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Abstract

Microbalanced stimuli are dynamic displays which do not
stimulate motion mechanisms that apply standard (Fourier-
energy or autocorrelational) motion analysis directly to the
visual signal. Because they bypass such first-order
mechanisms, microbalanced stimuli are uniquely useful for
studying second-order motion perception (motion perception
served by mechanisms that require a grossly nonlinear stimulus
transformation prior to standard motion analysis). Some
stimuli are microbalanced under all pointwise stimulus
transformations and therefore are immune to early visual
nonlinearities. We use them to disable motion information
derived from spatial (temporal) filtering in order to isolate the
temporal (spatial) properties of space/time separable second-
order motion mechanisms. The motion of all of the
microbalanced stimuli we consider can be extracted by (la)
band-selective spatial filtering and (1b) biphasic temporal
filtering, nonzero in dc, followed by (2) a rectifying
nonlinearity and (3) standard motion analysis.

1. Introduction.

Standard motion analysis. A visual display is described
by L(x,y,t), its luminance as a function of space, x,y, and
time, t. We use the term standard motion analysis for any
computation applied to L that derives L’s motion from
correlations of L-values across time and space. Such
computations are consonant with the motion-from-Fourier-
components principle, which states that L ’s motion is reflected
in some reasonable way by the contributions to L of individual
Fourier components (drifting sinusoidal gratings). The
recently proposed motion-perception theories of Adelson &
Bergen [1], Heeger [S], van Santen & Sperling [3,4], and
Watson & Ahumada [2] all perform various forms of standard
motion analysis on their input. Similarly, the computer vision
models of Anandan [9] and Waxman & Bergholm [10] also
perform standard motion analysis on the input signal.

First-order mechanisms. A fundamental transformation
generally presumed to be subjected to standard motion analysis
in human visual processing is the contrast of the signal (the
normalized deviation of luminance from its locally computed
mean). We call mechanisms first-order that apply standard
motion-analysis to raw stimulus contrast. Any motion
mechanism that applies a grossly nonlinear transformation to
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the stimulus prior to standard motion analysis, we call second-
order.

It is becoming clear, from apparently moving stimuli
which do not stimulate standard motion detectors, that first-
order mechanisms cannot account for all the data [11-28]. In
particular, Chubb and Sperling [24,26,27] have demonstrated a
variety of stimuli which display consistent, unambiguous
apparent motion, yet which do not systematically stimulate
first-order mechanisms.

The methods used by Chubb & Sperling [26] to construct
apparent motion stimuli devoid of systematic first-order motion
content are founded on the notion of a microbalanced random
stimulus. A random stimulus 7 is microbalanced iff, for any
space/time separable function W, the result J=wr of
multiplying / by W satisfies the following condition: (/ is drift
balanced) the expected power in J of any given drifting
sinusoidal grating is equal to the expected power in J of the
grating of the same spatial frequency, drifting at the same rate,
but in the opposite direction. Drift-balanced and
microbalanced random stimuli are useful for studying motion
perception because they provide flexible access to second-
order motion mechanisms without systematically engaging
first-order mechanisms.

In this paper, we begin by reviewing the basic resulis
about drift-balanced and microbalanced random stimuli, then
apply these findings to generate a collection of microbalanced
stimuli displaying various types of motion. The motion of
each of the stimuli we consider is best revealed to standard
analysis by a spacel/time separable linear filter followed by a
rectifier. The first two microbalanced stimuli we discuss
(stimuli 3.1 and 3.2) place important constraints on the
temporal filtering mediating space/time separable, second-
order motion-perception. The motion of each of the last four
stimuli (4.2.2, 4.2.3, 4.2.5, and 4.2.6) depends only on the
spatial filtering stage (temporal filteririg alone, followed by
rectification, cannot expose the motion of these stimuli).

A transformation is pointwise if its output value at a point
(x,y,t) in space/time depends only on the value of the input at
(x,y,t). Pointwise transformations include what are often
called "static nonlinearities.” Stimuli 3.2, 4.2.2,4.2.3,4.2.5 and
4.2.6 all remain microbalanced after arbitrary poinrwise
transformations. We present general methods for constructing
stimuli of this sort.



