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[C. Koch, S. Ullman, Hum. Neurobiol. 4, 219–227 (1985)] proposed a 2D topo-
graphical salience map that took feature-map outputs as its input and represented
the importance “saliency” of the feature inputs at each location as a real number.
The computation on the map, “winner-take-all,” was used to predict action priority.
We propose that the same or a similar map is used to compute centroid judgments,
the center of a cloud of diverse items. [P. Sun, V. Chu, G. Sperling, Atten. Percept.
Psychophys. 83, 934–955 (2021)] demonstrated that following a 250-msec exposure of
a 24-dot array of 3 intermixed colors, subjects could accurately report the centroid of
each dot color, thereby indicating that these subjects had at least three salience maps.
Here, we use a postcue, partial-report paradigm to determine how many more salience
maps subjects might have. In 11 experiments, subjects viewed 0.3-s flashes of 28 to
32 item arrays composed of M, M = 3,...,8, different features followed by a cue to
mouse-click the centroid of items of just the post-cued feature. Ideal detector response
analyses show that subjects utilized at least 12 to 17 stimulus items. By determining
whether a subject’s performance in (M-1)-feature experiments could/could-not predict
performance in M-feature experiments, we conclude that one subject has at least 7 and
the other two have at least five salience maps. A computational model shows that the
primary performance-limiting factors are channel capacity for representing so many
concurrently presented groups of items and working-memory capacity for so many
computed centroids.

neural networks | salience maps | perceptual grouping | statistical summary judgments |
centroid judgments

Human visual system can extract summary statistical information from groups of similar
items in a brief glance (1, 2). Such ensemble statistics are interesting because they result
from brain mechanisms that can quickly distill a large amount of sensory information
for subsequent cognitive processes that have much lower capacity. Prior studies have
shown that humans can form statistical representations, for example, of size (3), spatial
location (4), orientation (5), motion (6), brightness (7), hue (8), numerosity (9) and
facial expression (10).

Humans are also capable of selectively forming statistics out of spatially intermingled
visual stimuli defined by different features. Of particular relevance here are centroids, the
mean location of a group of items. Drew et al. (4) report that in a display of interleaved
light and dark dots, subjects can selectively compute different centroids for the light
and for the dark dots. Sun et al. (11) report that subjects could efficiently compute the
centroid of three target dots of a pre-cued color even when the target dots were intermixed
with 21 dots of 7 other equiluminant distracter colors.

Salience Maps and Centroid Judgments. To compute the centroid of a set of items of
a particular feature, the target items need to be separated from distracter items, and
spatial information of the segregated target items is required. A topographical map that
inherently contains the required spatial information of the target items would meet the
requirement for computing a centroid of the target items. Because the brain is finite, and
because there is an infinity of features and feature combinations that could define target
items, it is clear that the feature locations must be represented in a topographic map that
is indifferent to feature identities. This kind of topographic map was first proposed by
Koch and Ullman (12) to represent the overall saliency of items (Fig. 1). Their saliency
map has inputs from many different feature maps and summarizes the inputs at each x,
y location as a single real number, saliency, which is represented in the map. The output
of their saliency map was fed into a winner-take-all network that computed the location
with the highest saliency. The output of the winner-take-all network could be used to
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Fig. 1. Koch and Ullman’s (12) original representation of a saliency process-
ing system. (Colors have been added).

predict priority in visual search and other visual processes. Koch
and Ullman (12) is a conceptual model. Many subsequent papers
clarify, quantify, and further elaborate the original concept, e.g.,
refs. 13–15, and 16. A recent Google Scholar search yielded
over one million citations to salience maps, most of the relevant
citations were for priority.

Sun et al. (17) proposed a similar topographic salience map
to compute not a winner-take-all but rather a centroid. Their
conception was that the input to a salience map is flexible,
rather than hardwired and depends on the task. Sun et al. (17)
reported that after a 250-msec view of a display of 24 dots,
8 dots per color, subjects were able to report three centroids,
one for each color, with approximately equal accuracy. An ideal
detector that knows the exact location of each stimulus item
and that computes a centroid perfectly would require 13.0 of 24
stimulus items to match the average subject’s performance. The
number of stimulus items required by such an ideal detector is
the lower bound of the number of stimulus items processed by
subjects. The aim of the present study is to extend these results to
determine whether more than three centroids can be computed
concurrently and to determine how many perceptually processed
items are incorporated into these centroids. But first, even to
draw the conclusion that subjects can concurrently compute three
centroids, two possible confounds needed to be excluded.

(1) Visual information might be available for much longer than
the brief exposure to enable computation of a centroid long
after the stimulus exposure was terminated. Indeed, visual
stimulus continues to be visible for some time after the
offset of the stimulus (18). However, a poststimulus mask
(19) can strictly control the duration for which the stimulus
is visually available. In ref. 17, for 3 of 5 subjects, there
was no poststimulus mask following the stimulus display.
Therefore, for these three subjects, visual information is
available longer than the duration of the stimulus display;
two subjects viewed stimuli followed by masks. No statistical
difference was found between the mask data and no-
mask data suggesting that visual information available in
any mask-susceptible visual memory after the offset of the

stimulus display did not significantly benefit the centroid
computation.

(2) Suppose subjects computed only a random two of three
centroids on each exposure and optimally guessed the
third centroid (subsampling). If subjects were to adopt this
subsampling strategy, the quality of the subject’s attention
filters—a measure that describes the weights that subjects
give to different features—when three centroids are required
would be worse than the quality of the subject’s attention
filters when only one centroid is required (subjects know
which centroid to report ahead of the stimulus presentation).
The subsampling confound is excluded by the observation
that the quality of the subject’s attention filters when subjects
reported three centroids was as good as the quality of the
subject’s attention filters when subjects reported only one
centroid.

The facts 1) that subjects process at least 13.0 stimulus items
(implying more than 4 dots utilized times 3 centroids), 2) that
there is no significant impairment in subject’s attention filters
when reporting three versus one centroid, and 3) that there
are no significant differences in error magnitude between the
three different concurrent centroid judgments demonstrate that
subjects are indeed able to compute three concurrent centroids.
Because a salience map is feature-independent, and a single
saliencemap cannot discriminate colors, Sun et al. (17) concluded
that three salience maps are required to concurrently compute
three centroids.

Procedure Outline. The question that we investigate here is:
“How many salience maps do subjects have?” Each centroid
computation requires its own salience map, so we seek to
determine the maximum number of centroids that subjects can
compute concurrently. Sun et al. (17) required their subjects to
report three centroids following a brief exposure. The problem
with asking subjects to report more than three centroids is that
the process of reporting the first few centroids strongly interferes
with the memory of the still unreported centroids. Therefore,
we used a partial-report paradigm (18), a postcue procedure that
requires only one report on each trial (Fig. 2). On a post-cued
trial, subjects viewed briefly flashed 300 ms arrays containingM,
M = 3, 4, 5, 6, 7, or 8, spatially interleaved features. The number
of different dot colors was the main features variable. When the
number of colors was 5 and greater, colors became difficult to
discriminate so different black shape items were introduced. M
denotes the number of items in a stimulus consisting of different
dot colors, or different shapes, or a mixture of colored dots and
black shapes. A cue indicating a randomly selected target feature
was presented immediately after a 50-ms blank interval and a
100-ms mask that followed the stimulus exposure. Subjects’ task
was to compute only the centroid of items defined by cued feature
and to mouse-click its location on the same screen that displayed
the stimuli.

