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How well can observers selectively attend only to dots that are lighter or darker than the background when all dot intensities
are present? Observers estimated centroids of briefly flashed, sparse clouds of 8 or 16 dots, ranging in intensity from dark
black to bright white on a gray background. Attention instructions were to equally weight: (i) dots brighter than the
background, assigning zero weight to others; (ii) dots darker than the background, assigning zero weight to others; (iii) all
dots. For each observer, a quantitative estimate of the operational attention filter (the weight exerted in the centroid estimates
as a function of dot intensity) was derived for each attention instruction in each dot condition. Attended dots typically have 4�
the weights of unattended dots. Whereas observers performed remarkably well in estimating centroids and achieving the
three required attention filters, they achieved higher accuracy when equally weighing all dots than when selectively attending
to dots of only one contrast polarity. Although their attention filters are similar, individual observers use significantly different
parameters in their centroid computations. The complete model of performance enables perceptual measurements of
observers’ attention filters for shades of gray that are as accurate as physical measurements of color filters.

Keywords: attention, search, model, filter, centroid

Citation: Drew, S. A., Chubb, C. F., & Sperling, G. (2010). Precise attention filters for Weber contrast derived from centroid
estimations. Journal of Vision, 10(10):20, 1–16, http://www.journalofvision.org/content/10/10/20, doi:10.1167/10.10.20.

Introduction

Our perception of the world around us depends not only
on the external world but on the elements that we choose
to process. In regard to this selective attention, James
(1918) notes “My experience is what I agree to attend to.
Only those items which I notice shape my mindVwithout
selective interest, experience is an utter chaos.”
We are concerned here with a particular aspect of

selective attention, that is, attentional selection as a filter
that enables relevant display information to pass to higher
mental processes and that blocks the passage of less useful
information. A critical element of this aspect is the
voluntary nature of the attentional selection. Voluntariness
is demonstrated by showing that different attention instruc-
tions cause equivalent stimuli to be processed differently.
The modern experimental study of the filtering aspect of

selective attention is often traced to the work of Broadbent
(1954) and Cherry (1953; for a review, see, e.g., Pashler,
1997) who studied auditory attention to one of two con-
current speakers while ignoring the other speaker. These
studies determined that some physical cues, such as the
spatial localization of the speaker and the pitch of the
voices, were sufficient to enable the listener to separate

concurrent messages and attend to just one, i.e., to select one
voice stream for higher level processing. In this demonstra-
tion, it was important that given precisely the same voices
and locations, observers could (1) selectively attend to either
one or the other voice (to exclude masking of one voice by
the other), and (2) they could not process both voices
simultaneously (to demonstrate that selective attention is
required).
An early demonstration of visual selective attention was

Sperling’s (1960) partial-report paradigm. His studies
illustrated the ability of observers to selectively attend to
one of three briefly flashed rows of letters, enabling the
attended row to be recalled whereas virtually no memory
for the unattended rows was expressed. This example also
illustrates selective attention as a spatial filter. Short-term
memory cannot hold more than 4 or 5 letters for recall.
When 3 � 3 or 3 � 4 letter arrays (i.e., arrays of 3 rows
with either 3 or 4 letters in a row) are flashed briefly, the
process of spatial selective attention determines which one
of the three rows of letters will ultimately gain access to
the limited-capacity short-term memory.
Selective attention has been proposed to work on levels

beyond early sensory processing (e.g., for review, see
Driver, 2001; Yantis, 2000); our focus here is on the early
perceptual filtering of visual information. Early perceptual
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filtering has been demonstrated and studied experimentally
in many paradigms (e.g., for review, see Wolfe, 1998),
though of particular relevance for the present experiments,
because the interpretations involved attention filters, are
studies in which equivalent stimuli were used with different
selective attention instructions in visual search. Though a
number of these studies have proposed means of applying
attention filters to visual search (e.g., Bergen & Adelson,
1988; Foster & Ward, 1991), none actually describes a
filter in mathematical detail, i.e., none defines the physical
parameters of selective attention filters. Here, we intro-
duce a methodology that permits the precise measurement
of the operational properties of attention filters.
Stimuli that consist of spatially extended targets have been

utilized in investigations of attention and visual processing
(e.g., Cohen, Schnitzer, Gersh, Singh, & Kowler, 2007), and
subjects have revealed the ability to accurately locate the
center of mass of a target (e.g., Baud-Bovy & Soechting,
2001; Friedenberg & Liby, 2002). In our task, observers
estimate the centroid (the center of gravity) of a cloud of
dots flashed on a screen. The displays are very brief and
contain a great deal more information than can be remem-
bered (Rubin, Chubb, Wong, & Sperling, 2008). Therefore,
it seems likely that only spatially parallel, bottom-up
selection mechanisms are useful in making the centroid
judgments. The Weber contrasts of the dots vary from
deep black to bright white on a neutral gray background.
Attentional selection comes into play when we ask

observers to judge the centroid of only those dots that are
lighter than the neutral background and to ignore darker
dots or, in other conditions, to judge the centroids of only
those dots that are darker than the background. Our approach
is to vary the attention instructions to our observers and
to measure the effects of these changes on observers’
responses. From their responses, we can infer the selection
properties of their implicit attention filters, i.e., the
influence of each dot contrast on their centroid judgments.
We will show that observers can indeed attend selectively
either to dots of positive or of negative contrast polarity
relative to the gray background. We will measure the costs
in efficiency that are incurred by attending selectively to
dots that are brighter (or darker) than the background
versus attending equally to all dot contrasts. To enable
more accurate estimation of the attention filters, we also
determine a characteristic parameter of each observer’s
centroid-computing algorithm, i.e., we reduce this idiosyn-
cratic source of uncontrolled variance.

Methods

Observers

Eleven observers volunteered to be a part of this
experiment (three females and eight males). All observers
had normal or corrected-to-normal vision. All observers

gave informed written consent approved by the Institu-
tional Review Board at the University of California, Irvine.

