case,
observers were able to perceive and report absolute size
with good accuracy.

A secondary result is that there was no effect on
performance due to the two types of squares used in
this experiment. Both influence functions and efficien-
cies were very similar for both outlined and filled
squares. These findings suggest that observers are
actually using the sizes of the squares to make their
judgments and are not being influenced by the
luminance of the screen (e.g., using mean luminance to
make their estimation).

With the aim of exploring if there are systematic,
individual differences across tasks, we conducted a
correlation analysis of the efficiencies for all four
variants of the three tasks—i.e., the variants due to
stimulus type and set size. These correlations, averaged
over stimulus type and set size, are summarized in
Table 1. There was a strong, positive correlation of the
postfilter efficiency estimates both within (i.e., across
the variants) and across the two centroid tasks,
suggesting that the differences in postfilter efficiency
across observers in these tasks reflect a common
mechanism. In contrast, there was little or no
correlation among the variants of the mean-size tasks
or between them and the centroid tasks. Given that
there are large postfilter efficiency differences across
observers and the variants of the mean-size task
(ranging from 0.2 to almost 0.9), these correlations
close to 0 suggest two separate conclusions. First, the
postfilter efficiency variations across observers in the
mean-size task derive from a different source than
those in the size-weighted centroid task. Even more

troubling for the use of the mean-size task to estimate
of the amount of size information available to an
observer is the lack of correlation across its variants,
which suggests that any variation across observers in
their ability to make mean-size judgments is swamped
by other, unrelated sources of error. Of course, since
these correlations are being computed based on only
eight observers, these estimates are not precise;
however, the differences are large enough to suggest
that there is an effect here worth considering.

Conclusions

The primary result reported here is that size
information can be used substantially more efficiently
in a size-weighted centroid judgment than in a mean-
size judgment. Other research has shown that the
human gaze tends to prefer the centroid of items and
that saccades land closer to the center of mass,
suggesting why performance in both centroid tasks was
better than in the mean-size task (Melcher & Kowler,
1999; Fehd & Seiffert, 2008). Christie, Hinchey, and
Klein (2013) suggest that inhibition of return is
primarily driven by the center of gravity of the attended
stimuli. Specifically, they found that when observers
were presented with multiple cues, both manual and
saccade-detection responses were considerably affected
by the center of gravity and there was a stronger
inhibition of return for the center of gravity than for
the actual stimuli. The researchers suggest that the
calculation of the centroid of a set of stimuli is an
important, exogenous cue used to guide attention and
the planning of future movements. Our findings
elaborate these claims and suggest that reported
judgments of mean size may not accurately reflect the
information about the sizes of individual items
available to later processes from a briefly perceived
group of items.

Keywords: feature-based attention, centroid task,
mean-size judgments, summary statistical
representations, visual attention, efficiency

Postfilter efficiency correlations (average for all observers)

Mean size to mean size 0.06

Mean size to equi-weighted centroid �0.19
Mean size to size-weighted centroid �0.03
Equi-weighted centroid to equi-weighted centroid 0.85

Size-weighted centroid to equi-weighted centroid 0.80

Size-weighted centroid to size-weighted centroid 0.79

Table 1. A summary of the correlations of the efficiencies
between the three tasks. These efficiencies are averaged for all
eight observers and collapsed by numerosity and stimulus type.
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