How Do post-cued Trials in the Current Centroid Paradigm
Enable Us to Determine How Many Salience Maps a Subject
Has?. The brief stimulus exposure and the postcue masking
stimulus require all the possibly-to-be-reported centroids to be
computed during the brief period in which stimulus information
is visually available. On a post-cued trial, subjects do not know
which centroid to report until the postcue appears 150 msec after
the onset of the poststimulus mask. At that point, there is no
longer any significant amount of visual information available in
any visual memory that is susceptible to postexposure masking,

2 of 12 https://doi.org/10.1073/pnas.2301707120 pnas.org
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Centroid-of-ALL

Fixation
500ms

A  Trial procedure

Response cue

Response

Feedback

500ms
Stimulus:300ms

Mask:100ms

Blank field:50ms

Time

D  Sample stimuli for multi-item trials 

C3, S0, N10

Expt. 1

C5, S0, N6

Expt. 3

C3, S3, N5

Expt. 4b

C4, S3, N4

Expt. 5

B  Sample stimulus for 
a zero-distrater trial

C  Sample stimulus 
for a singletons trial

C: No. of different colors; S: No. of different shapes; N: No. of items per feature
1 item per feature

Five target items 

A

Fig. 2. Experimental procedures and sample stimuli. (A) Every trial begins with a 500-ms blank field with a fixation point, followed by a 300-ms stimulus, a
50-ms blank field, a 100-ms mask, a blank field with an example target stimulus that the subject moves to the judged centroid location, and finally, a feedback
display. Feedback shows the stimulus, the centroid of the target feature as the large plus sign inscribed in a light gray open circle, and the subject’s response
as the smaller plus sign inscribed in a white circle. For pre-cued trials, the fixation point is a target stimulus. For post-cued trials, the fixation point is a white
bar, and the cue indicating the target feature is presented 50 ms after the poststimulus mask. Centroid-of-ALL trials have the same procedure as the post-cued
trials, except that the task is to judge the centroid of ALL stimulus items. (B) Sample stimulus for a zero-distracter trial. The procedure for zero-distracter trials
is the same as for postcue trials, except that only target items are presented on the screen. (C) Sample stimulus for a singleton trial. For each singleton trial,
the stimulus display consists of one item from each feature. The singleton items are located at centroids of the corresponding full stimuli from which they are
derived. (D) Sample stimuli as displayed on an 800 ⇥ 800 pixel screen. “C” in the title under the stimulus display represents the number of di�erent colors of
dots in the stimulus display, “S” is the number of di�erent shapes, and “N” is the number of items in each feature class. For example, “C3, S3, N5” means that
this stimulus contains dots of 3 di�erent colors, 3 di�erent shapes, and the number of items of each feature is 5. There are (3+3) * 5 = 30 items in this display.*

i.e., by the time the subject receives the postcue, there is no
information available in “visual persistence” (18) or “iconic
memory” (20).Memory that survives a strong postexposure mask
is commonly called “working memory.” Sun et al. (21) found
that, following a brief display of 26 dots, less than two dots
were available in working memory whereas, in the same display,
at least 15 dots were incorporated into centroid computations.
Therefore, all centroid computations have to be completed on the
basis of information that fails to survive the postexposure mask,
and only computed centroids, not individual stimulus items, are
retained in working memory. To reiterate, on a post-cued trial,
all the centroids that a subject computes are computed on the
basis of visual information that is available only during a 300-
stimulus exposure and a 50-msec blank period before the strong
postexposure masking field.

Eleven Centroid Experiments (Summary). The current study
used a variant of the centroid paradigm that was originally
developed by Drew et al. (4) and was considerably enhanced by

*SI Appendix, Fig. S1 displays sample stimuli for each experiment.

Sun et al. (11). Subjects viewed briefly flashed arrays containing
3, 4, 5, 6, 7, or 8 spatially interleaved features. Fig. 2 and
SI Appendix, S1 show sample experimental stimuli. An initial
set of 3 experiments was conducted with 24 items per stimulus.
Subjects performed so well in these experiments that, to avoid
ceiling effects, the total number of items in each of the main
experimental stimuli was increased to 30± 2, the largest number
that allowed us to maintain the 56-pixel center-to-center spacing
of items (required for the shape stimuli) within the display
boundaries. The subjects’ task in all experiments was to move
a cursor to the judged centroid location of the cued-feature items
(targets) and to mouse-click.

There were four primary trial types (pre-cued vs. post-
cued trials X multi-item stimuli versus singletons) and several
variations.

(1) pre-cued multi-item trials: The cue indicating the target
feature whose centroid was to be reported was presented
500 msec before the stimulus.

(2) Post-cued multi-item trials: The cue was presented im-
mediately after a 50-msec blank interval and a 100-msec
mask that followed the stimulus exposure.

PNAS 2023 Vol. 120 No. 21 e2301707120 https://doi.org/10.1073/pnas.2301707120 3 of 12
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(3, 4) pre-cued and post-cued singleton trials: For every type
of multi-item trial, there was matched singleton trial.
A singleton stimulus consisted of just one item of each
feature type. Each singleton item was located at the
centroid of its feature in the corresponding full stimulus.
The task was reporting the location of the cued singleton
item. Singleton trials control for difficulties in computing
centroids.

(5) Zero-distracter trials: There was no cue, distracters were
eliminated and only target dots or target shapes were
presented. Zero-distracter trials control for attention-filter
imperfections in extracting target items.

(6) Centroid-of-ALL trials: Stimulus items were the same
as the pre-cued and post-cued trials, but subjects were
instructed to judge the centroid of ALL displayed items.
Centroid-of-ALL trials estimate how many items can be
processed when the problems associated with separating
the items into separate groups are eliminated.

The stimuli of the six kinds of trials and the experimental
procedure are depicted in Fig 2.

Results

Overview. In every experiment, the basic datum from each
trial is the centroid response location, represented as response
error distance. To gain more insight into the processes by
which subjects arrive at their responses, three other statistics are
computed as further explained below: A subject’s attention filter
(the weights of target and distracter items in the filter output) is
estimated directly from the locations of a subject’s responses. The
number of stimulus items that survive to be incorporated into a
subject’s centroid computation is estimated by an ideal detector
that processes only a sufficient fraction of the stimulus items to
match the accuracy of the subject’s centroid judgments. Two ideal
detectors are considered: One assumes the subject’s estimated
attention filter, and the other assumes a perfect attention filter
that admits all target items and rejects all others.

Mean Error Magnitude. The most basic measurement of a sub-
ject’s performance is the response error—the difference between
the true centroid location of the target feature and the subject’s
mouse-click response. Although this difference is a 2D quantity,
therewere no significant differences between x and y components;
therefore, they are treated equally. Error magnitude is the
Euclidean distance error measured in units of display pixels.

