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15 Binocular combination:
measurements and a model

Jian Ding and George Sperling

15.1 Introduction

15.1.1 Cyclopean image

When different stimuli are presented to the left and right eyes, only a single, com-
bined image is perceived, often called the cyclopean image after Cyclops, the one-eyed
mythological monster. When the images in the left and right eyes are similar (com-
patible), the cyclopean image is a combination of the two. This chapter is concerned
with the early visual processes that determine the proportion that each eye’s image
contributes to the cyclopean image. When the images in the left and right eyes are
dissimilar (incompatible), such as a vertical grating in one eye and a horizontal grating
in the other, or a positive image in one eye and its negative in the other, then typically
within any small area of the visual field, only one of the two images is perceived. This
phenomenon is called binocular rivalry. Although the processes of binocular combina-
tion and binocular rivalry share early stages of visual processing, we are here concerned
only with the laws governing binocular combination.

Vector summation of same-wavelength monocular sinewave gratings

To obtain experimental data that yield the quantitative parameters of binocular combi-
nation, we take advantage of a simple mathematical fact. The arithmetic sum of two
sine waves of the same wavelength is again a sine wave whose amplitude and phase
are dependent on the phases and amplitudes of the two component sine waves. As
shown in Figure 15.1, a sine wave can be represented as a vector, and the arithmetic
summation of two sine waves of the same wavelength can be represented by vector
summation. If I_;¢ and ﬁ¢ represent two sinewave gratings (in this example, images in

the left and right eyes, respectively), the vector sum, §¢, represents the sum of the two
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Figure 15.1. Vector presentations of sine waves and their arithmetic summation in the
complex plane. (a) Representation of a horizontal sinewave grating presented to the left
eye with modulation amplitude A, and phase 6,. The abscissa represents the vertical
direction z and the ordinate is amplitude A(z). (b) A horizontal grating presented to the
right eye with modulation amplitude A, and phase ;. (c) The physical, algebraic sum
of gratings (a) and (b) has modulation amplitude A4 and phase 64. (d) The (perceived)
cyclopean grating has modulation amplitude A, and phase 6. (¢) The complex plane.
The abscissa is the real axis and the ordinate is the imaginary axis. Vector E¢ and
vector ﬁ¢ represent the sine waves presented to the left and right eyes, respectively.
The vector components of E¢, (A,, 8.), are shown as vectors (arrows) in (a). Other
vectors in (e) are similarly derived from the components shown in (b, ¢, d). Vector §¢
is the vector sum: §¢=E¢+ﬁ¢. Vector §¢ is drawn with a phase angle that represents
the psychophysically measured phase of the (perceived) cyclopean sine wave. Vector
ﬁ¢ represents a reduced right-eye contribution to the cyclopean sine wave that would
account for the (perceived) cycopean phase.

sine waves. It is both reasonable to assume and empirically observed that the cyclopean
image of two parallel monocular sinewave gratings of the same wavelength is indeed,
to a very close approximation, a sinewave grating of the same wavelength. Therefore,
in this instance, predicting the combined cyclopean image is equivalent to predicting
the apparent phase and amplitude of the cyclopean sinewave grating.

Consider two monocular images, parallel sinewave gratings, that differ in phase
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and amplitude. If the binocular combination were linear, the apparent phase of the
cyclopean sinewave grating would be predicted by a simple vector summation of the
monocular sine waves. Our experimental results indicate that the apparent phase of the
cyclopean sinewave grating, relative to vector summation, is biased toward the eye with
the higher-contrast stimulus. For example, in Figure 15.1, the left eye is presented with
a hlgher-contrast sinewave grating L¢ and the nght eye with a lower-contrast sinewave
grating R,. Linear vector summation is By = Ly + R4. The observed cyclopean
image is §¢, which is biased toward the left (higher-contrast) eye relative to vector
summation.

Binocular combination implies attenuation of a weaker signal relative to a stronger
signal

We interpret the observed failure of vector summation in predicting cyclopean images
by assuming: (1) there is vector summation of left- and right-eye same-wavelength
sinewave gratings and (2) prior to the site of binocular combination, the physically
weaker (lower contrast) monocular image is attenuated relative to the stronger (higher-
contrast) monocular image. In the example of Figure 15.1, if the physical right monoc-
ular image (R¢,) were attenuated to precisely R¢, it would reproduce precisely the
experimentally observed cyclopean phase. The contrasts of the physical stimuli are in
a ratio of 2:1; the observer acts as though the ratio were 4:1. This assumed perceptual
attenuation of the lower-contrast relative to the higher-contrast monocular grating is
the critical derived measurement that we subsequently use to construct our theory of
binocular combination.

Outline

In this chapter, we offer a procedure for measuring the apparent phase of a cyclopean
sinewave grating. The observer’s task is to judge the center position of the black stripe
that corresponds to the minimum in the cyclopean sinewave grating relative to the po-
sition of an adjacent reference line. We present a gain-control model to fit our data.
The model accounts for over 97% of the variance of the experimental data in the sense
of successfully predicting the apparent phase of the cyclopean sinewave grating. In our
experiments, we measure only the phase, not amplitude of the cyclopean sine wave. To
determine whether the model can predict amplitude as well as phase, we rely on the
contrast-matching data of Legge and Rubin (1981). By means of model simulations,
we find that the model does indeed give a united explanation of binocular combination
data derived from simple stimuli. The model does not deal with complex binocu-
lar combinations that involve faces and other meaningful stimuli (see Blake, 2003) in
which higher-order visual processes are probably involved.

15.1.2 Empirical manipulations in the sinewave summation exper-
iments

Figure 15.2 outlines the principles used to derive the relative contribution of the left-
and right-eye images to the cyclopean image. Basically, given the physically presented



260 Jian Ding and George Sperling

LE (e)

M

Figure 15.2. Control conditions, experimental conditions, and their interpretations. (a,
¢) Only one eye is presented with a sinewave grating (as illustrated). (b,d) Psychometric
functions. The fraction of trials on which the reference lines are judged above the dark
stripe of the sinewave grating as a function of the vertical position of the reference
lines. The midpoint of a psychometric function (indicated by the vertical bar) is taken
as the perceived phase of the presented sinewave. The right column shows binocular
conditions. The scale is magnified to better illustrate the results. (e) A high-contrast
sine wave presented to the left eye (LE). The solid vertical line indicates the midpoint
of the dark stripe. (f) The solid curve represents a low-contrast sine wave presented to
the right eye (RE). (g) The algebraic sum of (e) and () is shown as a solid line. (h)
The perceived phase of cyclopean sine wave is measured by a psychometric function.
It is closer to the phase of the left eye’s stimulus than would be expected from the
algebraic sum (g). An attenuated lower-contrast sine wave is shown as a dotted line
in (f). Using this attentuated lower-contrast sine wave to form the left-plus-right-eye
sum (dashed line in (g)) causes the algebraic sum of the original left-eye sinewave and
the attentuated right-eye sine wave to match the phase of the cyclopean sine wave.
The change from physical contrast of the stimulus to effective contrast at the point of
binocular combination is here expressed as a reduction in effectiveness of the lower-
contrast sinewave grating. However, for a given pair of left- and right-eye sinewave
grating phases, the phase of the cyclopean sine wave is determined entirely by the ratio
of left- to right-eye effective contrasts.

phases of the two monocular stimuli, and the phase of the perceived cyclopean image,
we calculated the attenuation of the lower-contrast stimulus that would be required
to reproduce the observed cyclopean phase. In control conditions, on each trial only
one randomly chosen eye was presented with a sinewave grating. The other eye was
simultaneously presented a blank screen with the same mean luminance as the sinewave
grating. These control stimuli were interleaved in a sequence of experimental displays.



Binocular combination 261

Indeed, observers could not distinguish control from experimental conditions, and were
unaware that occasionally only one eye had received a grating stimulus.

Psychometric functions

To measure a psychometric function, the position of the reference line relative to the
sine wave was varied from trial to trial using a staircase procedure described below.
On each trial, the observer judged whether the reference line was “above” or “below”
the center of the black stripe in the cyclopean sinewave grating. The position of the
reference line that was equally likely to be judged as “above” and “below” was taken
as the Point of Subjective Equality (PSE), i.e. the median perceived position of the
center of the black stripe of the cyclopean sinewave grating.

Figures 15.2 a-d illustrate the control trials. Figure 15.2a illustrates the stimulus for
control trials with a left-eye stimulus, and Figure 15.2c illustrates the right-eye stim-
ulus. Figures 15.2 b,d illustrate psychometric functions derived from presentations of
these stimuli and the estimated positions of the PSEs. Typically, the measured value of
apparent phase , of the PSE differed slightly but significantly from the physical value
of 6, indicating a small bias of the measurement. When two psychometric functions
for 0, and 6, are obtained in the same session, the position bias would be expected to
be the same and therefore canceled by considering the difference 6, — ;. The phase
difference between the perceived phases of the left- and right-eye control sine stimuli
would be expected to be identical to the phase difference between the input sines, i.e.
0, ~ 6 = 8. — 6. Satisfaction of this constraint within a small measurement error was
verified for each observer before each experimental session.

In experimental sessions, staircases for control conditions were interleaved with the
staircases for measurement conditions. As noted above, observers did not discriminate
monocular from binocular trials. In experimental trials, observers view sinewave grat-
ings that might differ between eyes in both spatial phase and contrast. Figures 15.2¢ and
f illustrate stimuli in which the left eye was presented with a higher-contrast sinewave
grating with phase 6, (Figure 15.2¢) and the right eye was presented a lower-contrast
sinewave grating with phase 8, (Figure 15.2f). The linear summation of these two sine
waves is again a sine wave, illustrated by the solid line of Figure 15.2g. The location
of its minimum is indicated by a solid vertical line.

The perceived binocular combination of the left- and right-eye’s gratings, the cy-
clopean image, is assumed to be a sinewave grating whose apparent phase is measured
by a psychometric function (Figure 15.2h). To arrive at an arithmetic summation of the
left and right eyes’ sinewave gratings that has the same phase as the cyclopean sinewave
grating, we assume that the signal from the right eye (the lower-contrast stimulus) was
attenuated prior to binocular combination. This assumed-attenuated right-eye input
to binocular combination is shown by the dashed line in Figure 15.2f. The combina-
tion of the unattenuated higher-contrast input and the attenuated lower-contrast input
is illustrated by the dashed line in Figure 15.2g. The minimum of this combination
now precisely matches the observed position derived from the emprical psychometric
function Figure 15.2h.

Many observers exhibit some eye dominance. That is, in binocular combination,
the input from one eye (the dominant eye) is given greater weight than that from the
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other eye. To cancel biases of measurement related to eye dominance, the experiment
was repeated with the stimuli to the two eyes interchanged. The average of these two
measured phase shifts was taken as the phase shift for the cyclopean condition. Ad-
ditionally, to cancel biases related to vertical position, all the above procedures were
repeated with the stimuli mirror-reflected around the horizontal midline, and all the
results were averaged.