Apparatus and stimuli

The stimuli were displayed on a 21W NANAO Flex
Scan 6600 monochrome monitor connected to a Macintosh
computer. The display screen had a resolution of 1250 �
850 pixels, with a refresh rate of 75 Hz. The stimulus field
in which the dots could occur comprised the central 512 �
512 pixels. This region was surrounded by a thin black
border. At the viewing distance of 69 cm, this stimulus
field subtended 14.897 degrees. A single stimulus dot
(7 � 7 pixels) subtended 0.204 deg. Black dots had a
luminance of 0.38 cd/m2 and white dots had a luminance
of 68.1 cd/m2. The mean gray background had a
luminance of 34.2 cd/m2.
We use the term “Weber contrast” to refer to the

normalized deviation of luminance from the mean. In all
of our stimuli, the mean was 34.2 cd/m2, and each display
consisted entirely of this value aside from a sparse cloud
of dots. In any given display, there were either 8 or 16 dots.
The dots in a given 8-dot display had Weber contrasts of
j1, j0.75 j0.5, j0.25, 0.25, 0.5, 0.75, and 1 (Figure 1).
In 16-dot stimuli, there were two dots of each of these
eight Weber contrasts (Figure 2). The locations of the dots
in a given display were randomly drawn from a circular
bivariate Gaussian density with a standard deviation of
60 pixels (1.70 deg).
The first trial was initiated by a key press, and each

subsequent trial began immediately after the feedback for
the previous trial. Prior to the onset of a given trial, the
observer viewed a blank field circumscribed by a thin
black frame inside which the stimulus would appear. The
observer initiated the first trial with a button press.
Thereafter, each stimulus was presented 200 ms after the
offset of the feedback from the previous trial (Figure 3).
After the dot cloud disappeared, a crosshair cursor

appeared on the screen that could be controlled by moving
the mouse. Observers were asked to move the cursor to
the perceived center of the dots and to click to indicate
their centroid judgment. After making a judgment, the
observer received a feedback display, which displayed the

Figure 1. Weber contrasts of dots used in the experiment. The
Weber contrast j1 appears black and +1 appears white. The
mean-luminance background has a Weber contrast value of 0.
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location of the target along with the location of the
response. Figure 4 shows a display and the three centroids:
dark, light, all.

Procedure

Each observer completed three blocks of trials: Attend-
to-Dark, Attend-to-Light, and Attend-to-All. Each block
consisted of 200 trials, a mixed list of 100 trials of the 8-dot
clusters, and 100 trials of the 16-dot clusters. In the Attend-
to-Dark condition, observers were instructed to click the
cursor on the centroid of the subset of dots darker than the

background, to weight all of darker-than-the-background
dots equally, and to ignore all dots brighter than the
background. Similarly, in the Attend-to-Light condition,
observers strove to click on the centroid of just the dots
lighter than the background, to weight all lighter-than-the-
background dots equally, and to ignore all dots darker than
the background. In the blocks of the Attend-to-All
condition, observers attempted to click on the centroid of
the entire cloud of dots, weighting all dots equally. The
order of the three kinds of attention blocks (instructions)
was balanced across observers. Observers were given the
opportunity for a break between each of the blocks.

Model for interpreting the results

Data from each observer were obtained for two dot-
cloud sizes, N = 8, 16, with each of the three attention
instructions A = Attend-to-Dark, Attend-to-Light, Attend-
to-All. We refer to the condition in which N dots were
displayed and the attention instruction was A as condition
(N, A). The raw data from condition (N, A) consists of the
x- and y-locations, XN,A(t) and YN,A(t) of the observer’s
response for each trial t. Although these raw centroid-
estimation data are interesting in and of themselves, it is
of even greater interest to interpret the data in terms of the
process of selective attention that enables observers, in
their centroid computation, to give differential weights to
attended dots and to ignore unattended dots. The process
of selective attention is encapsulated in a model in which
filters, determined by attention instructions, selectively
weight the dots according to the dots’ Weber contrasts, and
these weights are what is incorporated into the centroid
computation. The model has filters; observers have selec-
tive attention. Because of the intimate connection between

Figure 3. Experimental design. Between trials, observers viewed a
200-ms blank frame with a black outline square. This was followed
by a display of dots for 200ms. Observers then moved the cursor to
the location of the perceived centroid and clicked. A 500-ms
feedback frame showed the observer’s response as a black dot
relative to the correct location indicated as a bull’s-eye. The 200-ms
blank frame initiating the next trial followed immediately upon the
offset of the feedback display.

Figure 4. An enlarged sample of a 16-dot display showing the
centroid of the dark dots, the centroid of the light dots, and the
centroid of all the dots, which is directly between the first two.

Figure 2. Sample stimuli containing dot clouds of eight or sixteen
dots. (A) An 8-dot display. (B) A 16-dot display. The frequency at
each contrast value is 1 in (A) and 2 in (B).
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the two, we will speak of the “observers’ filters” even
though the attention filter is a model construct.

Model overview

Models are used for many different purposes in psycho-
physical research. Often the aim of a model is to describe a
process that might plausibly operate in the brain to produce
the observed results of an experiment; we emphasize,
however, that this is not the case for the model introduced
below.1 Our focus in this study is on the attentional
selection of input information, not on how the brain
computes centroids. We seek to determine which sorts of
attention filters people can achieve and to describe these
filters quantitatively. The point of our model is to enable a
more accurate characterization of attention filters across
different attention conditions (Attend-to-Dark, Attend-to-
Light, Attend-to-All) and different numbers of stimulus
dots (8 vs. 16) by taking into account the effects of
imperfect centroid computations and individual differences.

Causes of response errors

Across different attention conditions and different num-
bers of dots, we expect response errors to be determined in
varying degrees by three distinct factors:

1. The attention filter used by the observer may differ
from the ideal (target) filter.

2. The centroid computation may be imperfect. We
model the imperfection by a single parameter, a bias
to weight peripheral dots in the cloud differently
from more central dots.

3. The resulting centroid computation may be corrupted
by internal response noise.

Note that factors (1) and (2) produce systematic errors
in observers’ responses whereas factor (3) leads to random
errors in observers’ responses. The model enables us to
measure variations in each of these three factors for each
observer in each attention condition and in each different
numbers-of-dots condition.

How the model estimates factor 1 (deviation
of attention filter from target filter)

The model assumes that the observer applies an attention
filter FN,A to each dot in the internally represented
stimulus. This process replaces each dot in the stimulus
by a point with a weight that depends on the dot’s Weber
contrast. Specifically, if a dot has Weber contrast c, then
this dot gets replaced by a point with weight FN,A(c). It is
crucial to realize that although the observer may be trying
to achieve a particular target attention filter (e.g., to
weight all dots darker than the background equally while
giving all dots lighter than the background weight 0), in

practice the attention filter FN,A that he/she achieves
always deviates from this target filter. This deviation of
the attention filter from the target filter is one important
source of systematic error.

How the model estimates factor 2 (misweighting
of dots depending on how peripheral they are
in the cloud)

The model assumes that the observer computes the
centroid of the resulting field of weighted points. However,
the model admits the possibility that this computation may
differ systematically from a veridical centroid computation.
Specifically, the model assumes that the observer may give
differentially either higher or lower weights to more
central versus more peripheral dots in the cloud. We follow
common practice in calling a centroid computation that
underweights peripheral dots relative to central dots
“robust.” Conversely, we call a centroid computation that
underweights central dots relative to peripheral dots
“anti-robust.” Any deviation from veridicality of the
observer’s centroid computation contributes systematic
error to his/her responses. We call this source of systematic
error “distance distortion.”