All the data of all the experiments are exhibited in Fig. 3 A and
B, except the implicit data that are used to compute attention
filter weights. Fig. 3A depicts the response accuracy of multi-
item trials in terms of mean response error magnitude averaged
over the M different target conditions. The x-axis represents
the 11 experiments, and the y-axis represents the response error
magnitude in pixels. Response accuracy is best for zero-distracter
and centroid-of-ALL trials, slightly worse for precue trials (in 29
of 31 instances), and very significantly worse for post-cued trials.
For zero-distracter and centroid-of-ALL trials, subjects’ response
accuracy was independent of experimental conditions. For pre-
cued trials, subjects’ response accuracy was independent of
experimental conditions with one exception, S2, Expt. C0S4N6,
which reflects this particular subject’s inability to discriminate
four shapes.One-wayANOVA tests confirmed that there were no
significant differences among experiments for pre-cued (F (10,20)
= 1.385,P = 0.256), zero-distracter (F (10,20) = 0.721,P = 0.696)
and centroid-of-ALL trials (F (10,20) = 1.125, P = 0.392). For
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Fig. 3. Results of 11multicentroid judgment experiments for three subjects.
In all five panels, the x-axis represents the 11 experiments with their stimulus
parameters as coded in Fig. 2. The number above each bottom x-axis tick
represents M, the number of di�erent features the subject must attend.
In each of the 11 experiments, the symbols (triangle, diamond, circle)
represent a particular subject’s data. Small-size data points are from an
M-feature experiment that failed to exceed the prediction from an available
corresponding (M-1)-feature experiment. The 8 leftmost data points are from
experiments with 30 stimulus items, the 3 rightmost data points are from
experimentswith 24 stimulus items. Colored lines represent themeandata of
three subjects. (AandB) Response accuracy in termsofmeanerrormagnitude
in pixels—the distance between a subject’s centroid judgment and the true
centroid. The shaded areas aroundmean post-cued andmean pre-cued data
curves represent the confidence intervals ± 2SE (Standard Errors) for each
computed mean. Error bars (mean± 2SE) to the right of C4S4N4 apply to the
first 8 experiments; error bars on the far right apply to the three rightmost
experiments. (C and D) Filter weight for target features (Left ordinate). The
Right ordinate is a ratio, the average filter weight for target features (WT )
divided by average filter weight for distracters (1 � WT ). For centroid-of-ALL
trials, there are no distracters, target weight is defined as 1. (E)M ·N ·p, where
M is the number of di�erent features, N is the number of items of each
feature, and p is the probability of each item surviving an initial decimation
process that produces the observed mean error magnitude. M · N · p is the
minimum number of stimulus items that an ideal observer with the same
attention filter as the subject needs to process perfectly in order to match
the subject’s performance (Upper four curves); the dark blue bottom curves
represent the slightly smaller number of items required by an ideal detector
with a perfect target filter.†

post-cued trials, subjects’ response accuracy dropped significantly
as the number of attended groups increased (F (10,20) = 14.979,
P = 0.000).

Fig. 3B depicts themean response errormagnitude of singleton
trials averaged over the M different target conditions. The
mean error magnitude of singleton trials is remarkably similar
to the mean error magnitude of multi-item trials for pre-cued,
post-cued, and zero-distracter trial types in all 11 experiments.
The variability of multi-item data points is smaller than for

†For the nonroving C3S0N*10 experiment, the centroid SD for each feature was 56.6 ±
2.6. Details in Materials and Methods.
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singleton data because there were 2.5 times more multi-item
trials. Response accuracy for zero-distracter and pre-cued trials
is independent of experimental conditions, whereas response
accuracy for post-cued trials decreases as M increases.

Number of Surviving Target Items.When a subject’s mean
centroid error is 20 pixels, does this represent good or bad
performance? We measure the quality of a subject’s performance
in terms of the minimum number of stimulus items that an ideal
detector, which knows the exact location of every item and that
computes a perfect centroid, needs in order to match a subject’s
performance.

Fig. 4A shows the ideal detector model. The ideal detector has
only one source of error, an initial decimation process during
which each stimulus item has only a probability p, 0 6 p 6 1,
of surviving. The ideal detector considered here has a perfect
target filter that passes only the N target items and discards

A

B

Fig. 4. The ideal detectormodel and its expected centroid error as a function
of the number of surviving target items. (A) The ideal detector model. The
input is a stimulus image. In this example, it is a C2S2N6 stimulus (2 colors,
2 shapes, 6 dots for each feature, 24 dots total). The input image first
goes through a decimation process during which each stimulus item has
a probability p of surviving. Then, a perfect target filter removes all nontarget
itemsandpasses only surviving target items. If no target itemhas survived the
decimation process, the output is (0,0), the center of the screen. Otherwise,
a perfect centroid computation is carried out on the surviving target items.
A Monte Carlo method is used to estimate the mean error magnitude of
the ideal detector as a function of p (the curves in Fig. 4B). The number of
surviving target items is the product p*N of the survival rate, p, and the
number of target items, N (N = 6 in this example). Fig. 4A is adapted from Fig.
5 in ref. 17. (B) Mean error magnitude (abscissa) as a function of the number
of surviving target items (ordinate) for 3 kinds of trials in 11 experiments.
The data points show N · p, the least number of target items that must be
processed by an ideal detector with a perfect target filter to match a subject’s
performance. The colored lines represent the mean error magnitude of the
ideal detector as a function of the number of target items being processed
by the ideal detector for each of the 11 experiments using 8 di�erent
stimulus configurations. Data points indicated by “x,” “⇤,” and “+” represent
the mean error magnitude averaged over subjects’ data from an M-feature
experiment in which performance was better than could be predicted from
the corresponding (M-1)-feature experiment. Squares represent postcue data
from an M-feature experiment that failed to exceed the prediction from the
corresponding (M-1)-feature experiment.

all distracters. The ideal detector knows the exact location of
each of the N · p admitted target items and computes a perfect
centroid. A Monte Carlo method is used to estimate the mean
error magnitude of the ideal detector as a function of p for each
of the 11 experiments (curves in Fig. 4B). N ·bp is the minimum
number of target items that the ideal detector needs to match its
mean error to a subject’s mean error.

The curves in Fig. 4B depict the error magnitude (abscissa) as
a function of the number of surviving target items (ordinate) for
the ideal detector for each of the 11 experiments. Because the
ideal detector has a perfect filter, its performance depends only
on N, the number of target items in the stimulus, and on p, their
survival probability. Five curves are shown for the five values ofN
plus a sixth curve for the one nonroving condition C3S0N*10.
Data averaged over three subjects for the 3 kinds of trials in 11
experiments are shown as points on the ideal detector curves. All
subsequent references to the number of surviving target items are
based on these 33 numbers.

Target Weight. Response error magnitude informs us about how
far a subject’s response is away from the correct response, but
error magnitude is not informative about the nature of the
response computation. In the centroid paradigm, in addition
to error magnitude, the particular distribution of errors allows
us to estimate a subject’s attention filter for each experiment.
Attention filters, first used by ref. 4 and refined by ref. 11,
describe the weight for each target and each distracter feature
that best predicts the judged centroids. Attention filter weights are
estimated separately for each experiment, condition, and subject
to minimize the sum of the squared distances between responses
predicted purely by attention filters and observed responses
(details in SI Appendix).

For each subject, in each experiment, the Left ordinate in
Fig. 3C depicts the target weight WT of multi-item trials
averaged over the M features. In zero-distracter trials, only the
target feature was displayed, therefore the target weight for zero-
distracter trials is always 1. In centroid-of-ALL trials, subjects
were instructed to give equal weight to each feature. As no
significant weight differences were observed for various different
targets in centroid-of-ALL trials, in Fig. 3C target weight is
plotted as 1. For pre-cued trials, for all three subjects, target
weights are nearly 1.0, with one exception, Subj 2, Expt. C0S4N6
where Subject 2 found the 4 shapes difficult to discriminate. post-
cued trials are much more difficult than precue trials, and target
weight drops significantly as M increases. The Right ordinate
in Fig. 3C depicts the ratio between the aggregate weights of
the target features and the aggregate weight of all the distracter
features, WT /(1 � WT ). The ratio of the average target item
filter weight to the average distracter item filter weight is larger
by a factor of M -1, i.e., it is WT (M � 1)/(1 � WT ) ; this ratio
is a better indicator of filter selectivity, it is not illustrated here.

Fig. 3D depicts the target weight in singleton trials’ attention
filters averaged over M features for each subject in each
experiment. Although the target weights of singleton trials
are superficially similar to the target weights of multi-item
trials, a more detailed analysis (SI Appendix, Figs. S4 and S5)
shows that the error distributions differ. Wide multicentroid
error distributions reflect filter error, whereas distributions for
singletons are mixtures of narrow and flat distributions indicating
memory errors.