15.1.3 Outline of the experiments

Six experiments were performed. In all experiments, observers judged the vertical po-
sition (phase) of a horizontal sinewave grating that was presented to both eyes. In ex-
periment 1, no external noise or mask was superimposed and simple sinewave gratings
were presented to the left and right eyes in various different phases and with various
different contrasts. The data of experiment 1 are accounted for by the gain-control
model described below with just one free parameter.

Experiment 2 investigated the prediction that reducing contrast energy reduces the
nonlinearity of (i.e. linearizes) binocular combination. The stimuli and procedure were
similar to experiment 1 except the fixed duration of 1000 ms in experiment 1 was varied
in the range from 50 ms to 1000 ms, creating stimuli ranging from very low contrast
energy (50 ms x 0.1) to very high energy (1000 ms x 0.2). This experiment defines
the temporal parameters of interocular gain control in binocular combination.

Experiments 3—-6 measured the gain-control factors that determine binocular dom-
inance. In these experiments, a monocular masking stimulus was superimposed on the
sinewave gratings whose phase was being judged. Experiment 3 investigated the ques-
tion: When the spatial frequency for which binocular combination is being determined
is fo, how much do other spatial frequencies f; contribute to gain control? This was
tested by superimposing a 2D bandpass noise on the sinewave grating in just one of the
two eyes. .

In experiment 4, a static vertical sinewave grating was used to mask the horizontal
sinewaves whose position was being judged. The contrast and spatial frequency of
the masking grating was varied from trial to trial. Spatial-frequency transfer functions
were obtained. ‘

In experiment 5, the binocular horizontal grating whose position was being judged
was masked by a monocular moving vertical sinewave grating whose contrast and drift
rate vary from trial to trial. Temporal-frequency transfer functions were obtained.

In experiment 6, the orientation of a static, sinewave masking grating was varied.
Orientation tuning functions were obtained.

15.2 Methods
15.2.1 Apparatus

The purpose of the apparatus was to produce a binocular display in which each eye is
presented with a horizontal sinewave grating, and the two eyes’ images are optically
superimposed. The two sinewave gratings are identical except for differences in phase
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and contrast. The reason for choosing sine waves is that the sum of two sine waves
of the same wavelength is again a sine wave. Typically, for the parameters used in
the experiments of this paper, the observer perceived a cyclopean sinewave grating.
Sinewave gratings were horizontal to make the cyclopean image relatively independent
of horizontal vergence angle. A high-contrast surrounding visual frame was used to
assist the eyes in maintaining vergence. The task of the observer was to judge the
position of the center of the dark stripe of the cyclopean sinewave gratings relative to
two adjacent dark reference lines.

15.2.2 Display

The experiments were controlled by an 8600/250 Power Macintosh; stimuli were pre-
sented on a Nanao Technology monochrome monitor. The programs were written in
Matlab, using the Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997). A
special circuit (Pelli and Zhang, 1991) was used to combine two eight-bit output chan-
nels of the video card to yield 6144 distinct gray-scale levels (12.6 bits). The luminance
of the monitor with all pixels set to the minimum value was 0.38 cd/m?; the luminance
with all pixels set to the maximum value was 68.1 cd/m?. The background level I,
surrounding the sinewave gratings was set to 34.2 cd/m?, and this was also used as the
average luminance of the sine waves themselves. Displays were viewed in a mirror
stereoscope and positioned optically 68 cm from the observer.

A psychophysical procedure was used to generate a linear look-up table. ThlS look-
up table was used, as required, in either of two ways: (1) to divide the entire dynamic
range of the monitor into 256 evenly-spaced gray levels or (2) to select 256 evenly-
spaced grey levels within a limited intensity range and thereby to obtain higher contrast
resolution within that range (Lu and Sperling, 1999).

15.2.3 Stimuli

Horizontal gratings with sinusoidal luminance profiles were used as stimuli. To de-
scribe these stimuli we make the following definitions: I, is luminance of the back-
ground and the mean luminance of the sinewave gratings; m, and m; are the modula-
tion contrasts of the left- and right-eye sinewave gratings, respectively; 6, and 8y are
the corresponding phases. In experiments 3-6, a mask M|z, y) which consisted of ei-
ther a bandpass noise or a sinewave grating was superimposed on the sinewave grating
presented to one eye. The mask’s modulation contrast is either n,, or n, corresponding
to adding the mask either to left or to right eye. The stimuli were windowed in a rect-
angular window both spatially and temporally. Equations (15.1) and (15.2) describe
the stimuli to the left and right eyes respectively,

I = I, — (m_cos(2r fsz + 6.) + nuM(z, y)) Lu(t, T)u(z + 27, 4m)u(y + 2m, 4m)
(15.1)

Iy = I, — (mg cos(27 fsx + 03) + neM(z, y)) Lou(t, T)u(z + 2m, 4m)u(y + 27, 4m).
' (15.2)
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Stimuli appeared for a duration 7" defined as follows:

1 if0<t<T
u(t,T) = { 0 otherwise ) (15.3)

*

In experiment 2, T varied from 50 ms to 1000 ms; in all other experiments, T" was fixed
at 1000 ms. In experiments 1 and 2, no mask was superimposed, i.e., n, = 1z = 0.
In all trials for all experiments, the spatial frequency of the gratings fs; was fixed at
0.68 cpd and there were exactly two cycles (47) visible in each eye’s sinewave grating.
A reference line was shown on each side of the sinewave grating. A high-contrast,
surrounding visual frame was presented from the start of the trial until the end of the
stimulus presentation to assist observers in maintaining vergence (Figure 15.3).

15.2.4 Procedures: Sequence of events on a trial

Figure 15.3 shows the procedures used in experiment 1. The two left-hand columns
show the stimuli presented to the left and the right eyes respectively. The right-hand
column represents the cyclopean image perceived by an observer. Every trial began
with two fixation crosses, each with two dots, presented to two eyes and arranged so
that with correct vergence, a single cross with four symmetrically placed dots would
be perceived (Figure 15.3a). Only after this cross with four symmetric dots was seen
clearly, did the observer press a key to initiate the trial. The key press produced a screen
with only the high-contrast frame (Figure 15.3b) for 500 ms followed by sinewave
gratings presented to the two eyes for one second (Figure 15.3¢). Stimulus presentation
was followed by a blank screen of mean luminance until the observer responded.

The observer’s task was to indicate the apparent location of the center of the dark
stripe in the perceived cyclopean sinewave grating relative to a black horizontal refer-
ence line adjacent to its edge. If the reference line were judged above the dark cyclo-
pean stripe, a key press indicating “above” was made; if the line were judged below,
the “below” key press was made. After the response, the preparation for the next trial
began with presentation of the cross-plus-dots fixation images.

In experiments 3-6, the procedures were exactly the same as that in experiment 1
except that a masking bandpass noise or a masking sinewave grating was randomly
superimposed on one eye’s sinewave grating.

15.2.5 Procedures: Adaptive concurrent staircases

An adaptive staircase procedure, with many concurrent staircases, was used in all ex-
periments. Within a staircase, the position of the reference line was varied according to
the response in the previous trial of that staircase. In each staircase, when the response
was “Above,” the reference line was moved down on the next trial of that staircase;
when the response was “Below,” the reference line was moved up in the next trial.
For each condition, four staircases were interleaved randomly, corresponding to the
four variations of each experimental condition: the higher-contrast sinewave grating
presented either to the left or right eye with either the original display or a mirror re-
flection of the origial display around the horizontal midline. For an experiment with n
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RIGHT LEFT+RIGHT

(e) (f)

Response
AboveT Below l

Figure 15.3. Procedure used in Experiments 1, 3, 4, 5, and 6. The column “LEFT”
shows the stimuli presented to the left eye; the column “RIGHT” shows the stimuli
presented to the right eye; the column “LEFT+RIGHT” illustrates the arithmetic sum
of these stimuli. (a) A cross-hair with two dots was presented to each eye; when the
eyes were correctly verged, a cyclopean cross with four dots was perceived. (b) Once
vergence has been achieved, a key is pressed that changes the stimulus to a blank field
(with only the surrounding frame) for 500 ms. (c) Horizontal sinewave gratings were
presented to each eye for 1000 ms. Black horizontal reference lines were adjacent
to the edges of the gratings. The cyclopean image was also a sinewave in which the
observer judged the position of the reference line relative to the center of the central
dark stripe of the grating. In experiment 3, a bandpass noise is added to one of the
sinewave gratings in one eye; in experiments 4, 5 and 6, a masking sine wave was
added to one eye’s sinewave gratings. (d) A blank screen persisted until a response was
made. (e} A cyclopean image for a response “reference line above dark stripe.” (f) A
cyclopean image for a response “reference line below dark stripe.”” After the response,
the entire sequence repeated.

conditions, 47 staircases were run concurrently and interleaved randomly. Each stair-
case was run for a total of 50 trials.
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(b)

(c) L R (d)

e /2 e

Figure 15.4. The four binocular stimuli used to cancel position and eye biases and
thereby to yield unbiased estimates of the perceived phase of cyclopean images pro-
duced by left-eye (L) and right-eye (R) gratings that differ in contrast by a factor of §
and in phase by 6. (a, L) High-contrast grating with modulation amplitude m in the left
eye and with dark band /2 above the midline. (a, R) A low-contrast grating with mod-
ulation dm, 0 < <1, and with the dark band below the midline presented to the right
eye. The cyclopean image perceived when L+R are presented has perceived contrast
17, and perceived phase f,. (b) High-contrast m in right eye, dark stripe /2 (above
midline). (¢) High-contrast m in left eye, dark stripe —6/2 (below midline). (d) High-
contrast m in right eye, dark stripe —f/2 (below midline). The estimated cyclopean
phase shift & produced by left-eye and right-eye gratings that differed in contrast by §
and phase by 6 is given by the formula at the bottom. Note that whenever § = 1, the
expected value of ¢ = 0; whenever § = 0, the expected value of § = 6.
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15.2.6 Procedures: Counterbalancing to control for eye and
position biases

The basic stimuli used in all experiments are described by Egs. (15.1) and (15.2) and
Figure 15.3. A horizontal sinewave was presented to each eye. The contrast of the
higher-contrast sinewave grating was m, the contrast of the lower-contrast sinewave
grating was dm, where 0 < § < 1. The phase difference between the left- and right-
eye sinewave gratings was 6. For any given combination of m, 4§, 8 there were four
alternative stimuli: The higher-contrast sinewave grating could be presented either to
the left (Figures 15.4a and c) or to the right (Figures 15.4b and d) eye and the higher
contrast can be assigned to either the upper (Figures 15.4a and b) or to the lower (Fig-
ures 15.4c and d) sinewave grating in the combination (causing the dark stripe to appear
either above or below the midline).

For any condition (a combination of m, §, 8) four independent staircases corre-
sponding to the four configurations of Figure 15.4 were conducted. The four staircases
for each condition were combined (see below) to give a single-valued dependent vari-
able: the perceived phase shift between applying the higher contrast to the upper versus
to the lower sine wave in the combination. This measure cancelled modest dominance
biases in favor of one or the other eye, and perfectly cancelled up/down location biases
in judging the position of the center of the cyclopean grating’s dark band relative to the
reference lines.