How the model estimates factor 3 (degree of corruption
by internal noise)

The model assumes that the observer’s response is
corrupted by additive noise. It assumes that these random
response perturbations are independent and identically
distributed in the vertical and horizontal directions and
across trials. To assess the amount of random error
corrupting the performance of a given observer in a given
condition (N, A), we extract an unbiased estimate of the
standard deviation of the observer’s internal response noise.
Our treatment of random noise in the model is

determined by the fact that if response noise were due to
“early” dot-specific noise sources (i.e., uncertainty in each
dot’s position), and if those dot-specific noise sources had
equal variance in the 8- and 16-dot conditions, then judged
centroids based on 16 dots would be more accurate (would
exhibit lower levels of response noise) than judged
centroids based on 8 dots. In fact, the data are opposite;
that is, 16-dot judged centroids are more variable than 8-dot
judged centroids. Therefore, the model assumes that the
main source of random error compromising performance is
“late” response noise (versus “early” stimulus noiseVerror
in representing individual dot positions; Figure 5).
For each condition (N, A), we first derive the attention

filter and distance-distortion parameter that minimize the
sum of squared deviations (across trials) of the model-
predicted centroids from the observer’s centroid settings.
We then derive an unbiased estimate of the standard
deviation of the observer’s internal response noise2 from
residual sum of squared deviations of predicted from
observed centroids (see Appendix A for details).
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Model details

To describe the model more precisely, we use the
following notation.

Attention filter definition

For N = 8 or 16 and A = Attend-to-Dark, Attend-to-
Light, or Attend-to-All, we write FN,A for the attention
filter used by the observer in condition (N, A). That is, for
any Weber contrast c = j1, j3/4, I, 1, the attention
filter FN,A(c) gives the weight assigned to dots of contrast
c in centroid estimates in condition (N, A). Target filters
for each attention condition (A) are depicted in Figure 6.

Distance distortion (robustness,
anti-robustness)

In addition to applying an attention filter to dot contrast,
the model allows for a possibly imperfect centroid
computation that can vary from subject to subject. A
simple computation that captures much of the intersubject
variation is weighting dots in the centroid computation
differentially depending on how peripheral they are within
the cloud of dots. Let z represent a dot in the display, let
c(z) be the Weber contrast of z, and let d(z) be the
Euclidean distance (a positive real number) of z from the
centroid of the FN,A-filtered dot cloud. The weight w(z) of

a dot z on trial t of condition (N, A) is the product of two
factors, an attention filter applied to the dot’s contrast and
a distance correction function applied to the dot’s distance
from the centroid of the FN,A-filtered dot cloud:

wðzÞ ¼ FN;AðcðzÞÞ � RN;AðdðzÞÞ: ð1Þ

The distance correction function RN,A(d(z)) is a one-
parameter, monotonic function (given by Equation A3 in
Appendix A) that can either be a decreasing function of
d(z) (in which case the centroid computation is “robust”)
or an increasing function of d(z) (in which case the
centroid computation is “anti-robust”).

Model predictions, parameter estimation

The model then predicts that the x- and y-locations of
the response on trial t in condition (N, A) are given by

XN;A tð Þ ¼
P

wðzÞxðzÞP
wðzÞ þ noiseX and

YN;A tð Þ ¼
P

wðzÞyðzÞP
wðzÞ þ noiseY; ð2Þ

where each summation ranges over all dots z presented
on trial t, w(z) is given by Equation 1, and x(z) and y(z) are

Figure 5. Model of an attention-weighted centroid computation. The model consists of stages in which (1) an attention filter is applied to
the input image, (2) the resulting weights of dots are adjusted depending on their peripherality within the cloud, i.e., the reweighting can
either overweight central dots (robust) or peripheral dots (anti-robust), (3) the centroid is computed, (4) positional noise is added, and
(5) the resulting (x, y) value is the response output.
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the x-location and y-location of z, respectively. The
estimated standard deviations Ax and Ay of noisex and
noisey did not differ systematically and so are subsumed in
a single parameter A, A = ((Ax

2 + Ay
2)/2)1/2, the standard

deviation of the symmetrically distributed internal
response noise.
In all conditions, we fix FN,A(0) = 0 (i.e., implying that

dots that match the background (invisible dots) exert zero
weight in the centroid), and we constrain FN,A so that

X
jFN;AðcÞj ¼ 1; ð3Þ

where the summation ranges over the nine Weber
contrasts c = j1, j0.75, I, 1 used in each display.
Under these constraints, for each condition (N, A), the filter
FN,A, and distance correction function RN,A are chosen to
produce predicted response locations X̂N,A(t) and ŶN,A(t)
that minimize the sum of squared distances of the trial-by-
trial observed responses. That is, we minimize

X
ðX̂N;AðtÞjXN;AðtÞÞ2 þ ðŶN;AðtÞjYN;AðtÞÞ2; ð4Þ

where the sum is over all trials t in condition (N, A).
In the model, the number of degrees of freedom is 8. The

attention filter consists of eight weights, those assigned
to Weber contrasts c = j1, j0.75, I, 1 (excluding 0 to
which the attention filter assigns the weight 0). The
absolute values of the attention filter weights are constrained
to sum to 1.0 making the total number of degrees of free-
dom absorbed by the attention filter equal to 7. The eighth
degree of freedom is contributed by the free parameter !N,A
controlling the form of the distance correction function
RN,A (Equation A3 in Appendix A). The parameter A
giving the standard deviation of the internal response
noise is derived from the deviation of the model fit from
the observed responses; thus it does not constrain the fit of
the model to the data.

Performance evaluation

Selectively attending to subsets of dots can adversely
affect centroid judgments in two primary ways: (1) the
attention filter may deviate from the target filter, and
(2) the effort of filtering may increase internal response
noise. Therefore, we gauge the cost of imposing a par-
ticular attention filter in two ways. First, we compute root-
mean-square filter error RMSFEN,A (see Equation A7 in
Appendix A), which reflects the systematic deviation of
the attention filter3 achieved by the observer in condition
(N, A) from the target attention filter for condition (N, A).
Second, we compute an unbiased estimate of the standard
deviation A of the internal response noise (see Equation 5).