Number of Stimulus Items Processed. The number of surviving
target items is the absolute smallest number of stimulus items that
an ideal detector with a perfect attention filter needs to process
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in order to match a subject’s performance (Fig. 3E, dark blue
curves). While that is a useful characterization of the absolute
quality of performance, we here begin to derive a description
of how subjects arrive at their performances rather than merely
characterizing the quality of their performances. The first step is
replacing the perfect attention filter with the attention filter that
best characterizes a subject’s performance—the subject’s achieved
attention filter. Because a subject’s achieved attention filter is rarely
perfect, an ideal detector using a subject’s achieved attention filter
requires more items to match that subject’s performance than a
detector with a perfect filter. For a stimulus containing M · N
stimulus items, the number of stimulus items processed by a
detector with an achieved attention filter is expressed asM ·N ·bp .
Here,bp is the probability of survival that equates the mean error
magnitude of an ideal detector with a subject’s attention filter to
that subject’s measured error magnitude.

Fig. 3E depicts the number of stimulus items processed by
an ideal detector with a different attention filter for each of 3
subjects, 4 kinds of trials, and 11 experiments, averaged only
over target types. For comparison, the mean number of stimulus
items processed M · N · bp computed using a perfect filter is
shown only for post-cued trials (the dark blue curve). (The other
perfect vs. actual filter comparisons are shown in Fig. 5A.) For all
11 experiments, zero-distracter trials have the highest number of
stimulus items processed; pre-cued trials are very similar, and for
both kinds of trials there is no significant drop in performance
as the number of features to be processed increases. In contrast,
post-cued trials have the lowest number of surviving target items,
and post-cued performance declines significantly as the number
of features increases.

Two things are worthy of notice. First, the mean number of
stimulus items processed by an ideal detector with a perfect target
filter (the dark blue curve) closely follows the mean number of
stimulus items processed by an ideal detector with the subject’s
attention filter (the light blue curve). The great similarity between
these two curves indicates that subjects’ attention filters are not
a major source of error. Second, the number of stimulus items
processed for the pre-cued trial type is only slightly worse than
the corresponding zero-distracter trials. This indicates that, in

pre-cued trials, when subjects need to form only a single attention
filter, this single attention filter virtually eliminates distracters.

Number of Stimulus Items Processed Corrected for Motor
Error.We are interested here in the costs of computing and
rememberingmultiple centroids. However, even the report of the
position of a single stimulus item, the easiest possible condition,
has a significant error that we call “motor error”. We estimate
motor error variance and subtract it from the overall error variance
to enable us to better estimate perceptual and memory errors that
are of greater interest. Here, we report surprising properties of
zero-distracter and pre-cued centroid trials that are revealed by
subtracting motor error.

We estimate each subject’s motor error from zero-distracter
singleton trials in which only one stimulus item is shown on the
screen, and the task is to report the location of this item. The error
variance for such trials includes both motor error (positioning
the cursor) and memory noise (remembering the target location)
and possibly other components. Each subject’s motor error for a
particular stimulus type is computed as the overall error variance
of 50 zero-distracter singleton trials. Motor error variance is then
subtracted from the overall error variance in each experiment to
produce a set of data that is “corrected for motor error” for that
type of stimulus. The number of stimulus items processed by an
ideal detector is then recomputed in two slightly different ways
based on the data corrected for singleton error: 1) assuming the
subject’s attention filter and 2) assuming a perfect target filter.

Fig. 5 A and B depict the ideal detector’s estimates of the
total number of stimulus items processed, both corrected and
uncorrected for motor error, averaged over subjects. These
estimates are shown for the 4 types of trials in each of the 11
experiments using the subject’s attention filters and also using
perfect attention filters.

Fig. 5B shows that the numbers of stimulus items processed
for zero-distracter, pre-cued, and centroid-of-ALL trials after
correction formotor error are close to the data points representing
the total number of stimulus items. The average difference
between the zero-distracter subject’s filter curve and the number
of stimulus items is 1.37 items, the pre-cued difference is 1.47
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Fig. 5. Number of stimulus items processed, averages of three subjects, in four types of multi-item trials in each of 11 experiments, uncorrected and corrected
for motor error. In (A) and (B), the shaded area around the post-cued curves represents the confidence interval for± 2 standard errors (SE) for each experiment.
Error bars (mean± 2SE) at the extreme Left of Fig. 4 apply to the 8 experiments with 28 to 32 items; error bars on the far Right apply to the 24-item experiments.
(A) Themean number of stimulus items processed by an ideal detector with each individual subject’s filter and with perfect target filters for pre-cued, post-cued,
zero-distracter, and centroid-of-ALL trials in 11 experiments. The black line represents the performance ceiling, the total number of stimulus items in each
experiment. (B) The number of stimulus items processed assuming subject’s attention filters and also perfect target filters, all corrected for motor error—i.e.,
the variance of zero-distracter singleton trials (motor error) was subtracted from mean error variance in each experiment and condition.
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items, and the centroid-of-ALL difference is 1.01 items. These
small differences indicate an extraordinary processing capacity:
For zero-distracter, pre-cued, and centroid-of-ALL multi-item
trials, subjects utilized essentially all the 30 ± 2 target items
displayed on the screen to compute their centroid response, and
that the centroid error observed in data that include motor error
is due to the subjects’ inability to perfectly output the result of
their centroid computations.

Discussion

How Many Centroids Can Observers Compute Concurrently?
Prior studies. (9, 22, 23) attempted to measure the number
of features that can be processed concurrently in ensemble
perception. The task in all three studies was estimating the
number of items composed of a particular cued feature. The
criterion for all three studies was the minimum number of item
features for which performance was reliably different between
the pre-cued and the post-cued conditions. Poltoratski and Xu
(22) and Luo and Zhao (23) reported 2 and Halberda et al.(9)
reported 3 concurrently processed numerosity estimates.

Figs. 3 and 5 illustrate pre-cued performance that is almost
identical to zero-distracter performance. By definition, in zero-
distracter trials, there is only one centroid available to be
computed, the target centroid. The almost identical performance
between pre-cued and zero-distracter trials indicates that, in pre-
cued trials, subjects compute only the pre-cued target centroid,
i.e., subjects have very good attention filters. Therefore, all that
one can learn from the difference between pre-cued and post-
cued performance is that more than one feature is processed in
the post-cued trials. That post-cued trials have a significantly
greater error than pre-cued trials (the measure of capacity in
prior studies, e.g., ref. 9, 22, 23) only tells us that there may
be some cost in processing more than one group of items,
not that processing a particular number of groups is possible
or impossible. To estimate the number of features that can
be processed concurrently, we determine the extent to which
performance on M -1 feature trials can predict performance on
M feature trials. When performance on M feature trials exceeds
the optimal extrapolation of performance onM -1 feature trials it
means at least some additional capacity is displayed onM feature
trials, versus that the available capacity was merely divided more
finely. This capacity analysis is developed in the next section.
Subsampling analysis: Predicting target weight and errors in
M-feature experiments from (M-1) and (M-2)-feature experiments.
How many centroids can a subject compute simultaneously? To
estimate the number of centroids that a subject can compute
simultaneously, we used the data of (M -1)- and (M -2)-feature
experiments to predict a subject’s performance in the M-feature
experiment. Specifically, subjects are assumed to have only M -1
or M -2 attention filters. This results in two kinds of M -feature
trials: a) (M � 1)/M or (M � 2)/M “available-filter” trials
in which subjects report a feature using the same filters as in the
correspondingM -1 andM -2 feature trial, and b) 1�(M�1)/M
or 1 � (M � 2)/M “unavailable-filter” trials in which subjects
must report a feature they cannot process. Available-filter trials
were analyzed as if the stimulus items for which the subjects
did not have a filter were invisible. i.e., these trials are basically
similar to trials in experiments with M -1 or M -2 features, and
these stimuli are processed similarly in terms of target weight.
On the 1� (M � 1)/M or 1� (M � 2)/M “unavailable-filter”
trials on which subjects are presented with a feature they cannot
process, they click the center of the screen. These strategies are

statistically optimal for stimuli that contain items that cannot be
processed.
The three possible outcomes of the subsampling analysis.When
the subject’s actual performance with M centroids is better
than the predicted performance from M -1 or M -2 centroids,
it means that subjects must have computed M centroids. When
the subject’s actual performance is equivalent to the predicted
performance, it is ambiguous whether a) subjects could have
computed justM -1 orM -2 centroids and still have produced the
observed performance on M -feature trials or b) have computed
M centroids but just not better than the M -1 prediction. When
the subject’s actual performance is worse than the predicted
performance, it implies that the subject used a suboptimal
centroid-computation strategy.