Figure 15.5 shows an example of how we measured the perceived phase shift for the
following condition: m = 10%, 6 = 90°, and § = 0.5 (i.e. the contrast of the higher-
contrast sinewave grating was 10%, that of the lower-contrast sinewave grating was
5%). In viewing these stimuli, observers generally were unaware of having gratings of
different contrast in each eye; they perceived only a cyclopean grating.

There were four alternative sine wave presentations of this combination of param-
eters, in each of which the dark band of one sine wave was 45° above the midline and
the dark band of the other was 45° below the midline: .

(a) The 10% grating was presented to the left eye and its dark band was the higher of

the two sinewave components (Figure 15.4a), i.e. m; = 10%, §, = 45°, my = 5% and
= —45°, :

(b) The 10% grating was presented to the right eye and its dark band was the higher of

the two sinewave components (Figure 15.4b), i.e. m; = 5%, 6, = —45°, m; = 10%
and G, = 45°. ,

(¢) The 10% grating was presented to the left eye and its dark band was the lower of
the two sinewave components (Figure 15.4¢), i.e. m; = 10%, 8, = —45°, my = 5%
and 8; = 45°.

(d) The 10% grating was presented to the right eye and its dark band was the lower of
the two sinewave components (Figure 15.4d),i.e. m, = 5%, 6, = 45°, my = 10% and
G = —45°.

Let 6; be the perceived position of the dark stripe of the cyclopean sinewave in
condition 7 (7 = a, b, ¢, d). Then: (8, +6.)/2 and (65 + 84) /2 are measures of position
bias; §, — éa and 9d - éc are measures of eye bias; and 6, — 8, and 6, — éd are left-
and right-eye measures of a phase shift induced by unequal left- and right-eye grating
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contrasts. The left- and right-eye measures of phase shift can be combined into a single
quantity, the perceived phase shift:

A O, + 9(, + 04
6= 5 7 (15.4)
The perceived phase shift 0 has the useful property that, except for measurement error,
when § = 1, § = 0; when 6 = 0, § = 6. The perceived phase shift 6 is the dependent
variable in all the experiments.

As shown in Figure 15.5, for a given condition of m, 4, and 6, each 6; (i =a,b,c,d)
was first measured by the corresponding psychometric function, and then the perceived

phase shift 6 was calculated by Eq. (15.4).

15.2.7 Observers

Three observers were tested, the first author and two naive observers, one of whom
only participated in experiment 1. All had normal or corrected-to-normal vision.

15.3 Experiment 1. Binocular combination as
determined by the interocular contrast ratio, the
interocular grating phase difference, and overall
contrast level

Experiment 1 measured the influence of the absolute contrast, relative contrast, and the
relative phase of gratings in the left and right eyes on the cyclopean image.

15.3.1 Stimuli

The independent variables in the experiment were the contrast of the higher-
contrast sinewave grating, m = max{m,, mg}, the contrast of the lower-contrast
sinewave grating which is expressed as a contrast ratio of lower/higher, § =
min{m,, mg }/max{m, m.}, and the phase difference, § = max{6,, 6z} —min{8,, 6:},
between the sinewave gratings presented to the left and right eyes. The duration of the
stimulus 7" was fixed at 1000 ms.

15.3.2 Psychometric functions

The data are displayed as psychometric functions: the fraction of trials (converted to
a probit) in which the reference line was judged to be above the middle of the dark
band of the grating is plotted as a function of the vertical position of the reference line.
Figure 15.5 illustrates four psychometric functions corresponding to four variations a,
b, ¢ and d (see also Figure 15.4) at a condition of m = 10%, § = 0.5 and § = 90
for a single observer. In each plot, the abscissa is the position of the reference line in
phase degrees relative to the center of the frame. The ordinate is the fraction of trials
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Figure 15.5. Psychometric functions and probit analyses. The data illustrated in pan-
els (a), (b), (c), (d) correspond to the stimulus configurations (a), (b), (c), (d) of Fig-
ure 15.4. The left- and right-eye stimuli themselves are represented as bars at the top
edge of the figure at —45° and +45°, the length of the bar indicates the relative con-
trast. The abscissa is the position of the reference line measured in phase degrees of
the sinewave grating; the ordinate is the fraction of trials on which the reference line
was judged as being above the black stripe measured in probits (probits = Zscore +
5). Five probits corresponds to 50% probability. The bell-shaped curves at the bottom
of the figure represent the number of trials actually conducted at the indicated posi-
tion of the reference line; the right-hand ordinate indicates the number of trials. The
dashed lines are maximum likelihood best fits (assuming Gaussian distributions) to the
psychometric function data; their intersection with the horizontal 50% line represents
the estimated cyclopean phase ;, i = a, b, ¢, d. The vertical lines represent predic-
tions based on algebraic (linear) addition of the left- and right-eye stimuli and indicate
a phase shift Ohm, of 36° owing to unequal contrasts in the two eyes compared to the
empirically observed phase shift of § of 65.4°.

(converted to probits) on which the reference line was judged to be above the center
of the dark band of the cyclopean grating. The ordinate is shown as probits (inverse
normal density function, probits = Zscore + 5) so that if measurement errors were
normally distributed, the data would fall on a straight line. Five probits corresponds to
50% probability.
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Probits analysis (Finney, 1971) was used to fit the data. The slanted dashed line is
the best-fitting straight line. The staircase procedure generated the most trials near 5
probits, and therefore these data have the most weight in the Maximum Likelihood Es-
timation of the best fit. The actual number of trials at each position of the reference line
is illustrated at the bottom of each plot; the right-hand ordinate indicates the number of
trials.

The apparent phase of the cyclopean grating is defined as the point at which the
reference line is equally likely to be judged above and below the center of the dark
band, i.e., the abscissa value at 5 probits, which we designate as 0; (i=a, b, c,d). The
best-fitting straight line was determined by probit analysis. In the example of Figure
15.5a, the center of the dark band was judged to be higher above the center of the
display, 0, = 44.1°. The same analysis was applied to the data of conditions b, ¢ and
d (Figures 15.5b, ¢, and d, respectively), in which the apparent center of the dark band
was judged to be at Bb = 36.8°, f. = —28.7°,and 5 = —21.1°, respectively.

Measurements 8, 9;,, GC, and 6y of the apparent phase shift tended to be biased
slightly upwards. Whether this was due to a bias in the visual system, or due to the
way pixels were designated in the display is immaterial because this bias is cancelled
by considering only the difference given in Eq. (15.4), and never 0; Gi=a,b,c d
individually. The perceived phase shift 0 has two noteworthy properties: When there
was no contrast difference between the left- and right-eye gratings, the displays of
Figure 15.4a and Figure 15.4d are physically identical, as are the displays of Figure
15.4¢ and Figure 15.4b; therefore, the expected value of § is zero. When the lower-
contrast grating has a contrast of zero, so that only the higher-contrast grating is visible,
the expected value of 6 is simply the phase difference 8 between the left- and right-eye
gratings (6 = 6. — 6; = 90° in the example of Figure 15.5). The perceived phase
shift 0 (Eq. (15.4)) measures how far a particular contrast ratio 4 pushes the cyclopean
perception ¢ towards the maximum possible value 6 (which is achieved when the left-
and right-eye grating contrasts, respectively, are 1 and 0 (6 = 0)).

The solid vertical lines in the plots of psychometric function (Figure 15.5) indicate
the locations of the centers of the dark bands predicted by linear summation of the left-
and right-eye images. The measured locations of the cyclopean gratings were more
shifted toward the higher-contrast grating than predicted by simple linear addition of
left- and right-eye inputs. This would occur if the linear prediction over-estimated the
relative contribution of the lower-contrast grating to the cyclopean perception, i.e. if
the effective ¢ in this example were less than the the actual § of 0.5.

15.3.3 Control conditions

We consider here the control conditions for experiment 1 in which the phase difference
8 between the left- and right-eye sine waves was 90°. In the first set of control condi-
tions, only one eye was presented with a sinewave grating, i.e. 6 = 0. This sinewave
grating could be 45° above the midline in the left or right eye (conditions a and b, Fig-
ures 15.4a and 15.4b), or 45° below the midline (conditions ¢ and d, Figures 15.4¢ and
15.4d). The perceived phase shift, 8 from Eq. (15.4), of cyclopean sinewave gratings
should be the same as the actual phase difference § of the input sinewave gratings, i.e.
§ = @ = 90°. Position bias can be evaluated in each control condition individually; it
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cancels in the difference.

In a second set of control conditions, the two eyes were presented with sinewave
gratings of exactly the same contrast, i.e., § = 1. In this case, conditions a and d (as
described above) were identical, as were conditions ¢ and b. There would be a per-
ceived difference between conditions a and b (left eye sinewave grating below or above
midline) only if the left and right eyes did not have equal weight. For example, if the
left eye was strongly dominant, then moving the dark band from above the midline to
below the midline in the right eye (from a to b) would produce a big change in apparent
position of the band. On the other hand, if the two eyes were equal in dominance, then
there would be no perceived change. So, the subtraction (b + ¢) minus (a + d) gives an
indication of the degree of difference in weights given to the left- and right-eye images.

Before formal data collection in an experiment session began, a preliminary session
including two control conditions of § = 0 and § = 1 was carried out to evaluate posi-
tion bias and ocular dominance. In fact, none of the three observers showed significant
ocular dominance as tested with these sinewave gratings.

15.3.4 Results

Figure 15.6 shows the results of experiment 1. The data are the 6 values representing
the perceived phase shift of cyclopean stimuli in which the dark band of the cyclo-
pean sinewave grating (determined by the higher-contrast sine wave) was set above
and below the midline position. The four different types of trials used to collect such
a difference cancel linear components of position and eye bias. The contrast of the
higher-contrast grating m took the following values, each of which is represented in an
individual panel of Figure 15.6: (a) 5%, (b) 10%, (c) 20%, and (d) 40%. The phase
difference 0 took the values 45° (+), 90° () and 135° (x), and the contrast ratio ¢
varied among 0.3, 0.5, 0.71, and 0.86 (abscissa). The ordinate is the perceived phase
shift § produced by the asymmetry of the stimuli in the two eyes (see Eq. (15.4)). The
dashed curves are predictions of the linear summation model. Linear summation gave
a poor fit to the results except in the control conditions for which the predictions are
trivial. In Figure 15.6, the solid lines are one-parameter fits to the data generated by
the gain-control model described later in this article. Figures 15.7 and 15.8 show data
for two additional observers.