Results

Preliminary measures

For each attention condition (N, A), Table 1 gives the
mean distance of responses made by all observers in
condition (N, A) from the centroids of (1) the dark dots,
(2) the light dots, and (3) all dots in the display. These
results provide preliminary evidence that observers can
adjust their performance to match varying attentional
demands. Note first that in the Attend-to-Dark condition

Figure 6. Target filters for (A) Attend-to-All, (B) Attend-to-Dark, and
(C) Attend-to-Light instructions. A target filter gives equal weight
to attended dot Weber contrasts and zero weight to unattended
dot contrasts. The filter weights of all attended dots are
normalized to sum to 1.
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(for both 8- and 16-dot displays), responses are closer to
the centroid of the Dark dots than they are to the centroid
of the Light dots or to the centroid of All dots. Moreover,
as might be expected, the mean distance of the response is
greater from the centroid of the Light dots than it is from
the centroid of All dots. An analogous pattern holds for
responses made in the Attend-to-Light conditions. Inter-
estingly, the most accurate responses (those that come
closest to their actual target centroids) are those made in
the Attend-to-All conditions (for both 8 and 16 dots).

Main result: Estimated model attention filters
Attention filters conform to attention instructions

The results of the experiment are the centroid judgments
in each of the three attention conditions (Attend-to-Dark,
Attend-to-Light, Attend-to-All) times two display sizes
(8, 16 dots). However, these raw data are very difficult to
interpret. Therefore, we present the results in terms of the
modelVthe attention filter weights, the distance-distortion
parameter !, and the standard deviation A of internal
response noise that best predict the observers’ perfor-
mances. An attention filter was computed for each
observer in each condition. The attention filters, averaged
over the 11 observers, for each of the 6 conditions, are
shown in Figure 7. Figure 7A plots the best fitting
attention filter (average of all observers) FN,Attend-to-All

when observers attend to all dots for N = 8 and for N = 16.
Also shown for reference is the target attention filter
FAttend-to-all
Target . Error bars give 95% confidence intervals.

Figures 7B and 7C show the corresponding plots for the
Attend-to-Dark and Attend-to-Light conditions.
The best fitting filters closely approximate the correspond-

ing target filters; this shows that observers can modify
their state of attention to conform to each of these three
attention conditions. The mean FN,Attend-to-All filter (for
each of N = 8 and 16) is strikingly flat across all non-zero
contrasts, showing only a slight drop in sensitivity for the
two Weber contrasts closest to 0. Evidently, observers are
able to weight all dots nearly equally, despite the differ-
ences in Weber contrast between dots.

Mean distance
of response from

centroid of dark dots

Mean distance
of response from

centroid of light dots

Mean distance
of response from
centroid of all dots

Attend-to-Dark (8) 24.2 47.1 32.1
Attend-to-Light (8) 44.4 23.9 33.6
Attend-to-All (8) 25.4 26.8 17.8
Attend-to-Dark (16) 23.8 37.2 26.6
Attend-to-Light (16) 38.0 23.7 26.6
Attend-to-All (16) 25.4 24.5 18.1

Table 1. Mean pixel distances of responses made in different attention conditions from the centroid of the dark dots, the centroid of the
light dots, and the centroid of all dots in the display.

Figure 7. Estimated attention filters under (A) Attend-to-All,
(B) Attend-to-Dark, and (C) Attend-to-Light task instructions. Filter
weights were computed for each observer and averaged across
11 observers; the bars indicate 95% confidence intervals of the
mean attention weight across observers.
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Attention filter selectivity

The filters achieved in the Attend-to-Light conditions,
F8,Attend-to-Light and F16,Attend-to-Light, show a high degree of
selectivity for positive vs. negative Weber contrasts; the
Attend-to-Dark filters, F8,Attend-to-Dark and F16,Attend-to-Dark,
are equally selective. Nevertheless, the four selective
filters, A = Attend-to-Light, Attend-to-Dark for N = 8
and 16, show systematic deviations from their target forms.
The weights given to unattended contrastsVnegative
Weber contrasts by FN,Attend-to-Light and positive contrasts
by FN,Attend-to-DarkVare all significantly greater than 0;
observers cannot completely ignore unattended dots. To
characterize just how good the selective attention filters
are, we consider just the three most extreme contrasts at
each end of the range and omit the two contrasts closest to
zero, which are less discriminable. The ratio of the average
weights for these three attended to the three unattended
contrasts ranges from 3.60:1 to 4.33:1. That is, among
the 6 most discriminable of the 8 dot contrasts, the attention
filter gives attended contrasts typically a 4:1 weight
advantage over unattended contrasts. Not perfect selection,
but surprisingly good.

Further results
Model attention filters depend on number
of dots displayed

Mean RMSFEN,A values (across all observers) for N = 8,
16 and A = Attend-to-All, Attend-to-Dark, and Attend-to-
Light are given in Table 2, and indeed the mean value of
RMSFE8,A is lower than that for RMSFE16,A for all three
attention instructions. A repeated measures ANOVA reveals
a significant main effect for cloud size (F(1, 10) = 9.601,
p = 0.011), indicating that observers are slightly but
significantly better at matching their attention filter to the
target filter when displays contain only eight versus
sixteen dots.

Internal response noise

Total response error is the difference between the
observer’s response and the true centroid. The model
assumes that every stimulus dot is represented internally

(no dots are forgotten) and that response error occurs
because of (1) an imperfect attention filter, (2) spatial
distortion in the centroid computation, and (3) internal
response noise. In a given condition (N, A), the internal
response noise standard deviation, which we assume is
common to each of the horizontal and vertical components
of the internal response noise, is estimated by

ÂN;A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðX̂N;AðtÞj XN;AðtÞÞ2 þ ðŶN;AðtÞjYN;AðtÞÞ2

200j d

s
f in model

;

ð5Þ

where the sum is over all trials t, 1 e t e 200 in condition
(N, A). In this equation, the number of degrees of
freedom in the model is 8, XN,A(t) and YN,A(t) give the
x- and y-coordinates of the observer’s response on trial t
in condition (N, A), and X̂N,A(t) and ŶN,A(t) give the x- and
y-locations predicted by the model.
As noted above, an unknown proportion of the deviation

of predicted responses from observed responses is due to
model failure. There is, however, no reason to think that
the contribution of model failure will differentially
influence performance in the different conditions. Thus,
any significant differences in ÂN,A across N or A can
plausibly be assumed to reflect differences in the cost
incurred in adapting to these task variations.
Table 3 gives the means and standard deviations (across

11 observers) of the unbiased estimates ÂN,A of the standard
deviation of random response error given by Equation 5
for all conditions (N, A). There are several trends to note
in Table 3. First, ÂN,A is lower for N = 8 versus N = 16
dots for each of the three attention instructions. Second,
for each of N = 8 and N = 16, ÂN,Attend-to-All is lower
than ÂN,Attend-to-Dark, and similarly ÂN,Attend-to-Dark is lower
than ÂN,Attend-to-Light. A repeated measures ANOVA con-
firms that all of these differences are significant: for the
effect due to dot number, F(1, 10) = 10.61, p = 0.009. In
addition, within-subject contrasts reveal that the difference
in noise between the Attend-to-All vs. the Attend-to-Dark
conditions is significant (F(1, 10) = 5.831, p = 0.036), as is
the difference in noise between the Attend-to-Dark vs. the
Attend-to-Light conditions (F(1, 10) = 5.380, p = 0.043).
As one might expect given these two results, the difference