The review of ref. 17 in the introduction section pointed out
that subjects were able to concurrently compute three centroids.
Therefore, the stimuli in the present experiments which were
designed to find the limits of performance contained 3 to 8
centroids. Fig. 6 displays the data and the predictions of the
subsampling analysis.
The results of the subsampling analysis: The number of subject–
computed centroids. For multi-item post-cued trials, Fig. 6 A, C,
and E depict observed and predicted target weights; Fig. 6 B, D,
and F depict observed and predicted response errors individually
for three subjects when (M -1)- and (M -2)- feature experiments
were used to generate predictions for M -feature experiments.
Predictions were based on Efron’s (24) method of stimulus
resampling (200 runs); the error bars were so small they are
omitted in the graph. The target weight subsampling predictions
are similar to but slightly more discriminating than the response
accuracy predictions, so we concentrate on target weights.

For Subject 1 (Fig. 6A), the predicted target weights are
worse than the observed weight from M4 to M7 and are equal
to M8. If either target weight or response accuracy indicates
that a subject must have computed M centroids and the other
measure is ambiguous (i.e., does not contradict the first measure),
that is sufficient to demonstrate the success of an M -centroid
computation. (That anM -1 prediction equals performance does
not mean that M -1 was the basis of performance, only that it
could have been.) This logic implies that Subject 1 is able to
establish at least 7 concurrent attention filters and to compute 7
concurrent centroids because the attention filters are derived from
successful centroid performance. For response errors (Fig. 6B),
Subject 1’sM -data are better than predicted fromM -1 data forM
= 4, 5; equivalent forM = 6, 7, and worse forM = 8. Based only
on response error, Subject 1 can compute at least 5 concurrent
centroids, for M = 6, 7 the response-error data are ambiguous.
The failure of Subject 1 to match the (M -1)-prediction for M
= 8 means that attempting to compute 8 centroids leads to
worse performance than could have been achieved by consciously
ignoring one of the eight presented features. Based on attention
filter accuracy and not contradicted by the response error analysis,
Subject 1 was able to compute 7 but not 8 concurrent centroids.

For Subjects 2 and 3, the target weight (Figs. 6 C , E) and
response error (Figs. 6 D, F ) predictions. Following similar
reasoning as for Subject 1, we conclude that Subjects 2 and 3
can create 5 concurrent attention filters and compute 5 centroids
concurrently following a brief stimulus exposure. As centroids
are computed on data that are represented in salience maps, we
conclude that our three subjects have at least 7,5,5 salience maps.
These numbers of salience maps are significantly greater than
the 3 salience maps observed by Sun et al. (17)—the maximum
possible in their procedure.
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A B

C D

E F

Fig. 6. A subsampling analysis of multi-item post-cued trials to determine
the number of centroids that a subject computes. To demonstrate M
computed centroids, subjects’ location errors and/or target-filter weights in
M-feature experiments must exceed predictions from (M-1)- or (M-2)-feature
experiments. For all six panels, the black integers above the horizontal axis
represent M, the number of di�erent stimulus features. Underneath the
figures, C, S, and N indicate the number of stimulus Colors, Shapes, and
target items. In panels A, C, E, the ordinate is the estimated weight of the
target feature; in panels B, D, F , the ordinate is the observed mean error in
judged centroid location. Blue dots indicate a subject’s mean data; the error
bars indicate ± 2 standard deviations of the mean. Red symbols indicate the
result when an (M-1)-feature experiment is used to predict performance in
an M-feature experiment. To illustrate, the black arrows from blue M3 data
to red M4 predictions and from M4 to M5 illustrate the source and target of
two of the 4 or 5 predictions in each panel. The figure is too crowded to show
the other arrows. The yellow symbols indicate predictions of an (M-2)-feature
experiment. When a prediction of an (M-1)- or (M-2)- feature experiment
equals or exceeds observed performance on an M-feature experiment, it
means that a subject potentially could have processed only M-1 or M-2
features and have achieved the observed M-feature performance. It does
not exclude the possibility that the subject can process M features, it just
means that this particular prediction is ambiguouswith respect to thenumber
of features actually processed. Experiments on the Left of the vertical lines
in the first column were the experiments in which subjects’ performance
in M-feature experiments exceeds the predictions from corresponding M-1
feature experiments.

Process Models of Pre-cued and Post-cued Centroid Trials.
Model of a post-cued centroid trial. Fig. 7 A and B are elaborations
of the model in Figure 6 of reference (17), they are based on
the data herein. Fig. 7A illustrates how the retinal image of
the stimulus display in a post-cued trial is transformed into a
response. Fig. 7B does the same for pre-cued trials. The concern
here is identifying possible sources of error. Error sources in Fig.
7A are (1a) failure to encode stimulus items prior to the point at
which the target items have to be segregated (encoding failure),
(1b) the number of stimulus items that survive to be grouped; 1a
and 1b are not distinguished in the subsequent error analysis and
treated together as multichannel loss. 2) the precision of attention
filters (% inclusion), 3) error in the computation of centroids, 4)
working memory (the limited capacity to record centroids and
the precision of the recording as determined by memory noise),

and 5) “motor” error in producing the response. The blue areas
in Fig. 7 A and B illustrate these five error sources, which are
estimated in a subsequent section.
Model of a pre-cued centroid trial. pre-cued trials begin with a
small fixation stimulus (the precue) that is a sample of the items
whose centroid is to be reported. As in post-cued trials, it is
followed by the stimulus display, a poststimulusmask, a reminder
screen with a sample of items whose centroid is to be reported,
and finally, the response screen. In the pre-cued model, prior
availability of the precue is assumed to enable selective filtering
that is so effective that only the cued items are encoded and there
is no encoding noise (no perceptual loss). As illustrated in Fig. 5
A and B, the centroid accuracy of a pre-cued subset is nearly as
accurate as the response to zero-distracter trials. The remarkable
performance of our practiced subjects indicates that, although
pre-cued centroid tasks involve some processes similar to post-
cued centroid task processes, pre-cued centroids are completely
different because they involve encoding only the pre-cued items.

Estimating the Sources of Error in Multicentroid Processing.
Five error sources defined. Based on the models in Fig. 7, the data
from multicentroid and singleton trials enable the derivation of
five component errors for each experiment that are assumed to
add independently to produce the observed response errors: 1,
loss in each channel that conveys information about a particular
class of stimuli from the input all the way to the memory
component but not including 2, attention filter imperfections
and 3, centroid computation errors, each of which is computed
separately; 4, memory error in storing and recalling the computed
centroids; and 5, motor error in producing a cursor response to
represent the recalled memory content.
Distance and item error estimates. In the prior sections, we
considered two ways of measuring error: a) the pixel distance
of the response from the target, and b) the number of stimulus
items an ideal detector must discard (items lost) in order to
match a subject’s performance level. To produce total pixel error
squared for Experiments with M different features, E2

M , the
squared component errors of five assumed-to-be-independent
stages j add independently. The sequence in which these stages
occur is irrelevant.