All the data for all the observers lie above the linear prediction. This means that
when the input contrasts to the two eyes are unequal, the higher-contrast grating has
more weight (relative to the lower-contrast grating) in determining the cyclopean grat-
ing than predicted by linear summation of the inputs to the two eyes. In other words,
the effective interocular contrast ratio 6, which can be calculated from the perceived
phase shift 6, was smaller than the real contrast ratio. Figure 15.9 shows the effective
interocular contrast ratio & as a function of the real contrast ratio & in a log-log graph.
The data are illustrated by lower-case letters that represent the experimental conditions.
The dashed line is § = 6, the prediction of linear summation. The solid line with slope
1+~is é = §**7, the prediction of the gain-control model with best fitting y from Fig-
ures 15.6, 15.7 and 15.8 for each observer. The greater spread of data for small J is due
to the fact that the variance of position judgements is relatively constant independent
of 6. Therefore the variance in log 4 is proportional to — log(4).
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Figure 15.6. Results of experiment 1. How the interocular contrast ratio affects binoc-
ular combination: Perceived phase shift # as a function of the interocular contrast ratio
for three phase differences of the interocular gratings and for four contrasts of the
higher-contrast grating. Each panel shows the perceived phase shift 6 as a function of
contrast ratio & when the interocular grating phase difference ¢ is 45° (+). 90° (%),
or 135° (x), and the greater contrast m was (a) 5%, (b) 10%, (c) 20%, or (d) 40%.
The stimulus duration T was fixed at 1000 ms. The abscissa is the interocular contrast
ratio §; the ordinate is the measured cyclopean phase shift f. The solid lines are best
fits of the gain-control model (see below); the dashed lines are predictions of algebraic
(linear) summation of the left- and right-eye stimuli. Inserts at the bottom show left-
and right-eye stimuli together with the cyclopean (perceived) images for three contrast
ratios 6 with an interocular grating phase difference of 90°. Observer JD.
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Figure 15.7. Results of experiment 1 for observer NS. See caption to Figure 15.6.

The data of experiment 1 are explained simply as the attenuation of the lower-
contrast stimulus by a factor of 7 before binocular combination. This relationship is
derived from the gain-control model. The following experiments investigate factors
that determine the relative weights of the stimuli in the two eyes to enable estimation
of other parameters of the gain-control model.

154 Experiment 2. Stimulus duration

15.4.1 High contrast energy vs. low contrast energy

The gain-control model of binocular combination described below has two properties
that are relevant to experiment 1 and bear further investigation. As the contrast energy,
&, and &, of input sinewave stimuli is reduced, the gain-control model asymptotically
approaches simple linear summation. As the contrast energy &,,, of the greater of two
sinewave inputs is increased, the model’s output becomes asymptotically independent
of £,

In experiment 1, the contrast energies £,,, were quite high and, indeed, the shapes of
the model predictions were virtually independent of the contrast of the higher-contrast
sinewave grating. Experiment 2 was designed to investigate whether the gain-control
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Figure 15.8. Results of experiment 1 for observer HT. See caption to Figure 15.6. The
results for the control conditions § = 0, § = 1, are also shown here.

model remains valid when input gratings have low contrast energies, to investigate
binocular combination over a range of contrast energies, and thereby to determine the
time-constant of interocular gain control.

15.4.2 Stimuli

In experiment 1, the reference lines and the sinewave stimulus to be judged appeared si-
multaneously for 1000 ms. This simultaneity did not yield reliable data with very brief
exposures. Figure 15.10 shows the slightly modified procedure used in experiment 2.
Unlike experiment 1, the reference line was presented in advance of the input sinewave
gratings. The reference line appeared 500 ms before the input sinewave grating was
presented and remained on for 1500 ms. The duration of input sinewave gratings var-
ied from 50 ms to 1000 ms. The stimuli used in experiment 2 are given by Egs. (15.1)
and (15.2) as in experiment 1 except that, where the stimulus duration 7" (Eq. (15.3)) in
experiment 1 was fixed at 1000 ms, in experiment 2, T" varied from 50 ms to 1000 ms.

Only one phase difference § = 90° between the left- and right-eye sinewave grat-
ings was used. Two contrasts of the higher-contrast grating were studied: 10% and
20%. The contrast ratio § of the lower to the higher contrast sinewave grating took
values of 0, 0.3, 0.5, 0.71, and 0.86. The following exposure durations were used: 50,
100, 200, 400, and 1000 ms. Each condition (m contrast of higher-contrast grating,
d contrast ratio, T exposure duration) was run in the four variations in Figure 15.4.
All 2x5x5x4 = 200 conditions (10 000 trials) were run in a mixed-list design with
interleaved up-down staircases. One experienced observer (HT) served as the observer.

15.4.3 Results

Figure 15.11 shows the results of experiment 2. Each panel shows a different com-
bination of exposure duration and of contrast of the higher-contrast sine wave. In the
control conditions, § = 0, the measured apparent phase difference was consistently
very close to 90°, indicating that the observer was able to make reliable judgments of
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Figure 15.9. Experiment 1 analysis. How the interocular contrast ratio affects binocular
combination: A log-log plot of the apparent interocular contrast ratio § as a function
of the actual interocular contrast ratio J. The apparent interocular contrast ratios 9 are
~ calculated from the perceived phase shifts 8 of Figures 15.6, 15.7, and 15.8. The dashed
lines are predicted by algebraic (linear) summation of left- and right-eye stimuli. The
gain-control model predicts that, within measurement error, data for all interocular
phase differences and for all contrasts of the higher-contrast grating collapse onto a
single straight line with a slope equal to 1+y, where + is the exponent of the rectifying
power function in the gain-control path. For observers JD, NS, and HT, respectively,
v =1.18, 1.17, and 2.27. The data points are represented by letters: a, m = 0.05 and
0 = 45° c,m = 0.05and 8 = 90°, e, m = 0.05and § = 135°; i, m = 0.10 and
6 = 45° m, m = 0.10and # = 90°; n, m = 0.10 and 6 = 135°; 0, m = 0.20 and
8 =45°%r,m = 020and = 90°; s, m = 0.20 and 8 = 135°; u, m = 0.40 and
0 = 45° v, m = 0.40 and § = 90°; X, m = 0.40 and & = 135°. The increase in
log variability as § decreases merely indicates that the variabilities of phase judgments
tend to remain constant, independent of 6, and therefore for small § log variability in ¢
increases proportionally to log(1/d) .
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Figure 15.10. Procedure of experiment 2. How stimulus duration affects binocular
combination. The procedure is similar to that of experiment 1 (see Figure 15.3). The
differences are: (b) the reference lines appear 500 ms before the stimuli are presented;
(c, d) the reference lines remain for 1500 ms; and the duration of the stimuli (¢) varies
from 50 ms to 1000 ms.

location. The dashed curves of Figure 15.11 are predictions of simple linear summa-
tion. The solid curves are the best fit of the gain-control model with one additional
parameter, the time constant of interocular gain-control (563 ms).

For the short stimulus duration (50 ms) and lowest contrast (of the higher-contrast
sinewave grating, 10%), the data are quite well described by linear summation of the
inputs of the two eyes. However, as duration and contrast increased, the deviations from
linear summation become greater. For the the highest contrast and duration, deviation
from the linear model is extreme. Note also that in Figure 15.11, combinations with
equal contrast energy produce similar data: e.g., m = 0.1 x T = 100 and m =
02xT =50,m=01xT=200andm = 0.2x T = 100,and m = 0.1 x T' = 400
andm = 0.2 x T = 200. X

Figure 15.12 shows the results in a plot of the perceived phase shift f versus the
stimulus duration 7" for a fixed contrast ratio of 0.5 for two observers. The data are
the same as in Figure 15.11 when § = 0.5. The dashed line indicates the prediction
of the linear model. The solid curve is derived from the same gain-control model as in
Figure 15.11.

Figure 15.13 shows the effective interocular contrast ratio 4 as a function of the
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Figure 15.11. Results of experiment 2. How stimulus duration affects binocular combi-
nation. Perceived phase shift § as a function of interocular contrast ratio & for stimulus
durations from 50 ms to 1000 ms. Each row of panels shows a different duration T
of the stimulus gratings. For the left column of panels, the contrast m of the higher-
contrast grating is 0.10, for the right column, m = 0.20. The interocular grating phase
difference 0 was fixed at 90°. The dashed lines are the predictions based on algebraic
(linear) summations of left- and right-eye stimuli; the solid lines are best fits of the
gain-control model. Observer HT.
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Figure 15.12. Summary of experiment 2. How stimulus duration affects binocular
combination: Perceived phase shift 6 as a function of stimulus duration T for a fixed
interocular contrast ratio § = 0.5. The interocular grating phase difference 6 is 90°; the
contrast m of the higher-contrast grating is 10% (left column) or 20% (right column).
Top panels: Observer JD. Experimental data were obtained only for § = 0.5. Bottom
panels: Observer HT. Data are taken from Figure 15.11 for § = 0.5. Dashed lines are
predictions based on algebraic (linear) summations of the left- and right-eye stimuli;
solid lines are best fits of the gain-control model.

actually presented contrast ratio § in log-log coordinates. The solid curves are predic-
tions from the best fitting gain-control model in Figure 15.11 transformed into this new
coordinate system. All the data curves lie between the two asympototes. The upper
asymptote line is § = §, the prediction from linear summation. The lower asymptote
is 6 = 8!, the prediction from the same gain-control model with infinite contrast
energy or, equivalently, k = 0. As the stimulus duration increased from 50 ms to
1000 ms and the contrast of higher-contrast sinewave grating increased from 10% to
20%, the stimulus contrast energy increased from the low values that approached the
upper asymptote to high values of contrast energy that approached the lower asymp-
tote. For all values of contrast energy, the data are confined to lic laminarly between
these two asymptotes.
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Figure 15.13. Experiment 2 analysis. How stimulus duration affects binocular com-
bination. A log-log plot of the apparent interocular contrast ratio 5 as a function of
the actual interocular contrast ratio & for two contrasts of the higher-contrast stimulus
and five different stimulus durations. The top dashed lines are derived from algebraic
(linear) summations of the left- and right-eye images, i.e., 5 = 6. The solid lines are
replotted from Figure 15.11 and represent the best fits of the gain-control model with
the following parameters: a rectifying, power-law exponent v = 2.04, a simple ex-
ponental temporal filter in the gain control path with time constant 7 = 0.563 s, and
a gain-control threshold energy k = 2.18 x 10™% s, e.g. 50 ms x contrast 0.436%.
The bottom dashed lines are predictions of the gain-control model with a stimulus of
infinite duration (or energy), or equivalently, when k = 0.

15.5 Experiment 3. Masking by spatial-frequency noise

15.5.1 Total contrast energy versus signal contrast energy

The gain-control model described by Eq. (15.9) predicts that the eye presented with
a higher-contrast contrast energy stimulus will dominate binocular combination. In
experiments 1 and 2, all contrast energies were perfectly correlated with the signal
being judged. In experiments 3-6, one eye received an irrelevant stimulus, a “masking”
stimulus, in addition to the stimulus being judged in order to determine the effect of
the “mask” on ocular dominance. In all these experiments, the eyes were presented,
as previously, with the 0.68° horizontal sinewave gratings in which the location of the
cyclopean dark stripe was to be judged. The gratings were identical in contrast (5 = 1)
and differed only by a phase shift of 8 = 90°.

In experiment 3, the signal to one of the eyes also had added bandpass noise. If
gain control was produced only by signal energy, the perceived phase shift would be
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0° for all levels of noise as § = 1. If the gain control were caused by the total con-
trast energy, the eye simultaneously presented with the added noise would dominate
in binocular combination because the eye receiving the added noise would have more
contrast energy.