Attention instructions

Mean RMSFE Standard deviation of RMSFE

8-Dot clouds 16-Dot clouds 8-Dot clouds 16-Dot clouds

Attend-to-Dark 0.189 0.209 0.105 0.076
Attend-to-Light 0.165 0.205 0.053 0.053
Attend-to-All 0.058 0.075 0.020 0.025
Mean 0.137 0.163 0.059 0.051

Table 2. Deviation of attention filters from target filters: Root-mean-square filter errors (differences between target and achieved attention
filters) for 8-dot and 16-dot displays averaged over the 11 observers and variation of these errors between observers.
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in noise between the Attend-to-All vs. the Attend-to-Light
conditions is also highly significant (F(1, 10) = 20.820,
p = 0.001).
Note that if the noise that corrupted performance entered,

for example, in the form of random mislocalization of the
individual dots in the internal representation used by the
observer to compute the centroid, and if the standard
deviation of these random dot mislocalizations were equal
across the N = 8 and N = 16 conditions, then the averaging
performed in the 16-dot conditions would be expected to
yield response errors substantially smaller than those
observed in the 8-dot conditions. Specifically, we should
expect the values of Â8,A to be approximately equal to

ffiffiffi
2

p �
Â16,A. As observed above, we find on the contrary that Â8,A
is slightly but significantly smaller than Â16,A. The simplest
account of this finding is that the dominant source of noise
compromising performance is late noise, e.g., motor noise
or random, perceptual mislocalization of the (noiselessly
computed) centroid prior to response production. Assuming
this is true, the current results imply that increasing the
number of dots from 8 to 16 produces a slight but significant
increase in this late noise.

Response errors for equal numbers of dots

Note that in the Attend-to-Light and Attend-to-Dark
conditions using 16 dots, only 8 dots are supposed to
contribute to the target centroid. The same is true of the
Attend-to-All condition using 8 dots. Thus the difference
between Â16,Attend-to-Light and Â16,Attend-to-Dark provides a
measure of the cost in additional internal response noise
incurred in attempting to ignore the irrelevant dots in the
Attend-to-Light and Attend-to-Dark conditions. As might
be expected, given the results noted above, the paired com-
parison t-test results in Table 4 reveal that Â16,Attend-to-Light

and Â16,Attend-to-Dark, suggesting that the presence of the
to-be-ignored dots and the task of ignoring them in the
Attend-to-Light and Attend-to-Dark conditions introduces
increased levels of internal response noise into the centroid
calculation process.

Distance-distortion effects

The median is considered a “robust” measure of central
tendency because it is not influenced by the extreme
values in a data set. We anticipated that observers might
use a robust centroid computationVa statistic that is not
greatly influenced by extreme values. Alternatively,
observers might draw a virtual polygon around the display
(including only the convex hull of the dot cloud) and use
the center of the virtual polygon as the judged centroid. The
polygon algorithm exclusively weights extreme values and
is anti-robust. Our aim was not to make an accurate model
of centroid judgments (which would be quite complex) but
to reduce the unexplained variance in the data so as to
provide more accurate estimations of attention filters. For
this purpose, it was sufficient to include one additional
parameter, !N,A, in the model to characterize distance
distortions. This elaborated model enables us to determine
whether our observers use computations that are robust or
anti-robust, i.e., to test the hypothesis that observers
differentially weighted peripheral versus central elements
in the cloud (for computational details, see Appendix A).
To estimate the distance-distortion parameter !, we use

a two-pass fitting procedure: First, we fit an attention filter
under the assumption that the observer is using a center of
gravity computation free of distance distortion. This yields
an estimated centroid for each display from which we
derive a distance-from-centroid d(z) for every dot z in each

Attention instructions

Unbiased estimates ÂN,A

of the standard deviation
of internal response noise Standard deviation of ÂN,A

N = 8 N = 16 N = 8 N = 16

Attend-to-Dark 15.89 17.31 4.43 3.61
Attend-to-Light 17.38 19.13 4.84 4.13
Attend-to-All 14.36 15.19 2.71 3.56
Mean 15.87 17.21

Table 3. Means and standard deviations (in pixels) of the standard deviation A of internal response noise in centroid judgments across
11 observers.

Conditions compared t df Significance (two-tailed)

Attend-to-All (8)–Attend-to-Dark (16) 4.011 10 p = 0.0012
Attend-to-All (8)–Attend-to-Light (16) 4.669 10 p = 0.0004

Table 4. Comparison of the estimated magnitude of internal response noise in inclusive versus selective attention conditions: Attend to 8
of 8 versus Attend to 8 of 16.
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display. In Pass 2, we fit a refined model to the same data in
which the weight exerted by each dot becomes a product of
two elements: (1) the weight attributed by the attention
filter (based on the dot’s contrastVas in Pass 1) and (2) a
function RN,A(d(z)) of the dot z’s distance-from-centroid
d(z) acquired in Pass 1. RN,A can be either a decreasing
function of distance, making the weighting a “robust”
computation, or an increasing function of distance, yielding

an “anti-robust” computation (see Figure 8 and Appendix A
for details).
Table 5 shows the results of F-tests (df numerator = 1,

df denominator = 192) assessing whether the parameter
!N,A significantly improved the model fit (the model’s
estimate of the centroid location for each individual
stimulus) to the data (the observer’s estimate of the
centroid) for each observer in each condition. For each

Figure 8. The log of the distance distortion function RN,A as a function of dot peripherality for 11 observers in each of 6 conditions (N, A).
Green lines indicate statistically significant levels of robustness. Red lines indicate significant levels of anti-robustness. The blue curve
gives the expected number of dots at each distance in the condition shown in the given panel. The vertical scale for the blue line is given
on the right side of the panel.
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Observer

Attend-to-Dark Attend-to-Light Attend-to-All

Measure8-Dot Cloud 16-Dot Cloud 8-Dot Cloud 16-Dot Cloud 8-Dot Cloud 16-Dot Cloud

1 j0.568a 0.912 0.958 j0.956 0.920 j0.979 !

0.000b 2.740 22.200 0.660 9.080 3.110 F
0.991c 0.100 0.000 0.418 0.003 0.080 P

2 0.903 0.896 0.919 j0.997 j0.997 j0.968 !

1.310 1.210 1.740 4.520 7.610 1.050 F
0.254 0.272 0.189 0.035 0.006 0.308 P

3 j0.980 j0.985 0.841 j0.971 j0.979 j0.977 !

7.620 8.570 0.340 1.200 6.960 4.650 F
0.006 0.004 0.563 0.274 0.009 0.032 P

4 0.994 j0.972 0.890 j0.799 0.995 0.993 !