Post-cued error: E2
M =

X

j=1,5
E2
j,M . [1]

Unfortunately, there is no equivalent item theory to derive
total item error I from independent component item errors.
In an item theory, the items lost at each stage depend on
the number and quality of items delivered by the prior stage
(interdependence). However, to aid intuition about how well
the stimulus information is utilized, we derive a “number of
items lost” that would produce the observed “distance error’ (and
vice versa) after three processing levels: perceptual, memory, and
motor.

To estimate the five component error sources, only the 12/19
conditions in which the analysis of Fig. 6 indicates that a
subject did not use a subsampling strategy are included. Two
different conditions (C6S0N5 and C3S3N5) in which there are
six different item types are combined. Parameter estimates of
mean-square pixel-distance errors and of items-lost errors are
made individually for each subject, the averages of these are
reported in the text and Fig. 8.

Motor error E5 is the pixel-distance error observed in trials
in which only one item is presented and the subject’s task is to
mouse-click the location of that item (Fig. 3B, Zero-distracter
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A   Process model of a post-cued mulit-item trial

B   Process model of a pre-cued mulit-item trial

Fig. 7. Flow chart of the essential components of computational models of post-cued and pre-cuedmulti-item trials. (A) A computational model of a post-cued
multi-item trial in which a stimulus array (9 dots of 3 colors in this example) is transformed into a single response, the centroid of the dots whose color
matches the postcue. The first three components represent the stimulus sequence. The rectangular fixation bar indicates a post-cued trial. The stimulus
image is represented as pixels, early visual processing transforms it into an array of items (indicated as small squares) each of which consists of a feature
and a location. Interpretation of the precue fixation point indicates that multiple attention filters are needed. Not all stimulus items can be fully processed,
some of the multichannel loss of stimulus information is represented by a decimation process. Every stimulus item has the same probability p, 0 6 p 6 1, of
survival. Three attention filters assign a weight to each surviving stimulus item according to its feature (color, in this example). The filter output (weighted items)
constitutes a group. The content of each group—the weight and spatial location of each group item—is passed to a salience map. A centroid process computes
a centroid location based on the weights and locations of the items in the salience map. In this path, feature information is associated with items only by an
executive control process that binds each centroid with its filter label. The labeled centroids are transferred into working memory and perturbed by memory
noise. Response output is triggered by a postcue that indicates which centroid is to be reported. A mouse-click response is made with additive motor error.
Blue color in a component indicates it is a source of information loss in the five-error-source model. (B) Pre-cued multicentroid model. The components and
processes of the precue computational model are the same as the postcue computational model except for 1) Pre-cued trials begin with a precue indicating
which feature-centroid to report, therefore only one attention filter is needed, and it assigns nearly all weight to items whose feature matches the precue. 2)
Only one channel is used, and only one centroid is computed. The single centroid stored in working memory is the response. 3) Because the precue defines
the feature of a small group of to-be-attended items, there is very little channel loss (only cued items are processed to the level of entering into a group) and
little memory loss (only one centroid needs to be recorded).

Singleton trials. There are insufficient trials to discriminatemotor
error in different conditions, so they are all combined in these
estimates: E5 = 14.8, 14.6, and 13.4 pixels for the three subjects.
For reference, the diameter of an individual stimulus dot is
15 pixels (0.39 deg for subjects 1 and 3; 0.43 deg for subject
2). Motor error squared for 10 conditions is shown Fig. 8 E
and F ; the motor error item loss is in Fig. 8 I and J . The
motor error proportion of the total error variance is much
smaller than in the item analysis for two reasons: 1) Squaring
distance errors give a much greater relative weight to larger

versus smaller errors than does the item analysis. 2) The item
analysis asks “if there were no motor error how much better
would the total item score have been.” The raw item score
indicates that at least 12 stimulus items have been processed
in every post-cued multicentroid condition. To further improve
this already good accuracy to the level it would be without motor
error requires processing more additional items than intuition
suggests (SI Appendix, Fig. S3). This discrepancy between two
different measurements (distance, item) illustrates a fundamental
measurement principle: The relative importance of various
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Fig. 8. Estimates of five additive component error sources in multicentroid computations: Perceptual errors include 1) channel loss 2) attention-filter error, 3)
centroid computation error; postperceptual errors include 4) storing and recalling the computed centroid (working memory, and 5) motor error in producing
a cursor response to represent the memory content. For all ten panels, the x-axis is the number of di�erent stimulus features. The Upper row represents
pre-cued trials; the bottom row, post-cued trials. Data are only from subjects and multi-item conditions that exceeded subsampling predictions (Fig. 6). (A and
B) Attention filter weight of targets in multi-item and singleton trials. (C and D) Mean squared error in units of display_pixels2 for multi-item and singleton trials
with and without correcting for motor error (tiny di�erences are not visible). The numbers under the vertical arrows represent the component(s) measured by
the arrows except motor error (5) which is too small to display clearly. (E and F ) Error component variances as a fraction of the target location variance. (G and
H) The number of stimulus items lost for singleton and multi-item trials, with and without correcting for motor error. (I and J) Component item loss as a fraction
of total stimulus items.

sources of error depends on the particular choices of how error is
measured.

Centroid computation errors E2
3,M are estimated from trials

in which only 4 to 10 target items and zero distracters are
presented (Fig. 3A, multi-item zero-distracters trials). The only
other significant source of error in these trials is motor error
which is subtracted from the response error to yield the squared
centroid computation error E2

3,M . Our experienced subjects were
so accurate in estimating single centroids that these centroid
errors are too small to represent on the scales used for the other
errors in Fig. 8. Centroid computation errors are probably greater
when multiple centroids have to be computed, but we have not
found an efficient way to estimate them here.

Attention filter discrimination of targets from nontargets is
indexed by the fraction of the total filter weight of 1.0 that is
assigned to the target filter. The pre-cued attention filter weights
in Fig. 8A represent virtually perfect target discrimination.
For post-cued trials (Fig. 8B), filter weights for (multi-item,
singletons) decrease from (0.97, 0.94) to (0.78, 0.83) as the
number of target types M increases. The distance errors E2

2,M
that would be produced by these attention filters are shown Fig.
8 E and F .

Memory loss E2
4,M in Experiment M is the error difference

between singletons and motor error averaged over the M target
conditions. The only error sources for post-cued singletons are
remembering the feature and location of the to-be-cued single
item until the postcue appears, and then moving the cursor to
the remembered location of cued item:

E2
4,M = Singleton error2M � Motor error2

= (E2
4,M + E2

5 ) � E2
5

I4,M = (I4,M + I5,M ) � I5,M .

[2]

In both the distance error and item error analysis, memory loss
increases with the number of locations to be remembered.

Channel loss E2
1,M is the residual after all the other error losses

have been accounted, i.e., the total error minus (filter error +
centroid error + singleton error):

E2
1,M =

X

j=1,5
E2
j,M � E2

2,M � E2
3,M � (E2

4,M + E2
5 ). [3]

Fig. 8 shows the result of the above estimates of the channel,
filter, memory, and motor components of response error in
the multicentroid post-cued task. The general summary is that
channel and working memory are the major sources of error in
the multicentroid task according to both the distance and item
analyses. In the distance error analysis, there also is appreciable
filter loss and negligible motor error. In the item analysis, filter
loss was not isolated, it was incorporated into perceptual loss,
whereas motor error was appreciable.