A wansformation is purely temporal if its output value at
a poiut {x,y,t) depends only on the history of input at (x, y).
The class of purely temporal transformations is very general
and includes, for example, temporal bandpass filtering
preceded and followed by arbitrary pointwise transformations.
Stimuli 4.2.2, 4.2.3, 42.5 and 4.2.6 remain microbalanced
after any purely temporal transformation. Such stimuli are
extremely useful for investigating second-order motion
perception, because they provide a critical measure of control
in differentially stimulating specific second-order mechanisms.
Indeed, under virtually all models of visual processing, the first
effective transformation mediating the perception of motion
displayed by such stimuli is bound to be a spatial linear filter
(a "texture-grabber"). This linear stage must, of course, be
followed by a pointwise nonlinearity (such as rectification or
thresholding) to expose the microbalanced stimulus motion to
standard analysis.

2. Preliminaries.

Section outline. In this section we state the background facts
presupposed by the main discussion of the paper. The broad
topics covered are:

e Real-valued, discrete visual stimuli and their Fourier
transforms. We take a stimulus to be a real-valued function
whose action is restricted to a finite grid of spatiotemporal
sampling locations.

o Transformations. Definitions are given of linear shift-
invariant transformations, and pointwise transformations.

o Random stimuli. A random stimulus is a jointly distributed
set of random variables assigned to a grid of spatiotemporal
sampling locations.

e Drift-balanced and microbalanced random stimuli. A
random stimulus [ is drift balanced iff the expected power
contributed to I by any given Fourier component (drifting-
sinusoidal grating) is equal to the expected power in I of the
grating of the same spatial frequency drifting at the same rate,
but in the opposite direction. I is microbalanced iff W/ is drift
balanced for any space/time separable function W that
"windows" I. The class of microbalanced random stimuli is
significant for studying motion-perception, since (i) it is easy
to construct a broad range of microbalanced random stimuli
which display consistent, compelling apparent motion across
independent realizations, despite the fact that (ii) the motion
displayed by any microbalanced random stimulus is invisible
to first-order mechanisms, regardless of the spatiotemporal
scope over which they perform their motion-analysis.

uf with g by f % g, and the product of f with g by fg.

2.1. Discrete dynamic visual stimuli and their Fourier
transforms.

We let R denote the real numbers, and Z (Z*) the integers
(positive integers).
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Contrast modulation. Luminance [(x,y,t) is
physically constrainted to be a non-negative quantity.
Psychophysically, the significant quantity is contrast, the
normalized deviation at each time ¢ of luminance at each point
(x,y) in the visual field from /, a "background level", or "level
of adaptation”, which reflects the average luminance over
points proximal to (x,y,?) in space and time. We shall restrict
our attention throughout this paper to stimuli for which it can
be assumed that the background luminance level [, is uniform
over the significant spatiotemporal locations in the display.

For any stimulus ! with base luminance /,, call the
function / satisfying
I =1,+1),
the contrast modulator of I (and note thatJ = -1).
Psychophysically, it is well-established that over
substantial ranges of I,, the apparent motion of I does not
depend upon [,. Therefore, we shift our focus from luminance

to contrast, and identify a stimulus with its contrast modulator,
dropping reference to background level.

Stimuli. We restrict ourselves to discrete stimuli, whose
activity is restricted to a finite grid of points in space/time.
Specifically, we call any function / 2 5 R a stimulus iff
I[x,y,t] = 0O for all but finitely many points of Z3. We shall
be considering stimuli as functions of two spatial dimensions
and time. The reader may find it convenient to think of the
first spatial dimension (always indexed by x) as horizontal,
with values increasing to the right, the second spatial
dimension (indexed by y) as vertical, with values increasing
upward. The temporal dimension is indexed by ¢. For
concreteness, the reader is encouraged to imagine Z° as
indexing the pixels in a dynamic digital display.

Because any stimulus / is nonzero at only a finite number
of points, the power in ] is finite, from which we observe that /
has a well-defined Fourier transform.