15.280 1.050 0.600 0.000 11.940 12.660 F
0.000 0.308 0.441 0.985 0.001 0.001 P

5 0.921 0.965 0.953 0.992 0.989 0.967 !

1.300 18.520 13.160 14.140 95.560 28.590 F
0.256 0.000 0.000 0.000 0.000 0.000 P

6 j0.971 j0.981 j0.978 j0.977 j0.982 j0.997 !

1.320 5.560 4.200 2.080 10.190 10.030 F
0.251 0.019 0.042 0.151 0.002 0.002 P

7 0.966 0.994 0.995 0.994 0.993 0.992 !

14.290 11.070 9.890 3.870 26.370 22.550 F
0.000 0.001 0.002 0.051 0.000 0.000 P

8 j0.978 j0.984 j0.960 j0.979 0.996 0.993 !

10.670 16.210 0.960 2.690 5.450 12.620 F
0.001 0.000 0.329 0.103 0.021 0.001 P

9 j0.962 j0.975 j0.973 0.779 0.995 0.922 !

3.390 6.580 6.110 0.090 6.620 5.230 F
0.067 0.011 0.014 0.771 0.011 0.023 P

10 0.960 j0.942 j0.999 0.873 0.909 j0.980 !

16.930 0.050 2.570 0.180 1.370 3.610 F
0.000 0.816 0.110 0.669 0.244 0.059 P

11 0.824 j0.999 0.818 j0.958 0.940 0.953 !

0.470 1.370 0.280 0.520 20.060 43.640 F
0.496 0.244 0.596 0.472 0.000 0.000 P

Table 5. F-tests assessing the improvement of model fits to data attributable to the distance-correction parameter ! in every condition.
Notes: aNegative values of ! indicate robustness (overvaluing central versus peripheral dots); positive values indicate anti-robustness
(overvaluing peripheral dots in the centroid computation). Statistically significant (p G 0.05) negative ! values (robust) are shown and
appear in bold; statistically significant positive ! values (anti-robust) appear in italic; ! values not statistically different from 0.0 are black.
bDegrees of freedom for F: df numerator = 1, df denominator = 192. cProbability that ! has not improved the model, i.e., level of statistical
significance.
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observer, the top row gives the estimated value of !N,A,
which can take values between j1 and 1; negative values
indicate centroid estimators that tend toward robustness;
positive values indicate estimators that tend toward anti-
robustness. The second row gives the F-value, and the third
row gives the corresponding p-value. Cells that appear in
bold give conditions in which the centroid computation
was robust at the p G 0.05 level of significance, and cells
that appear in italic give conditions in which the centroid
computation was anti-robust. (It should be noted that
whether or not the parameter !N,A improves the model fit
significantly in a given instance depends on other factors in
addition to value of !N,A itself; thus, for example, it might
happen for some observer that 0 G !A1,N1

G !A2,N2
, yet !A1,N1

improves the fit significantly in condition (N1, A1), whereas
!A2,N2

does not produce a significant improvement in the
fit in condition (N2, A2).)
Interestingly, out of 66 possible cases (11 observers �

2 dot sizes � 3 attention conditions), 22 showed anti-
robust computations with p G 0.05, whereas only 14
showed robust computations with p G 0.05. Note in
addition that individual observers tended to be consistent
in direction of their distance-distortion bias: each row of
Table 5 tends to contain exclusively bold cells or italic
cells. Only two observers show a mixture both. Figure 8
shows the best fitting distance correction functions for
each of the observers in each condition (N, A). See
Appendix A for the definition of RN,A. The dashed blue
curve is proportional in height to the expected number of
dots at each distance in the condition corresponding the
given panel; it indicates the distance values where ! most
influences the centroid computation.

Discussion

Although centroid extraction has been shown to occur
automatically given brief displays (Zhou, Chu, Li, & Zhan,
2005), the current results demonstrate that these compu-
tations are susceptible to top-down influences, i.e., to
attention instructions given at the beginning of a session.
Observers are able to base their centroid computations
on (a) all the dots in the display, (b) only those dots
brighter than the background, or (c) only those dots
darker than the background.

Minimal models
Only one default attention filter

Suppose our observers had only one default attention
filter that they applied in all three attention conditions.
The most cursory inspection of the data excludes that
possibility.

Two attention filters

As a working hypothesis, suppose that human vision is
equipped with two, hard-wired, preattentive filters, F+ and
Fj, differentially sensitive to dots of different Weber
contrasts. Under this hypothesis, each of these two filters
operates in a strictly bottom-up fashion, i.e., the sensitivity
of each of these two filters is immutable and completely
beyond the reach of attention control. One filter F+ is
strongly activated (approximately equally well) by dots of
positive Weber contrast but only slightly activated by dots
of negative Weber contrast. This is the filter used under
the “Attend-to-Light” instruction. The second filter Fj is
strongly activated (approximately equally well) by dots of
negative Weber contrast but only slightly by dots of
positive Weber contrast and used under “Attend-to-Dark”
condition. The observer synthesizes the filter to be used in
“Attend-to-All” by assigning maximal gain to both filters.
The resulting attention filter would have approximately
equal sensitivity to dots of all contrasts, positive and
negative (Figure 7a).
To investigate the two-attention-filters hypothesis, we

submitted the data to a further analysis. This analysis
focused on the data from all three attention conditions
(N, Attend-to-All), (N, Attend-to-Dark), and (N, Attend-to-
Light) separately for each observer and each of N = 8 and
N = 16. The analysis compared four nested models that we
will refer to as Model0, Model1, Model2, and Model3. Each
model assumed a fixed distance correction function RN,A

across all three attention conditions (i.e., !N,Attend-to-Dark =
!N,Attend-to-Light = !N,Attend-to-All- = !).
Model0 has no free parameters. This model assumes that

the subject computes a true centroid (no distance
distortion) giving equal weights to all dots (this would
be the optimal single filter to use if you had to pick one
filter to deal with all three attention conditions).
Model1 still assumes that the subject has to use the same

filter for all three attention conditions but allows this filter
to vary freely and also allows distance distortion (! is free
to roam). Thus, Model1 has 8 free parameters.
Model2 allows the three attention filters to be drawn from

a 2-dimensional (instead of a 1-dimensional) subspace of
functions. This allows for two arbitrary linearly indepen-
dent filters; any third filter must be a combination of the first
two. In addition to letting ! to vary, this model has 7 free
parameters for FN,Attend-to-Dark, 7 for FN,Attend-to-Light, and
one additional parameter E used to generate FN,Attend-to-All =
cos(E) � FN,Attend-to-Dark + sin(E) � FN,Attend-to-Light. This
gives a total of 16 free parameters.
Model3 places no constraints on the three attention

filters. This model has 22 free parameters: ! and 7 degrees
of freedom for each of the three attention filters.
The results of the analysis of the four models are sum-

marized in Table 6. The main thing to note about Table 6
is that percent of variance accounted for by allowing three
instead of only two attention filter dimensions (column
three of Table 6) tends to be quite small in comparison the
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percent of variance accounted for by allowing two
attention filter dimensions instead of only one (column
two of Table 6). Note, however, that including three
instead of only two attention filter dimensions in the
model does significantly improve the fit of the model in
some cases (7 out of 22).
Another interesting finding is that the effect of including

a second filter dimension in the model is much more
dramatic for stimuli comprising only 8 vs. 16 dots. We do
not yet understand the basis of this difference.