Updated Representation of the Salience System. The process
by which items that have a similar color or a similar shape are
isolated and separated as a group is not simple, but it is simple
to describe and its effectiveness is measured by the selectivity of
attention filters. The brain process of computing the centroid
of the grouped items has to be independent of the identity
of the items because there is an infinity of different possible
items. This independence of item content is accomplished by
representing the contents of a group of similar items on a salience
map that records only the location of items and a real number
quantity (salience) at that location. Salience maps were originally
proposed to represent the importance (salience) of locations. A
winner-take-all computation on the map found the most salient
location (12), and that locationwas then used to guide subsequent
processes, such as visual, search, eye movements, and pattern
identification (Fig. 1 in Introduction).

Salience maps have been proposed as the basis of the
computations other than processing priority: attention-generated
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Fig. 9. Updated representation of the human salience system showing five semiindependent salient maps and the processes that until now have been
demonstrated to utilize them. Stimulus information is processed by various feature maps, and the outputs of feature processing are directed to attention
filters. Five attention filters are illustrated for the conditions of Expt. 3 in which 6 dots in each of 5 di�erent colors were presented. After the stimulus
presentation, subjects were cued to report the centroid of just one set (C5, S0, N6). Filter outputs (the locations and strengths of surviving items) are directed
to salience maps. In all the experiments described here, the outputs of the salience maps were directed to centroid computations, but the figure also shows
the other computations that until now have been demonstrated to utilize salience maps.

motion (25), distance estimation between two points in the
frontal plane (26), letter and shape identification (27) and, in
the present case, a centroid computation (17). In contrast to
Fig. 1, our present understanding of salience maps is represented
in Fig. 9 which shows the 5 salience maps that all our subjects
demonstrated, and the various uses of salience maps that have
been demonstrated by this and the studies cited above.

Conclusions

The previous sections demonstrated how subjects perform when
they view brief exposures of displays composed of 28 to 32 items
composed of 3 to 8 different features (colors or shapes). The
task was to judge the centroid of just the items composed of one
randomly designated feature. The feature to be reportedwasmade
known to the subject either 0.5 s before the display (precue) or
only after a postexposure masking field that followed the stimulus
exposure (postcue). The results, centroid estimation distance
errors, were interpreted in terms of the number of stimulus items
that a statistical ideal observer with perfect knowledge of item
identity and location would require to match each subject’s
performance. In pre-cued trials, as the number of centroids
increased from 3 to 8 in displays of 28 to 32 items, performance
remained approximately constant, an ideal observer would have
to perfectly process 25 items to match the subjects’ performances,
and about 30 items if motor error in producing a response is
taken into account. On the other hand, on post-cued trials, to
match the subject’s performance on displays with three centroids,
the ideal observer required perfect knowledge of 17 items; for
displays containing 7 centroids, performance declined to 10
items. Performances on M -centroid trials that exceeded optimal
predicted performance (based on subsampling M -1 centroids)
indicated that all subjects could compute at leastM = 5 centroids
and one subject could compute 7 centroids on post-cued trial.
When the critical feature of the items whose centroid was to
be reported was shown to the subject before a trial (pre-cued
condition) their performance was almost the same as on trials in
which distracter items were physically removed and only target
items were displayed. This near equivalence demonstrates nearly
perfect attention filters on pre-cued trials.

A computational model that characterizes the subjects’ cen-
troid performances (Fig. 7) consists of perceptual processing
(converting pixel images into items composed of features and
a location, channeling the items into attention filters, grouping
the filter outputs and computing the group centroid), entering
the centroids into working memory, and converting the cued
memory contents into a motor cursor response. The amount of
noise introduced at each of these steps was estimated in terms
of response error (pixel distance of response to target) and the
number of stimulus items lost at each stage. The two main
sources of error were channel loss in processing so many items
and memory loss. The distance analysis also found significant
attention-filter error, the item analysis found significant motor
error, and centroid computation errors were minimal. In the
context of the models and the aforementioned error analysis,
the accuracy of our subjects in locating the centroids in briefly
exposed arrays as accurately as they did requires that the three
subjects have processing capabilities equivalent to at least 7,5,5
concurrently available salience maps.

Materials and Methods
Subjects. The first and second authors (Subj1, Subj2) participated in the
experiment. Subj3 was naïve to the purpose of the experiments. The three
subjects (two females and one male) ranged from 23 to 40 y of age. All subjects
reported having normal or corrected-to-normal vision. Methods were approved
by the UC Irvine Institutional Review Board, and all subjects signed informed
consent forms. The protocol and signed consent forms were approved by the
UCI IRB. Subj1 and Subj2 were experienced in doing centroid tasks. Subj3 had
no experience in doing centroid tasks; therefore, prior to starting Expt. 1, Subj3
had four 1-h centroid training sessions.

Apparatus. The experiment was conducted on an iMac intel computer installed
with MATLAB 2018b and Psychtoolbox-3 software. For Subj1 and Subj3, the
stimuli were presented on an ASUS ProArt Display monitor with 1,920⇥ 1,200
resolution at a refresh rate of 60 Hz, mean luminance 62.4 cd/m2. The monitor
screenwas 51.8 cmwide⇥32.4 cmhigh, pixels were 0.27mm⇥0.27mm. For
Subj2, the stimuli were presented on a Samsung SyncMaster 2233BW Display
monitorwith1680⇥1050 resolution at a refresh rate of 60Hz,mean luminance
32.5 cd/m2. Themonitor screen was 47.6 cmwide⇥ 29.6 cm high, pixels were
0.282 mm⇥ 0.282 mm.
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Number of Trials. An experiment consisted of four types of blocked sessions:
one pre-cued session in which a precue indicated the target feature, one post-
cued session in which the postcue was shown after stimulus and mask, one
zero-distracter session in which only the target feature of items was displayed,
and one centroid-of-ALL session in which all features were targets. Singleton
trials were interleaved in pre-cued, post-cued, and zero-distracter sessions. In
both precue and postcue sessions, each feature was cued in 50multi-item trials
+20 singleton trials; all featureswere interleaved in amixed-list design. In zero-
distracter sessions, all features were interleaved, and each feature was tested in
25 multi-item trials + 5 singleton trials. Centroid-of-ALL sessions had 50 trials.
The 217 data points of Fig. 3 A and B summarize 32,210 trials.

Stimuli. For pre-cued, post-cued, and centroid-off-ALL trials in each of 8
experiments, the stimulus display contained 28 to 32 interleaved items of
M different features. Features were either M different dot colors, M shapes, or
a mixture of colored dots and shapes. The colors of dots were red, blue, green,
white, purple, andblack. The shapeswereGaborpatches, plus signs, letter A, and
square boxes. All features within an experiment had the same number of items.
The numberMwas 3 for Expt. 1a and 1b, 4 for Expt. 2a, 2b, 2c, and 2d, 5 for Expt.
3,6 forExpt.4aand4b,7 forExpt.5, and8 forExpt.6. (For3experiments (Expt2b,
2c, and 2d) stimuli contained 24 items, composed of either 4 colors or 4 shapes,
or a 2+2mixture.) For pre-cued and for post-cued trials, on each trial, a random
one of the features was designated as the target feature. For zero-distracter
trials, the stimulus display contained only one randomly selected feature from
the M features of the corresponding experiment. For centroid-of-ALL trials, all
M features were targets. In addition to multi-item stimuli, singleton stimuli
consisted of just one item from each feature. The position of each singleton item
was the centroid of the feature from the corresponding multicentroid trial. Fig.
2 and SI Appendix, Fig. S1 show sample stimuli.