15.5.2 Stimuli

In experiment 3, the two sinewave gratings being judged were both of contrast 0.1 and
differed in phase by 90°. A bandpass noise, produced by filtering a two-dimensional
binary random noise R(z,y) with a 2D isotropic bandpass filter (Rainville and King-
dom, 2002), was superimposed on the sinewave grating presented to one eye. In the
spatial frequency domain, the isotropic bandpass filters are defined as

2
Q(u, v, fo,N) = exp <—% (13%—/(‘;—)&)) ) , (15.5)

where u and v are the dimensions of a two-dimensional Cartesian spatial-frequency
coordinate system, f is defined as vu? + v?, f; n is the center spatial-frequency, and
o determines the bandwidth of the filter. Six bandpass filters having different values of
center spatial-frequency were used in the experiment. Their center spatial-frequencies,
fs,n, were separated by an octave, and are {0.34, 0.68, 1.36, 2.72, 5.44, 10.88 cpd}.
The half-amplitude bandwidth of the various noise masks was a factor of 2.4 (1.26
octaves). A spatial bandpass filtered noise M (z,y, fs,n) was obtained via a reverse
Fourier transform: M(z,y, fs v) = Re(F~{Q(u,v, fs n)F(R(z,y))}). Normal-
izing a bandpass noise M (z,y, fs,N) by its RMS contrast yielded a “standard” noise
M(z,y, fs,n) with RMS contrast 1.0, i.e.,

—~—

M(,vw, Y fs,N) .
RMS(M(Z‘, Y, fs,N)')

M(z,y, fon) = (15.6)

The stimuli in experiment 3 are given by Eqs. (15.1) and (15.2), where the mask
M is given by Eq. (15.6), m_ = mg, 6, — 6; = +90°, and one of n, and n; (the RMS
contrast of the bandpass masking noise in one eye) was set to be zero. The values of m
and n were constrained so that less than 5% of pixels fell outside the range of contrast
values that can be produced on the display screen.

Sample stimuli are shown in the top of Figure 15.14. Figure 15.14 (L) illustrates a
sinewave grating presented (for example) to the left eye and Figure 15.14 (R) illustrates
a similar grating presented to the right eye phase-shifted 90° and with added bandpass
noise. A sample of a signal plus noise in each frequency band is shown in the inset on
each plot.

The procedure for experiment 3 was the same as that for experiment 1. For each
combination of center spatial-frequencies, fs v, and noise-signal ratios N/S = n/m
there are four variations: dark stripe up/down x mask L/R. All 6 x4 x4 = 96 conditions
were run in a mixed-list design with interleaved up-down staircases. Two experienced
observers served in the experiment.
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15.5.3 Results

Figure 15.14 shows the results of experiment 3. The abscissa indicates the root-mean-
square (RMS) contrast ratio of the noise to the signal (N/S), and the ordinate indicates
perceived phase shift, 6. When g = 0, both eyes have equal contributions to binoc-
ular combination. When # > 0, it indicates that the eye with the added noise mask
dominated the binocular combination. All of the data show that the eye which receives
the added noise dominates binocular combination. The greater the noise energy, the
greater the domination. Remarkably, the greatest domination occurred at a frequency
(2.72 cpd) that is 4x the frequency being judged. At equal contrast (N/S = 1) there
was almost complete domination, a phase shift of 80° out of a possible 90°. Contrary
to a Bayesian point of view which would suggest that a noisy stimulus should have less
influence in binocular combination than a noiseless one, the noisy stimulus dominates
up to and beyond the point where it has obliterated the stimulus being judged so that
location judgments are no longer possible (e.g. Figure 15.14 b and c).

Figure 15.15 shows the data of a second observer. The spatial frequency modulation
transfer function derived from these data is shown in the model section (below).

15.6 Experiment 4. Masking sinewave gratings of
different spatial frequencies

15.6.1 Masking sinewave gratings in experiments 4, 5, and 6

In experiments 4, 5, and 6, as in experiment 3, the left- and right-eye sinewave gratings
are of the same contrast and differ only in phase, # = 90°. A masking sinewave grating,
given by

M(x> Y, fs,mask, ft,maska /6) = Sin(27rfs,mask (JZ cos ,B'HJ sin B)iz?rft,maskt+6mask)a
(15.7)

was superimposed on one eye’s sinewave grating.

15.6.2 Stimuli

In experiment 4, the stimuli are given by Egs. (15.1) and (15.2) where M is given by
Eq. (15.7), m, = my = 10%, 6, — 6 = £90°, and one of n, and n, was set to be zero.

The mask was a static vertical sinewave grating; its spatial frequency fs mask Was
chosen from among {0.34,0.68,1.36,2.72,5.44,10.88} cpd, B = 90° (the angle be-
tween horizontal grating being judged and the the masking grating), and f; mask = 0.
For each combination of the spatial frequency f a5k and mask-to-signal contrast ra-
tio M /S, there were four variations: dark stripe up/down x mask L/R. The procedure
for experiment 4 was the same as that for experiment 1. All 6x5x4 = 120 conditions
were run in a mixed-list design with interleaved up-down staircases. Two experienced
observers served in the experiment.
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Figure 15.14. Experiment 3. How the spatial frequency and contrast of added 2D noise
in one eye increase its binocular dominance. (L, R) A sample binocular stimulus to
the left and right eyes. Panels (a)~(f) show the perceived phase shift & as a function of
the ratio of RMS noise to RMS signal, N/S. The horizontal grating contrast (signal)
S was 0.1 and was equal in both eyes (interocular contrast ratio 6 = 1). The interoc-
ular grating phase difference & was 90°. The central spatial frequency (in cycles per
degree of visual angle, cpd) of the noise is indicated in each panel. The half-amplitude
bandwidth of the various masking noise stimuli was a factor of 2.4 (1.26 octaves). The
signal has a spatial frequency of 0.68 cpd. Data collection was continued until N/S was
either too great to permit judgments of phase (e.g. panels (b), (c)) or until the limits
of the apparatus were reached (other panels). The solid lines are the best fits derived
from the gain-control model. Adding noise to one eye at 2.72 cpd with an RMS ampli-
tude equal to that of the binocular signal being judged gave the masked eye virtually
complete binocular domination, i.e. produced a phase shift of 80° of a maximum pos-
sible 90° (a 90° phase shift implies zero weight for the signal in the unmasked eye).
Observer JD.
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Figure 15.15. Experiment 3. How the spatial frequency and contrast of added 2D noise
in one eye increases its binocular dominance. Observer HT, See caption to Figure
15.14.

15.6.3 Results

Figure 15.16 shows the results of experiment 4. The abscissa indicates the contrast ra-
tio M/S of mask to signal, and the ordinate indicates the perceived phase shift, . As
in experiment 3, the data show that the eye receiving the grating mask dominates the
summation. As mask contrast increased, domination increased. The data for sinewave
masking as a function of spatial frequency were quite similar to those obtained in exper-
iment 3 for band-limited noise masking as a function of spatial frequency. Figure 15.17
shows the results of a second observer. The spatial frequency modulation transfer func-
tion will be considered in the model section.
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Figure 15.16. Results of experiment 4: How masking sinewave gratings of different
spatial frequencies in one eye increase its dominance in binocular combination. (L,
R) A sample binocular stimulus to the left and right eyes. Panels (a)-(f) show the
perceived phase shift 6 as a function of the ratio M/ S of the amplitude M of a vertical
sinewave grating masking stimulus in one eye to the amplitude S of the binocular
horizontal sinewave signal whose phase was being judged. The spatial frequency (in
cycles per degree of visual angle, cpd) of the vertical masking grating was indicated
in each panel. The horizontal signal grating contrast S was 0.1 and equal in both eyes
(interocular contrast ratio § = 1). The interocular grating phase difference ¢ was 90°,
The horizontal signal grating is 0.68 cpd. Data collection was continued until M/S was
at the limits of the apparatus. The solid lines are the best fits derived from the gain-
control model. A masking-to-signal ratio M/S > 2 gave the masked eye overwhelming
dominance in binocular combination. Observer JD.

15.7 Experiment 5. Temporal frequency masking

15.7.1 Stimuli

The procedure for experiment 5 was basically the same as that for experiment 4. The
stimuli were the same as those in experiment 4, given by Eqs. (15.1) and (15.2) except
that the added vertical mask was a drifting rather than a stationary sinewave grating.
Mask parameters were fs mask = 0.68 cpd, the same spatial frequency as the signal,
and 8 = 90° (mask to signal angle, Eq. (15.7)).
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Figure 15.17. Results of experiment 4. How masking sinewave gratings of different
spatial frequencies in one eye increase its dominance in binocular combination. Ob-
server HT. See caption of Figure 15.16.

The independent variables were mask contrast, mask temporal frequency fi mask,
four variations (dark stripe up/down x mask L/R), and mask movement direction (left,
right). All 5x5x4x2 =200 conditions were run in a mixed-list design with interleaved
up-down staircases (5 000 trials). Two experienced observers served in the experiment.

15.7.2 Results

Figure 15.18 shows the results of experiment 5. The abscissa indicates the contrast ratio
of mask to signal (M/S), and the ordinate indicates the perceived phase shift, 8. Again,
the data show that the eye receiving — in this case — a drifting masking grating domi-
nated the binocular combination. As mask contrast increased, domination increases for
all temporal frequencies. In Figure 15.18f, the data from 0 Hz and 30 Hz are plotted
together to illustrate that these two masking functions differ mainly by a horizontal
translation, i.e. there was proportionally less masking at 30 Hz than for a stationary
grating — or for that matter any lower temporal frequency. This low-pass characteris-
tic of the temporal frequency modulation transfer function will be further considered
below in the model section. Figure 15.19 shows the data of a second observer.
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Figure 15.18. Results of experiment 5. How the temporal frequency and contrast of a
dynamic masking grating in one eye increase its binocular dominance. (L, R) A sam-
ple left- and right-eye frame from a dynamic binocular stimulus. Panels (a)-(f) show
the perceived phase shift 6 as a function of the ratio M/S of the amplitude M of a
drifting vertical sinwave grating masking stimulus in one eye to the amplitude S of
the binocular horizontal sinewave signal whose phase is being judged. The horizontal
signal and vertical masking grating both have a spatial frequency of 0.68 cpd. The hor-
izontal signal grating contrast S is 0.1 and equal in both eyes (interocular contrast ratio
§ = 1). The interocular grating phase difference # is 90°. The vertical masking grating
translates horizontally (randomly left or right from trial to trail) to produce temporal
frequencies of 030 Hz as indicated in panels (a)—(f). For comparison, panel (f) shows
the data for both 0 Hz masking (from panel a) and 30 Hz. Data collection is contin-
ued until M /S is at the limits of the apparatus. The solid lines are the best fits derived
from the gain-control model. At all temporal frequencies 0-30 Hz, a masking-to-signal
amplitude ratio of 4 gives the masked eye overwhelming dominance in binocular com-
bination. Observer JD.
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Figure 15.19. Results of experiment 5. How the temporal frequency and contrast of a
dynamic masking grating in one eye increase its binocular dominance. Observer HT,
See caption of Figure 15.18.