Model comparison summary

Although it is quite possible that humans might have
more than two attention filter dimensions for Weber
contrast, two attention filters are sufficient to account for
most of the accounted-for variance in the three attention
conditions of the present data.

Imperfect centroid computation

Table 5 showed that many observers do not have a
perfect centroid computation in all conditions, and that

adding a parameter ! produces a statistically significant
improvement in the fit of the model to the data. So,
although the model may seem complicated, all the
elements are essential and statistically justified.

Internal noise

Even with a full description of the imperfect attention
filters and an imperfect centroid computation, the model
does not perfectly predict the observers’ responses. This
residual prediction error is conceptualized here as due to
internal response noise although internal noise undoubt-
edly includes a component of model failure.

Model insights
Limitations of a two-filter model

If Fj and F+ were the only human preattentive filters
sensitive to dots of different Weber contrasts, then it
would follow that the only attention filters people could
achieve would be combinations of Fj and F+. Of course,
if human vision had other filters selectively sensitive to

Observer N

Percent of variance
above Model0 accounted

for by Model1
(first filter dimension)

Percent of additional
variance accounted

for by Model2
(second filter dimension)

Percent of additional
variance accounted

for by Model3
(third filter dimension)

p-value for F-testa

assessing significance
of Model3 vs. Model2
(third vs. second
filter dimension)

1 8 1.9% 49.6% 1.3% 0.018
16 7.5% 24.4% 3.3% 0.000

2 8 4.7% 27.3% 0.7% 0.382
16 1.6% 15.6% 1.2% 0.213

3 8 10.4% 25.1% 0.7% 0.406
16 7.0% 20.2% 1.3% 0.106

4 8 9.0% 3.1% 1.6% 0.094
16 5.8% 2.6% 1.1% 0.330

5 8 5.5% 20.4% 1.8% 0.024
16 6.1% 12.1% 2.7% 0.003

6 8 3.9% 21.8% 0.9% 0.289
16 6.6% 12.1% 1.6% 0.079

7 8 9.8% 11.1% 1.6% 0.070
16 6.7% 10.3% 1.0% 0.314

8 8 2.7% 44.8% 1.2% 0.039
16 2.5% 29.8% 1.1% 0.101

9 8 2.4% 51.3% 1.1% 0.026
16 1.1% 33.8% 0.5% 0.566

10 8 3.7% 21.0% 0.4% 0.771
16 3.8% 15.4% 0.7% 0.528

11 8 2.6% 50.5% 0.8% 0.126
16 2.7% 23.1% 2.9% 0.001

Mean 8 5.1% 29.6% 1.1% 0.204
16 4.7% 18.1% 1.6% 0.204

Table 6. Percent of variance accounted for by assuming different numbers of attention filter dimensions available to the observer.
Notes: aF-test degrees of freedom: 6 (numerator) and 578 (denominator).

Journal of Vision (2010) 10(10):20, 1–16 Drew, Chubb, & Sperling 13



dots of different Weber contrasts, then observers should be
able to achieve filters outside the plane of filters spanned by
Fj and F+. Research is under way to address this question.

Costs of selective attention

The current results show that costs are incurred when
observers attempt to attend only to the dots of a single
contrast polarity. First (as shown in Figures 7B and 7C),
the to-be-ignored dots are not fully discounted; in all
cases, they enter positively (although with much less
weight than the to-be-attended dots) into the centroid
computation. Second, the random noise injected into the
centroid computation is significantly lower in the 8-dot,
Attend-to-All condition than it is in either of the 16-dot,
Attend-to-Dark conditions even though eight dots are
counted in all of these conditions.
How should we think about these costs in terms of the

“gain-adjustment” hypothesis? First, filter error costs (i.e.,
deviations of the filters achieved by observers from the
target filters used to provide them feedback) are easy to
understand. Under the “gain-adjustment” hypothesis,
observers can only achieve attention filters that lie within
the subspace spanned by the sensitivity functions of the
preattentive filters hard-wired in their visual systems.When
the target filter required by an attention instruction A
projects only weakly into this space of achievable filters,
then we expect the filter combination used by the observer
to correlate poorly with the target filter, leading to a high
value of filter error RMSFEN,A.
A more perplexing question is: how should we under-

stand the variations in internal response noise observed
across attention instructions. Specifically, why should there
be more internal response noise in the 16-dot, Attend-to-
Light and Attend-to-Dark conditions than in the 8-dot
Attend-to-All condition? A model in which some fraction
of stimulus dots was lost, i.e., not represented perceptually,
and in which the fraction of lost dots increased with the
number of stimulus dots, would seem to have more internal
noise for 16 than 8 presented dots. In other respects, the
class of dot-loss model is very difficult to distinguish from
the class of dot-weighting models that we consider here.
Additional studies are required to resolve these complex
issues.

Summary and conclusions

Eleven observers judged the centroids of briefly flashed
clouds of dots varying in contrast from dark black to bright
white on a neutral gray background. Observers attended
either to only dots darker than the background, only to dots
lighter than the background, or to all the dots. Observers
succeeded quite well in these tasks: attended dots typically

had 4� the weight of unattended dots in the centroid
computation. The main results were accounted for by a
model that assumed observers had only two attention
filters, one preferentially sensitive to contrasts darker than
the background, another to contrasts lighter than the
background; the combination of both attention filters was
used when attending to all the dots.
Other results: In 7 of 22 number of dots � observer

conditions, there was statistically significant evidence of a
weak, third attention filter. Internal noise that produces
random position errors in the judged centroids is better
modeled as “late” noise (after a preliminary centroid has
been computed) versus early noise (independent errors in
the representation of dot locations). There was signifi-
cantly more internal noise and a less precise attention
filter when observers attended to 16- versus 8-dot clouds
and when observers selectively attended to 8 of 16 dots
versus attending to all dots in an 8-dot cloud. In slightly
more than half the 66 conditions, there was evidence of
statistically significant distance distortion in the centroid
computations: in 22 cases, peripheral dots were over-
weighted relative to central dots; in 14 cases, central dots
were overweighted relative to peripheral dots.