Dimensions. Stimuli were displayed for 300 msec within an 800 by 800 pixel-
wide square (Fig. 2) that spanned 20.4 deg of visual angle (dva) for Subj1, Subj3
and22.0 dva for Subj2. The diameter of colored dots (filled circles) was 15pixels,
spanning 0.39 dva for Subj1 and Subj3 and 0.42 dva for Subj2. Stimulus items

in any shape other than filled circles were inscribed inside invisible circles of
28-pixel diameter, spanning 0.72 dva for Subj1 and Subj3 and 0.78 dva for
Subj2 to prohibit items from overlapping. All stimuli were clearly visible on the
gray background.

Centroid standard deviation and item dispersion. In order to produce useful
data, different features have to have sufficiently different centroids. To achieve
centroid separation, we first randomly chose centroid locations and then
varied item locations around the chosen centroid as follows: Stimulus displays
containedM different features withN items per feature for a total ofM *N items.
Except for Expt. 1a, nonroving C3S0N*10, in each stimulus display, locations of
the itemsweredeterminedbya three-stepprocess: 1)M initial centroid locations
were drawn from a bivariate normal distribution centered on the center of the
screen and with a SD of 80 pixels. 2) N item locations were drawn from a
bivariate normal distribution which centered on each of the M centroids. The
sample locations were divided by the SD of the N samples and then multiplied
by a fixed constant to ensure that the locations of all generated arrays would
have the same SD (dispersion) of pixels on every trial. 3) The location of an item
was resampled if its location occurredwithin 5 pixels of another item. The overall
centroidSD that resulted from the initial locationof each centroid followedby the
repositioning of the centroid due to the sampling and resampling of the items
within each individual feature was 170.0 ± 10.6 pixels for the 7 experiments
containing 28 to 32 stimulus items; 121.2 ± 3.5 pixels for the 3 experiments
containing 24 stimulus items. For Expt. 1a, nonroving C3S0N*10 trials, the
procedure of generating the locations of items was the same as the procedure
described above, except that the 3 initial centroid locations were the center of
the screen and the centroid SD was 56.6± 2.6 pixels.

Data, Materials, and Software Availability. Anonymized Matlab files data
have been deposited in https://github.com/Lingyu-Gan/Deriving-the-number-
of-Salience-maps.git (28). All study data are included in the article and/or
SI Appendix.
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Supporting Information Text11

Estimating a subject’s attention filters12

The model for estimating a subject’s attention filters assumes that the only source of error in centroid computation is an13

imperfect attention filter. To compute a centroid response based on an attention filter, each item is weighted according to the14

filter value of its feature. The predicted response is the centroid of the filter-weighted items as described below.15

For a trial j that has M di�erent features and N items per each feature, let WT (m) be the weight assigned to feature m
when T is the target feature, let Xm(j) and Ym(j) be the x- and y-coordinates of the mean location (centroid) of items whose
feature is m, and Px,T (j) and Py,T (j) be the x- and y-coordinates of a predicted response. Equations 1a and 1b describe the
subject’s predicted response on trial j:

Px,T (j) =
Mÿ

m=1

WT (m) · Xm(j) [1a]

Py,T (j) =
Mÿ

m=1

WT (m) · Ym(j) [1b]

WT (m) is constrained by:16

Mÿ

m=1

WT (m) = 1 [2]17

In an experimental condition, for a set of J trials that have the same M features and the same target feature T, a subject’s18

attention filter is the M values of WT (m) that minimizing the sum of the squared distances between the predicted and observed19

responses. Denote the x- and y-coordinates of a subject’s observed response on trial j as Rx,T (j) and Ry,T (j). The estimated20

attention filter is the values of WT (m) as defined in Equations 1,2 that minimize "Loss" in Equations 3 and thereby maximize21

the likelihood of WT (m).22

Loss =
Jÿ

j=1

[(Px,T (j) ≠ Rx,T (j))2 + (Py,T (j) ≠ Ry,T (j))2] [3a]

=
Jÿ

j=1

[(�Xj,T )2 + (�Yj,T )2] [3b]

Minimizing Loss in Equations 3a,b is equivalent to maximizing the likelihood L in Equation 4:23

L =
JŸ

j=1

1
2fi‡2


1 ≠ fl2

e
≠ 1

2(1≠fl2) [(
�Xj,T

‡ )2≠2fl(
�Xj,T

‡ )(
�Yj,T

‡ )+
�Yj,T

‡ )2] [4]24

In Equation 4, fl is the correlation between �XT and �YT . Taking the log of both sides of Equation 4 yields the log-likelihood25

ratio ln(L) which is the normal computational form.26

ln(L) = ≠ J [ln (2fi) + 2 ln ‡ + 0.5 ln (1 ≠ fl2)] ≠ 1
2‡2(1 ≠ fl2)

Jÿ

j=1

[(�Xj,T )2 + (�Yj,T )2 ≠ 2fl�Xj,T �Yj,T ] [5]27

Attention filter weights as estimated by Equation 5 were separately estimated for each experiment, each condition, and each28

subject to maximize Equation 5 by using a Markov Chain Monte Carlo (MCMC) algorithm constrained by Equation 2.29
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Sample stimuli
C3, S0, N10 C4, S0, N8Expt. 2a  Expt. 1 C4, S0, N6 C0, S4, N6Expt. 2b  Expt. 2c  

C5, S0, N6C4, S0, N6Expt. 2d  Expt. 3 C6, S0, N5 C3, S3, N5Expt. 4a Expt. 4b

C4, S3, N4 C4, S4,N4Expt. 5 Expt. 6 

Fig. S1. Sample stimuli for each experiment. ‘C’ represents the number of different colors of dots in the stimulus display, ‘S’ represents the number of different shapes, and ‘N’

represents the number of items in each feature class.
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M4 C4S0N8

M4 C4S0N6
M4 C2S2N6
M4 C0S4N6

M5 C5S0N6

M3 C3S0N10 NR
M3 C3S0N10

M6 C6S0N5
M6 C3S3N5

M7 C4S3N4
M8 C4S4N4
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Mean error magnitude (pixels)
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Post-cued
Zero-distracter
Failed post-cued

The number of stimulus items processed (              )

Fig. S2. The number of stimulus items processed by an ideal observer (ordinate) as a function of the mean response error magnitude (abscissa) for 3 kinds of trials in 11

experiments. Text figure 4b shows N · p; figure S2 shows M · N · p . The data points show M · N · p, the least number of stimulus items that must be processed by an ideal

observer with a perfect target filter to match a subject’s performance. The colored lines represent the number of stimulus items processed by an ideal observer as a function of

the mean response error magnitude for each of the 11 experiments that used 8 different stimulus configurations. Data points indicated by ‘x’, ‘ú’, and ‘+’ represent the mean

error magnitude averaged over subjects’ data from an M-feature experiment in which performance was better than could be predicted from the corresponding (M-1)-feature

experiment. Squares represent post-cue data from an M-feature experiment that failed to exceed the prediction from the corresponding (M-1)-feature experiment.
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Fig. S3. Number of stimulus items processed in multi-item pre-cued and post-cued trials, uncorrected and corrected for motor error. Each row represents a subject and each

column represents one experiment. The dashed black curve in each panel represents the number of stimulus items processed by an ideal observer (ordinate) as a function of

the mean response error magnitude (abscissa). The data points show M · N · p, the least number of stimulus items that must be processed by an ideal observer with a

perfect target filter to match a subject’s performance. Red points represent the data uncorrected for motor error Blue points represent data corrected for motor error. ‘ú’ and ‘+’

represent multi-item post-cued and pre-cued trials.
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Fig. S4. Histogram plots of error magnitude of multi-item post-cued trials. Each row represents a subject and each column represents one experiment. A gray background

indicates data failing to exceed the subsampling strategy prediction.
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Fig. S5. Histogram plots of error magnitude of singletons post-cued trials for 3 subjects in six experiments. Each row represents a subject and each column represents one

experiment.
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