15.8 Experiment 6. Orientation masking

15.8.1 Stimuli

The procedure for experiment 6 was similar to that for experiment 4. The stimuli were
the same as those in experiment 4, given by Eqgs. (15.1) and (15.2), except that the
orientation of the mask grating varied from trial to trial instead of being fixed at the
vertical position. The parameters for the mask grating are described in Eq. (15.7):
spatial frequency fs mask = 5.44 cpd (three octaves higher than that of the signal),
temporal frequency fi mqsk = 0 (a static sinewave grating). The independent vari-
ables were mask contrast (5 levels) and mask orientation (9 levels). All 9x5x4 = 180
conditions were run in a mixed-list design with interleaved up-down staircases. Two
experienced observers served in the experiment.
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15.8.2 Results

Figure 15.20 shows the results of Experiment 6. The abscissa indicates the contrast
ratio of mask to signal (M/S) and the ordinate indicates the perceived phase shift, 6.
Again, the data show that the eye receiving — in this case — an oriented, static masking
grating dominates binocular combination. All orientations are effective in producing
domination, but vertical and horizontal gratings seem to be somewhat better than di-
agonally oriented gratings. As mask contrast increases, domination increases for all
orientations. That orientation angle affects masking indicates that the “receptive field”
of the masking channels cannot be exclusively circularly symmetric which, in turn, im-
plies that at least some portion of the gain control has a cortical origin. The orientation
tuning function will be derived and discussed in the model section. Figure 15.21 shows
the results of a second observer. :

15.9 Model

There have been many experimental investigations and numerous theories proposed to
describe binocular combination. A pervasive problem with these efforts has been that
they typically operate on a principle that is less than a point-by-point binocular com-
bination of images. Typically, the theories abstract a parameter from each eye’s image
(e.g., the maximum stimulus contrast or brightness, a contrast detection threshold, a
signal-to-noise ratio, or the visual direction of a significant point) and combine the
parameter values from each eye to predict the parameter value in the cyclopean image.

Previously (Ding and Sperling, 2006), we offered a gain-control theory that in prin-
ciple could derive a cyclopean image from a point-by-point comparison of the monoc-
ular images, and which derived the desired cyclopean parameters from the cyclopean
image itself (rather than simply from a combination of the monocular parameters). At
present we have derived the parameters of the gain-control theory for just a single visual
channel sensitive to horizontal sine waves around 0.68 cpd. It is not clear how these
parameters will generalize to other channels nor how channels will combine. Nev-
ertheless, this is a physiologically plausible approach to binocular processes in early
vision. Here we represent the gain-control model, derive the model parameters from
the experimental data, and show how the model can efficiently account for not less
than 97% of the variance in the experimental data for all observers and experiments.
We then extend the model’s predictions, which here have been concerned entirely with
the phase of binocularly combined gratings, to amplitude as well.

15.9.1 Linear summation

Suppose that binocular combination were a linear combination of the left- and right-eye
images, i.e., [(z) = L.(z) + L(z), where I.(x) and I;(z) are defined by Egs. (15.1)
and (15.2). The perceived phase shift 6 of I(z) (defined by Eq. (15.4)) is then given by

6 = 2tan"! <%——% tan (g)) . (15.8)
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Figure 15.20. Results of experiment 6. How the orientation and contrast of a mask-
ing grating in one eye increase its binocular dominance. (L, R) A sample binocular
stimulus to the left and right eyes. Panels (a)—(i) show the perceived phase shift 6 as a
function of the ratio M /S of the amplitude M of a sinewave grating masking stimu-
lus (in one eye) to the amplitude S of the binocular horizontal sinewave signal whose
phase was being judged. The signal grating contrast S was 0.1 and was equal in both
eyes (interocular contrast ratio § = 1). The interocular grating phase difference @ was
90°. The spatial frequency of the masking grating was 5.44 ¢cpd, 3 octaves higher than
that of the 0.68 cpd horizontal signal grating whose phase was being judged. The angle
of the monocular masking grating (relative to the binocular signal grating) is indicated
in each panel (a)—(i). Data collection was continued until M /S is at the limits of the
apparatus. The solid lines are the best fits derived from the gain-control model. At
all orientations, masking stimuli that have contrasts 2 times greater than the binocular
stimulus being judged gave the masked eye almost total ocular dominance. Observer
ID.

Equation 15.8 defines the dashed lines (linear predictions) in Figures 15.6, 15.7,
15.8, 15.11 and elsewhere. The linear summation model’s prediction connects with the
data only at the end points — the nominal control conditions —in which§ = 0and § = 1
(which do not require measurement). The linear prediction does not match any of the
actual data except those obtained with near-threshold stimuli.
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Figure 15.21. Results of experiment 6. How the orientation and contrast of a masking
grating in one eye increase its binocular dominance. Observer HT. See caption of
Figure 15.20.
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15.9.2 Gain-control model

The problem with the linear model is that the eye with the higher-contrast stimulus
has a greater advantage (or equivalently, the eye with the lower-contrast stimulus has
a greater disadvantage, or both) than is predicted by algebraic addition of the stimuli.
How does this come about? How does the brain attenuate the weaker stimulus prior to
binocular combination? The gain-control model of Figure 15.22 (Ding and Sperling,
2006) is our attempt to answer this question. In every neighborhood, each eye exerts
gain control on the other eye in proportion to the strength of its own input. The eye re-
ceiving the lower-contrast stimulus not only has a weaker stimulus but also receives the
stronger gain-control signal from the other eye which has the higher-contrast stimulus.

Normalizing the gain control itself solves a lot of problems. We propose that an
eye, say the left eye, not only gain-controls the right eye’s output but also the right
eye’s attempt to control the left eye’s output. These dual gain control mechanisms give
the model the extraordinary property that, for equal stimuli to the two eyes which are
sufficiently above threshold, closing one eye does not change the output of the model,
emulating a profound property of natural vision. As shown in Figure 15.22a, the output
T of the model is :

1+ & 1+ &
I+E6+& "  1+&E+&

I= Iy, (15.9)

where £, and & are the total contrast energies of the images presented to the two eyes
respectively. When & >> 1 and &, >> 1, Eq. (15.9) becomes

8[_ gR
Erglterel

.
I~

(15.10)

from which the one-eye-equals-two-eyes property is immediately apparent.

15.9.3 Total visually weighted Contrast Energy (TCE)

The results from experiment 3 show that the gain-control mechanism depends not only
on the stimulus contrast in the channel being judged, but on a wide range of chan-
nels, the most effective ones being 4 x higher in spatial frequency. The model assumes
that a quantity, the “Total visually weighted Contrast Energy” (TCE) of a stimulus, is
used for the gain-control mechanism. Experiment 2 showed that gain control depended
on exposure duration or, more precisely, on total contrast energy. Spatial frequency
(experiments 3,4), temporal frequency (experiment 5), and orientation of a masking
stimulus (experiment 6) all affect binocular combination. We assume therefore that
the gain-controlling contrast energy is a weighted sum over all spatial frequency chan-
nels. We have not investigated how the TCE depends on the spatial arrangement of the
contributing channels. .

Figure 15.22b illustrates the computation of Total visually-weighted Contrast En-
ergy (TCE) for the left eye. Let I, be the input image to the left eye and 1, ; be the
output of the temporal filter h, ;() within the ith spatial-frequency-and-orientation
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Figure 15.22. Gain-control model for binocular combination within a single binocular
channel. (a) Block diagram of the model. The luminance stimuli to each eye, [, and
Iy, are considered as being split into two channels: a stimulus analysis channel which,
in this case, is selective for 0.68 cpd horizontal sine waves, and a gain-control channel
that computes the Total visually weighted Contrast Energy, TCE. The stimulus analysis
channels from the two eyes add their outputs to produce the cyclopean image. Triangles
indicate shunting gain-control “amplifiers” in which the input is divided by a gain-
control signal to produce the output. Prior to the addition of the signal channels, the
TCE in each eye exerts shunting gain control on the signal of the opposing eye (top
and bottom triangles). Additionally, the TCE in each eye also exerts gain control on the
other eye’s gain-control signal (middle triangles). This model of binocular combination
has the remarkable property that when only one eye has a stimulus and the other eye has
a blank, the output is asympotically the same as when both eyes have the same stimulus.
To extend the model of binocular combination to apply to the present psychophysical
experiments, three additional components are required. An integrator that integrates the
total output of the model for the duration of a trial; random noise that is added to the
integrated output; and a decision component that makes an optimal response based on
the input it receives. (b) The computation of Total visually weighted Contrast Energy
(TCE). The visual stimulus is processed separately in spatial-frequency-and-orientation
channels, i.e. within each spatial frequency band, there are separate channels for each
orientation. Channels overlap in spatial frequency, in orientation, and in space. In each
gain-control channel, the signal is first temporally filtered by a lowpass filter (TF1)
whose properties are defined by experiment 5, power-law rectified with exponent (),
passed through a summing filter that sums over a wide spatial area (}_), and assigned
a weight by; that is specific for the particular pair of channels involved (signal, gain-
control). TCE is the weighted sum of many such channels, only three of which are
illustrated, and averaged over a relatively long period of time by a simple one stage RC
filter TF2 whose time-constant is determined by experiment 2.
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channel g, ;(z,y). Then
Li(z,y,t) = /gu,z'(x' =3,y = yhu(t' - )L(, o, t')dz'dy’dt’.  (15.11)
The visually weighted contrast energy of the ith channel is given by |
fuillomunt) = [ai(e =y ~y)lL, v, O d'ay,  as12)

where a,,i(z, y) is a large-space constant spatial filter. The TCE, & (1, ) is the weighted
sum over all spatial-frequency-and-orientation channels, i.e.

gL(ILax)y’ t) = ZbL,igL,i(IL»wv Y, t)) (1513)

where b, ; is a gain-control weight that is specific to an output channel (e.g. the hori-
zontal channel centered at 0.68 cpd).

15.9.4 How the gain-control model accounts for the data of
experiment 1

The model deals with contrast energy £ which, in experiment 1, is taken to be simply
the contrast of the sinewave grating stimulus to each eye, m, and m,. We have & =
bsm and & = bgmy, where bg is the gain-control efficiency of the signal sinewave
grating. In experiment 1, even the lowest-contrast stimuli are sufficiently strong that
the total contrast energy &, (1) > 1. Therefore we can use Eq. (15.10) to fit the data of
experiment 1. Given the estimated parameters, using Eq. (15.10) instead of Eq. (15.9)
changes the predictions by less than 1%. Equation (15.10) is further simplified to yield:

y

. m; my

I~ 15.14
m?—i—mf{L+mL~|—'rrﬁR ( )

The advantage of Eq. (15.14) over Eq. (15.9 ) is that together with Egs. (15.1) and
(15.2) it yields a simple expression for the-perceived phase shift 8

A o f1=67F1 0
0 ~ 2tan~? (W tan <§>) , (15.15)

represented by the solid curves in Figures 15.6-15.8. Equations (15.15) and (15.8)
yield the effective interocular contrast ratio as a power function of the actual interocular

contrast ratio: X
d =8, (15.16)

which is plotted as solid lines in Figure 15.9 along with experimental data. In experi-
ment 1, when &, (1.) > 1 and &(Lz) > 1, the gain control effectively attenuates the
lower-contrast stimulus by a factor of §7.