Appendix A

Model

Data from each observer were obtained for dot-cloud
sizes N = 8 and N = 16 in each of the three attention
instructions (A = Attend-to-Dark, A = Attend-to-Light,
and A = Attend-to-All). We will refer to the condition in
which N dots were displayed and the attention instruction
was A as condition (N, A). The data from condition (N, A)
consist of the x- and y-locations, XN,A(t) and YN,A(t), of the
observer’s response across all trials t. It is assumed that on
a given trial the observer’s response (the location he/she
clicks on) is an estimate of the centroid of the dots in the
display following the application of an attention filter
differentially sensitive to different dot Weber contrasts.
We describe the model more precisely using the

following notation. Let FN,A be the attention filter used
by the observer in condition (N, A). That is, for any Weber
contrast c, FN,A(c) gives the weight assigned to a dot z of
contrast c in the observer’s centroid estimates in condition
(N, A). In this case, on trial t of condition (N, A) the x- and
y-locations of the actual centroid of the attention-filtered
display are

x
�
N;A tð Þ¼

P
FN;AðcðzÞÞxðzÞP
FN;AðcðzÞÞ and y

�
N;A tð Þ¼

P
FN;AðcðzÞÞyðzÞP
FN;AðcðzÞÞ ;

ðA1Þ
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where each summation ranges over all dots z presented on
trial t, and x(z), y(z), and c(z) are the x-location, y-location,
and Weber contrast of z, respectively.
We expect the x- and y-locations, XN,A(t) and YN,A(t), of

the observer’s centroid estimates to deviate from x
�
N,A(t)

and y
�
N,A(t) for two reasons; first, the responses will be

degraded by noise. Additionally, we expect that observers
may not combine information about disparate dots precisely
according to Equation A1. We anticipate that the weight
given a particular dot z may deviate from Equation A1
depending on the distance of z from the true centroid.
Specifically, we assume that the x- and y-locations of the
observer’s response on trial t in condition (N, A) are given
by Equation 2 where the weight w(z) assigned to a given
dot z on trial t is

wðzÞ ¼ FN;AðcðzÞÞ

� RN;A

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðzÞj x

�
N;AðtÞÞ2 þ ðyðzÞj y

�
N;AðtÞÞ2

q !
;

ðA2Þ
for RN,A as a function intended to capture biases in the
weighting of central versus peripheral points in the dot
cloud. Specifically, we estimate a parameter !N,A to
determine the distance correction factor RN,A as follows:

RN;A distanceð Þ

¼
0:1þ 0:9� exp j distance

10000� ð1þ !N;AÞ
� �2

" #
j1 G !N;A G 0

10:0j9:0� exp j distance
10000� 1j!N;A

� �� �2
" #

0 e !N;A G 1

:

8>>>><
>>>>:

ðA3Þ

RN,A is defined for j1 G !N,A G 1. For !N,A G 0, RN,A is a
decreasing function of the distance of a dot from (x

�
N,A(t),

y
�
N,A(t)); thus, in this case, the bias introduced by RN,A

yields a “robust” estimator of the centroidVi.e., an
estimator that gives most weight to dots near the middle
of the cloud and is relatively immune to dots located in
the periphery. The reverse is true if !N,A 9 0; in this case,
RN,A is an increasing function of distance, yielding an
“anti-robust” estimator of the centroid that gives more
weight to peripheral than to central dots in the cloud. In
actuality, for !N,A in a large neighborhood around 0, RN,A

is essentially constant across all dot distances in any of
our displays; specifically, for !N,A greater than around
0.025 and less than around 0.975, dots contribute to the
centroid computation with weights that are roughly
independent of their distance (in pixels) from (x�N,A(t),
y�N,A(t)); that is, the computation is approximately a
standard centroid (as given by Equation A1).
In all conditions, we fix FN,A(0) = 0 and constrain FN,A

to satisfy Equation 3. Under these constraints, for each

condition (N, A), the filter FN,A, and the value of !N,A are
chosen to minimize the sum of squared distances of the
responses estimated by the model (X̂N,A(t) and ŶN,A(t))
from the observed responses. That is, we minimize
Equation 4.
Note that if the observer were able to perfectly achieve

all of the attention goals in this experiment, then he/she
should have !N,A = 0 for each condition (N, A), and in
addition, for any dot contrast c,

FN;AttendjtojDarkðcÞ ¼ FTarget
AttendjtojDarkðcÞ

¼ 3 if c ¼ j1;j0:75;j0:5;j0:25
0 otherwise

;

�
ðA4Þ

FN;AttendjtojLightðcÞ ¼ FTarget
AttendjtojLightðcÞ

¼ 3 if c ¼ 0:25; 0:5; 0:75; 1
0 otherwise

;

�
ðA5Þ

FN;AttendjtojAllðcÞ ¼ FTarget
AttendjtojAllðcÞ

¼ 4 if c ¼ T0:25; T0:5; T0:75; T1
0 if c ¼ 0

:

�
ðA6Þ

The cost of imposing a particular attention filter is
reflected in part by deviations of the parameter values
achieved by the observer from the target values (the FN,A’s
given in Equations A4, A5, and A6). We use the following
statistic to estimate the root-mean-square filter error that
compromises performance in a given condition:

RMSFEN;A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ðFN;AðcÞjF
Target
A ðcÞÞ2

q
; ðA7Þ

where the sum ranges over c = j1, j0.75, I, 1.
Note, however, that even if an observer had !N,A = 0

and RMSEN,A = 0, he/she might still deviate significantly
trial by trial from the target centroid if his/her responses
were contaminated by high levels of noise. In assessing
the cost of imposing an attention filter, one must take into
account not only systematic error reflected by !N,A and
RMSFEN,A but also such random response error. We use
the statistic ÂN,A given by Equation 5 to estimate the
contribution of random noise to observers’ responses in a
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given condition (N, A). ÂN,A is an unbiased estimate of
the standard deviation of the noise component of the
observer’s responses.
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Footnotes

1
The process the brain uses to extract centroids is

undoubtedly much more complex than our one-parameter
approximation; nevertheless, this approximation accounts
for a significant fraction of data variance and characterizes
individual differences.

2
The “deviations of predicted from observed centroids,”

which are here modeled as internal response noise, consist
of two components: “true internal noise” and “model
prediction error.” These cannot be separated in the present
experiments. Experiments using a double-pass procedure
(Drew, Chubb, & Sperling, 2009) are underway to
determine the relative contributions of these two factors
to deviations of predicted from observed centroids.

3
Alternatively, we could have used the sum of absolute

differences between the attention filter achieved by the
observer and the target attention filter. The correlation
between this measure and the measure we used (RMSFEN,A)
is 0.99.
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