Using Eq. (15.14) (the close approximation for above-threshold stimuli to the full
gain-control model) to fit the data, means only one free parameter -y needs to be es-
timated for each observer: v = 1.18 for the observer JD whose data are shown in
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Figure 15.6; v = 1.17 for the observer NS in Figure 15.7; v = 2.27 for the observer
HT in Figure 15.8. Overall, this 1-estimated-parameter version of the gain-control
model accounts for 99.4%, 99.0%, and 98.5%, respectively, of the variance of the data
(48 conditions) for observers JD, HT, and NS.

15.9.5 How the gain-control model accounts for the data of
experiment 2

The data of experiment 2 depend on the temporal filter h(t)

h(t) = exp (—Tt) , (15.17)

in the model as shown in Figure 15. 22b For a pulse of duration T" (Eq.( 15.3)), the
model output is given by

t
qu)=/~uﬂw@-4qma (15.18)
0

When inputs I (z, y, t) and Iy (z, y, t) are given by Egs. (15.1) and (15.2), the contrast
energies & (t) and & (t) are given by

t Y
E.(t) = bs (mL/ u(t' Yh(t — t’)dt’) = bsm[q"(t), (15.19)
0

t Y
&(t) = bs (mR / u(t')h(t —t')dt') = bgmYq" (t). (15.20)
0

From Egs. (15.9), (15.19) and (15.20), a cyclopean stimulus [(z, , ) is given by
5 k M )
I(CE, yvt) = k+m :77?2‘)3.75:27(;)1 ($ y7t)+

k+m g7t
P (O mie /(@ ¥, 1),

(15.21)

where k = 1/bs is a gain-control threshold energy. Integrating I(z,y,t) over stimulus
duration T yields I(z, ), i..

T
f@w=Afm%wu (15.22)

a cyclopean sinewave grating whose phase is used to fit the data.

When the stimulus duration T is very brief, the output of temporal filter h(t) is very
small, and the total contrast energy TCE is too small to exert effective gain control in
binocular combination; the behavior of the model approximates linear summation. As
T increases, the contrast energy also increases, and the behavior of the model deviates
from linear summation to become more and more nonlinear.

To fit the data of experiment 2, two new model parameters are needed in addition
to the power-law rectification parameter -y from experiment 1: a threshold parameter
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Figure 15.23. The temporal filter (TF) in the gain control circuit and the filter’s re-
sponse to square-wave stimuli of various durations. (a) Impulse response of the tem-
poral filter. A time constant of 563 ms provides an optimal fit to the data of experiment
2. (b)~(f) Filter outputs when the input is a pulse of the indicated duration. In the
model, the direct stimulus inputs are not subjected to frequency filtering — an adequate
approximation for the current experiments — but the inputs are modified by gain con-
trol. In experiment 2, the input is zero when there is no stimulus; therefore gain control
is effective only during the actual duration of the stimulus.

k, and the time-constant 7 of the temporal filter. The best fitting parameters for data in
Figure 15.11 are v = 2.04, k = 2.18 x 10~*s (e.g. 50 ms x 0.436%), and T = 563 ms.
Figure 15.23a illustrates the simple exponential temporal filter, and Figures 15.23b-f
illustrate its outputs as stimulus duration 7" varies from 50 ms to 1 000 ms. The percents
of data variance accounted for by the model are 99.4% and 98.2%, respectively, for
observers JD and HT.

15.9.6 How the gain-control model accounts for the data of
experiment 3

In experiment 3, the contrasts of the sinewave grating stimuli to each eye were identical,
i.e. my = m, = m. Let the RMS contrast of a bandpass noise added to one eye, say
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the left eye, be n. The total contrast energy is £ = bgm?Y + byn?” and & = bgm".
In experiment 3, the contrast energy £ > 1 and & >> 1, so for simplicity, we can use
Eq. (15.10). Equation (15.10) becomes

1+ b(fon)(N/S)” 1 ;
24 0(fs,n)(N/S)T™ 7 2+ b(fon)(N/S)Y™

where N/S = n/m is a noise-to-signal RMS contrast ratio (here, m is defined as
RMS contrast), and b(fs,n) = bn/bs is a relative contribution to gain control of the
bandpass noise with central frequency of f, y. The free parameters for the model are
73 which is the average rectification power-law exponent for the signal and the various
noise channels involved in experiment 3, and the b(f; ) that represent the domina-
tion efficiencies (relative to the 0.68 cpd horizontal sinewave grating being judged) of
the various masking noise stimuli. The six solid curves in Figure 15.14 are the best
fits using the gain-control model of Eq. (15.23). For observer JD, the best fitting pa-
rameters are ¥ = 1.89 and b(fs n) = {0.69,1.0,1.68,3.61,1.41,0.42}; they yield
the spatial frequency modulation transfer function (MTF) illustrated in the top of Fig-
ure 15.24. The bottom panel of Figure 15.24 shows the MTF for observer HT. For
both observers, the gain-control efficiency of masking noise was at maximum when
the noise frequency was at 2.72 cpd (4x the signal spatial frequency). The percents
of data variance accounted for by the model are 99.3% and 98.4%, respectively, for
observers JD and HT.

I= (15.23)

15.9.7 How the gain-control model accounts for the data of
experiments 4-6

In experiments 4-6, when a mask sinewave grating was superimposed on, say, the left
eye, the total contrast energy to each eye can be calculated similarly to experiment 3 as
& = bgm” 4+ byn” and & = bgm”. Similarly, for the conditions of experiments 4,
5 and 6, the contrast energy £ > 1 and & > 1. Again, Eq. (15.10) is sufficiently
accurate and it simplifies to

I= 1 + b(fs,mask; ft,mask)(M/S)7 1

I + I,
2+ b(fs,mask, ft,mask)(M/S)‘Y 2+ b(fs,masky ft,mask)(M/S)‘y(IRS 24)

where M/S = n/m is the mask-to-signal contrast ratio and b( fsmasks fe.mask) =
bam /bs is the relative contribution to gain control of a masking sinewave grating.

In experiment 4, the spatial frequency of the masking sinewave grating fs mask
is an independent variable, and other parameters of the mask are constant. In Fig-
ure 15.16, the solid curves are the best fit of Eq. (15.24). The parameters are v4 = 1.004
and b(fs,mask) = {0.81, 1.13, 2.20, 2.27, 1.97, 0.74}. The b(fs mask) are plotted
against fs mask to yield the spatial frequency MTF for observer JD, in Figure 15.25
upper right. Figure 15.25 lower right shows spatial frequency MTF for obsever HT.
For both observers, the maximum gain-control efficiency was at Ss,mask = 2.72 cpd,
the same as that for the bandpass noise in experiment 3. The percents of data variance
accounted for by the model are 98.6% and 97.7%, respectively, for the observers JD
and HT.
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Figure 15.24. How noise of different spatial frequencies increases the weight in binoc-
ular combination of the eye to which it is added. Noise in one eye (like all other stimuli)
exerts gain control on the opposing eye. The ordinate shows the contribution to gain
control, relative to the stimulus grating being judged (0.68 cpd), of the added noise as
derived from the gain-control model. The abscissa indicates the central frequency of
the added noise. Based on data of experiment 3 for two observers. For both observers,
maximum gain-control efficiency occurred at 2.72 cpd (4 x the signal frequency).

In the left column of Figure 15.25 the perceived phase shift  is plotted against
fs,mask at different contrast levels. For both observers, at low contrast levels, the
curves have peaks at fs mqsk = 2.72 cpd. However, at high contrast levels, the curves
are flat; the contrast efficiencies are similar for all spatial frequencies.

In experiment 5 the temporal frequency of the masking sinewave grating f: mask is
an independent variable, and the other mask parameters are constant. In Figure 15.18,
the solid curves are the best fits using Eq. (15.24). The best fitting parameters are v5 =
1.43 and b( ft,mask) = {1.06, 1.54,1.72,1.74,0.49}, which are plotted against f; mask
to yield the temporal frequency MTF for observer JD in Figure 15.26 upper right.
Figure 15.26 lower right shows temporal frequency MTF for obsever HT. For both
observers, the corner frequency was about 15 Hz. In the left column of Figure 15.26,
the perceived phase shift § is plotted against f; mqsk at different contrast levels; at low
contrast levels, the corner frequency is at 15 Hz, but at high contrast levels, the MTF
becomes quite flat. The percents of data variance accounted for by the model are 99.2%
and 99.3%, respectively, for observers JD and HT.
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Figure 15.25. The transformation of a single gain-control efficiency function for spatial
frequency masking into multiple modulation transfer functions that depend on stimulus
contrast. (Left column) Spatial frequency modulation transfer functions. Perceived
phase shift § as a function of the spatial frequency of a masking sine wave grating
added in one eye, shown for mask contrast amplitudes of 2.5% (x), 5% (0), 10% (o),
20% (x), and 40% (+). (Right column) Gain-control efficiency of a masking grating in
one eye as a function of its spatial frequency. These efficiencies (weighting parameters
in the gain-control model) are used to fit the model to the data of experiment 4, i.e.
to generate the predicted perceived phase shifts § in the center column, which are the
gain-control model’s best fits to the data panels on the left. Observers JD, HT.

For experiment 6, the orientation 3 of the masking sinewave grating, is an indepen-
dent variable, and other parameters of the mask are fixed. In Figure 15.27, the solid
curves in the center panels are the best fits derived from Eq. (15.24). The best fitting
parameters are v = 1.42 and b(3) = {1.92, 1.21, 1.13, 1.52, 2.11, 1.54, 0.81, 1.06,
2.07}; these are plotted against orientation 3 in Figure 15.27 upper right to yield the
orientation tuning function for observer JD. Figure 15.27 (lower right) shows the orien-
tation tuning function for observer HT. For both observers, the vertical and horizontal
gratings contributed more to the total contrast energy than the gratings in £45° orien-
tations. In the left column of Figure 15.27, the perceived phase shift § is plotted against
(3 at different contrast levels. The percents of data variance accounted for by the model
are 98.6% and 96.9%, respectively, for observers JD and HT.
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Figure 15.26. The transformation of a single gain-control efficiency function for tem-
poral frequency masking into multiple modulation transfer functions that depend on
stimulus contrast. (Left column) Temporal frequency modulation transfer functions.
Perceived phase shift 6 as a function of the temporal frequency of a masking sine wave
grating added to one eye, shown for mask contrast levels of 2.5% (), 5% (O), 10% (o),
20% (x), and 40% (+). (Right column) Gain-control efficiency of a masking grating
in one eye as a function of its temporal frequency. These efficiencies (weighting pa-
rameters in the gain-contro! model) are used to fit the model to the data of experiment
5, i.e. to generate the predicted perceived phase shifts 6 in the center column, which
are the gain-control model’s best fits to data panels on the left. Observers JD, HT.

15.10 Discussion

15.10.1 Binocular iso-contrast contours

The present experiments have not dealt with amplitude, only with phase, i.e. the per-
ceived location of the dark stripe of a cyclopean grating. Here we investigate the gain-
control model’s predictions for the perceived contrast of cyclopean gratings, specifi-
cally, iso-contrast contours.

Consider sinewave gratings, identical except for contrast, that are presented to the
left and right eyes, i.e., [, = m,sinz and I; = mysinz. According to the model,
E(L) = bm{ and &(I;) = bmy. To simplify the expressions, replace k with 1/b.
This yields an expression for the perceived cyclopean contrast 17

k+my k+my

15.25
ey e L P (1525)

m =

At very low contrast-energy levels, m] < k and my < k, the equal contrast contours
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Figure 15.27. The transformation of a single gain-control efficiency function for ori-
entation masking into multiple modulation transfer functions that depend on stimulus
contrast. (Left column) Orientation modulation transfer functions: Perceived phase
shift 6 as a function of the angle relative to the horizontal stimulus being judged of a
masking sine wave grating added to one eye, shown for contrasts of 2.5% (x), 5% (),
10% (o), 20% (x), and 40% (+). Zero on the abscissa indicates parallel stimulus and
masking gratings. (Right column) Gain-control efficiency of a masking grating in one
eye as a function of its orientation relative to the stimulus being judged. These orien-
tation efficiencies (weighting parameters in the gain-control model) are used to fit the
model to the data of experiment 6, i.e. to generate the predicted perceived phase shifts
6 in the center column, which are the gain-control model’s best fits to data panels on
the left. Observers JD, HT.

on a graph of m, versus m,, are almost linear, i.e.

m = my + mg. (15.26)
At high contrast-energy levels, m; > k and m7 >> k, we have,
ki Y
- my Mg
m = m m 15.27
e e (1527

which is contrast-weighted summation.

Legge and Rubin (1981) studied binocular combination in a supra-threshold con-
trast matching task that involved left- and right-eye sinewave gratings with different
contrasts combined into a cyclopean grating.

Figure 15.28a shows examples of binocular iso-contrast contours extracted from
Legge and Rubin (1981). To smooth their data, all points shown in Figure 15.28a,
except the points at the ends of contours, are averaged with their two nearest neigh-
bors. The two resulting contours represent Legge and Rubin’s highest and lowest iso-
perceived-contrast contours. The dashed line is a prediction of linear summation.
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Figure 15.28. Binocular perceived iso-contrast contours, Combinations of left- and
right-eye grating contrasts that produce equal cyclopean perceived contrasts. (a) Replot
of two binocular iso-contrast contours from Legge and Rubin (1981, Figure 4B, p.
55). Except the data points at the ends of the plot, each plotted point is an average
of the original point at that location with its two neighbors. (b) Binocular iso-contrast
contours generated by the gain-control model. Sinewave gratings presented to two
eyes are identical except for their contrasts. The abscissa is the contrast of the left-eye
grating; the ordinate is the contrast of the right-eye grating. The curves are binocular
iso-contrast contours. The model parameters are assumed to be k = 0.02 s and v = 1.
The dashed lines are the predictions from linear summation of the contrasts in the
two eyes. The solid lines are normalized predictions from the gain-control model at
contrast levels of 0.002, 0.005, 0.01, 0.02, 0.04, 0.1, and 0.5 corresponding from top to
bottom. Both the model and the data at high (but not at low) contrast exhibit Fechner’s
paradox; i.e. replacing a zero-contrast stimulus in one eye with a low-contrast stimulus
(thereby increasing the total contrast energy presented to the observer) reduces apparent
cyclopean contrast and requires an increase in the contrast of the high-contrast grating
to maintain perceived iso-contrast.

Figure 15.28b shows the full gamut of iso-perceived-contrast contours derived from
a simulation of the gain-control model for various contrast levels from very low contrast
(0.002) to very high contrast (0.50) with model parameters k = 0.02 and vy = 1.
Generally, the features of the data and of the model correspond very well. At a low
contrast level (0.01), the data contour approaches the limiting straight line expected
from linear summation at extremely low contrast energies. At a high stimulus contrast
level (0.50), the data contour is highly nonlinear and it looks quite similar to the 0.50
contour of the model.

Both the data and the model demonstrate Fechner’s paradox in the high-contrast
iso-contrast contours but not in low-contrast contours. Fechner observed that when the
contrast of the grating in one eye is zero, increasing the contrast in that grating initially
decreases the (perceived) cyclopean contrast even though overall contrast energy has
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increased. In the model, Fechner’s paradox occurs because the gain control from the
low-contrast eye has a greater divisive effect in reducing the output of the high-contrast
eye than an additive effect in contributing to the summed output, especially as its output
is being attenuated by intense gain control from the competing eye which is receiving
a high-contrast grating.

15.10.2 Binocular power summation

Legge (1984b) proposed a binocular quadratic summation to explain his data derived
from binocular combination experiments. Similarly, Anderson and Movshon (1989)
reported that, in a binocular detection task for vertical sinewave gratings, the iso-
effectiveness contour for binocular summation could be well described by a power-
summation equation of the form

me =mg +m/?, (15.28)

with an exponent o near 2. Binocular power summation implies that the contrast signal
in each eye is subjected to a power-law transformation prior to binocular summation.
For example, one implication for experiment 1 would be that the effective interocular
contrast ratio would be 6 = §7. If we take 0 = 1 + #, it turns out that both the
power summation model and the gain-control model give the same effective interocular
contrast ratio. This apparently happy coincidence of two theories is superficial. A
power-law transform applies only to weak stimuli. For high-contrast stimuli addition
of the two eyes’ power-law-transformed stimuli would grossly violate the one-eye-
equals-both-eyes constraint for equal stimuli to both eyes.

The data of experiment 2 (exposure duration) offer very clear limits on the expo-
nent of a power law that could operate on monocular signals before they were added in
binocular combination. We consider here the graphs of 6 versus 6 (e. g. Figure 15.11)
and a log-log graph of 6 versus 8 (e. g. Figure 15.13). Data from threshold-level stimuli
were not obtained here but experiment 2 provides data concerning the binocular sum-
mation of fairly low contrast-energy stimuli in the condition: exposure duration 50 ms,
grating contrast 0.10. In Figure 15.29, these data from experiment 2 are displayed
on the two graphical forms described above. The solid line is the best fit from the
gain-control model. The dashed lines are predictions from a power-summation model
(Eq. (15.28)) with power-law exponent o = {1,1.2,1.4,1.7,2,2.5, 3} corresponding
to the dashed lines from bottom to top in Figure 15.29a and from top to bottom in
Figure 15.29b. With the possible exception of a point for 6= 0.2 (where log variabil-
ity is greatest), the data are consistent with a power-law exponent of 1.0, and clearly
rule out exponents greater than 1.20. The conclusion is that monocular inputs, at least
from grating stimuli, combine linearly, or nearly so, prior to binocular combination.
Apparent similarity (when it occurs) to a power-law transformation prior to binocular
combination derives from quite different processes.
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Figure 15.29. Is the monocular signal transformed nonlinearly by a power law prior
to binocular combination? Comparison of the gain-control model with a power-law
transformation. Power-law transformations are most effective at near-threshold con-
trasts, so we consider the subset of data from experiment 2, Figure 15.11, in which the
contrast of the higher-contrast grating is 0.1, the contrast of the lower-contrast grat-
ing is 0.14 and the exposure duration is 50 ms (the lowest energy stimuli tested). The
solid curve is the prediction of the gain-control model (linear transduction, no input
power-law transformation). The dashed lines are predictions from a power-law trans-
duction model with power-law exponents o = 1, 1.2, 1.4, 1.7, 2, 2.5, 3 corresponding
to the dashed lines from bottom to top. (b) A log-log plot of the apparent interocular
contrast ratio d as a function of the actual interocular contrast ratio . The solid curve
is a prediction of the gain-control model; the dashed lines are predictions based on a
power-law transformation prior to binocular combination with power-law exponents
oc=1,12,14,17, 2, 2.5, 3 corresponding to the dashed lines from top to bottom.
Conclusion: Prior to binocular combination, the input contrast is represented linearly
or very nearly linearly.

15.11 Summary and conclusions

Six experiments were performed. In experiment 1, static sinewave gratings of different
modulation contrasts and in different phases were presented to the left and right eyes.
Stimuli were viewed for 1 s. The data consist of 48 combinations of contrasts of the
left- and right-eye stimuli and of their relative phases. From the judged phase of the cy-
clopean grating relative to a reference marker, we inferred the ratio of the contributions
of the two eyes to the cyclopean image. In all cases, the stimulus with greater contrast
had more weight in binocular combination than predicted by simple linear summation.
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A one-parameter gain-control model accounted for 98% of the variance of the data. The
gain-control model predicts that when the contrast energy is much smaller than a par-
ticular constant in the gain-control equation, binocular combination will be perfectly
described by linear summation. The deviations from perfect summation (nonlinearity)
become increasingly important as the contrast energy of the stimulus increases. The
model also correctly predicts that for idential stimuli to both eyes at moderate and high
contrasts, the perceived cyclopean image will be the same whether viewed with one or
both eyes.

Experiment 2 investagated the effect of varying grating contrast and exposure du-
ration as multiplicative contributers to contrast energy. The stimuli and procedure were
similar to experiment 1 except that the duration was varied in the range from 50 ms
to 1000 ms to create low-energy stimuli (50 ms, contrast 0.1) ranging to very strong
stimuli (1000 ms, contrast 0.2). The results show that for low-contrast-energy stimuli
binocular combination is well described by algebraic summation of the two physical
images ~ no gain control is observed. As stimulus duration and/or contrast is increased,
algebraic summation of left- and right-eye images increasingly fails to account for per-
ception. This increasing deviation of observed binocular combination from linear sum-
mation is well modeled by a gain-control pathway that has an exponential decay filter
with a time constant of 563 ms.

Experiment 3 investigated the question: When the spatial frequency for which
binocular combination is being determined is fo, how much do other spatial frequen-
cies fi contribute to gain control? Each eye was presented with a sinewave grating,
the interocular phase difference was 90°, and bandpass spatial noise was added to the
grating in one eye. The eye with the added noise dominated binocular combination.
Noise in a 4x higher frequency band than the signal being judged was the most effec-
tive stimulus for producing dominance. Adding noise is inconsistent with a Bayesian
model that would give less weight to noisy signals, but it is totally consistent with
a gain-control model in which Total visually weighted Contrast Energy (TCE) deter-
mines the interocular gain control,

Experiments 4-6 were designed to measure the contribution of various frequency
components to TCE and thereby to ocular dominance. The paradigms were the same
as in experiment 3 in that 90°. out-of-phase grating stimuli were presented to both
eyes and a masking grating was added to only one eye’s stimulus. The contrasts of the
masking sinewave gratings were varied. Experiment 4 also varied the spatial frequency
of a sinewave masking grating that was perpendicular to the grating whose phase was
being judged and it produced similar results to experiment 3 in which bandpass noise
was added. Experiment S varied the temporal frequency to reveal a low-pass character-
istic with a corner frequency of about 15 Hz. Experiment 6 varied orientation. Spatial,
temporal, and orientation modulation transfer functions were derived to describe the
TCE gain-control parameters and thereby to characterize the increase in dominance
provided by the various masking stimuli. The gain-control model accurately described
the change in dominance as the ratio of the two eyes’ contrasts varied and as the over-
all contrast energy level varied, accounting for at least 97% of the data variance for all
observers in all experiments. In experiment 6, added orientation gratings were most ef-
fective at inceasing ocular dominance when their orientation was vertical or horizontal
versus diagonal, implicating at least a partial cortical origin for interocular gain control.
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