We denote I'’s Fourier transform by I:
Ie8n= I
x,y,.telZl

Although I is defined for all real numbers ®,0,7, it is
periodic over 2r in each variable. This fact is reflected in the
inverse transform:

I[x,y,t]e—j(m +0y +n)_

2n 2n 2n _ )
= [ [ 18,0/ *%*"dadodr.
@2n)Y 0 0 o
In the Fourier domain, ® indexes frequencies relative to x, 6
indexes frequencies relative to y, and t indexes frequencies
relative to z.

I[x,y,t] =

We distinguish the stimulus 0 by setting Ofx,y,+] =0 for
allx,y,t € Z.
Any stimulus I is called spaceltime separable if

Ilx,y,t] = glx,y1h[t], for some real-valued functions g
and & of space and time respectively.



2.2. Transformations.

Any function T which takes the set of real-valued
functions of Z? into itself is called a transformation. If, for
instance, 1:Z> >R then TU):Z*>R, and we write
T({){x,y,t] to indicate the value of T(/) at any point
(x,y,t)e Z>. We shall be particularly concered with two
types of transformations: linear shift-invariant transformations,
and pointwise transformations.

Pointwise transformations, rectifiers. For any functions
f:A 5B and g: B — C, the composition gef:A — C is
given by

gef(a) = g(f (@)

for any ae A. Then for any f:R 5 R, we call the
transformation fe, yielding the spatiotemporal function fe/
when applied to stimulus I, a pointwise transformation
(because its output value at any point in space/time depends
only on its input value at that point). The transformation f eis
called a positive half-wave rectifier if f is monotonically
increasing, and f [v]=0 for all v £0. feis called a negative
half-wave rectifier if f is monotonically decreasing, and
f[v]l=0forv 20. Finally, feis called a full-wave rectifier if
f is a monotonically increasing function of absolute value.

Linear, shift-invariant transformations. Linear, shift-
invariant  (LSI)  transformations are  spatiotemporal
convolutions: For k:Z3 — R (the impulse response), the LSI
transformation kx yields the convolution & * I when applied
to any stimulus /: i.e., forany c € VAS

kIl = ¥ IBk[o—B].
pezr -

2.3. Random stimuli.

The notion of a random stimulus generalizes that of a
nonrandom stimulus in that the values assigned points in
space/time by a random stimulus are random variables rather
than constants. A random stimulus is a family
(RIx,y,t]] x,y,t € Z} of random variables, all but some
finite number of which are always 0. To ensure that R has a
well-defined expected power spectrum we require that
R[x,y,t]has a finite second moment for each (x,y, ) € yAL

2.3.1. Call any family {R[x,y,t]] (x,y,t)€ Z3] of jointly
distributed random variables a random stimulus provided
(i) for all but finitely many (x,y,t) e Z3, Rix,y,t]is
invariably equal to 0,
and

(ii) E[R [x,y,t]z} exists for all (x,y,?) € Z3,

As with non-random stimuli, we write R for the Fourier
transform of the random stimulus R. R is called space/time
separable iff R is space/time separable with probability 1. If
there exists a stimulus S such that R =S with probability 1,
then R is called constant.
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2.4. Drift-balanced and microbalanced random stimuli.

The motion-from-Fourier-components principle is a
commonly encountered rule of thumb for predicting the
apparent motion of an arbitrary stimulus /[x,y,t]=f[x,1]
that is constant in the vertical dimension of space. It states
that, for I considered as a linear combination of drifting
sinusoidal gratings, if the power in / of the rightward-drifting
gratings is greater than the power of the leftward-drifting
gratings, then apparent motion should be to the right.
Conversely, if most of I’s power resides in the leftward-
drifting gratings, apparent motion should be to the left.
Otherwise I should manifest no decisive motion in either
direction.

This prediction rule for horizontally moving stimuli is a
restricted version of the more general motion-from-Fourier-
components principle: For any stimulus L to exhibit motion in
a certain direction in the neighborhood of some point
(x,y,1) e Z3, there must be some spatiotemporal volume A
proximal to (x,y,z) such that the Fourier transform of L
computed locally across A has substantial power over some
regions of the frequency domain whose points correspond, in
the space/time domain, to sinusoidal gratings drifting in a
direction consistent with the motion perceived.

The following class of random stimuli provides a rich
pool of counterexamples to the motion-from-Fourier-
components principle [26].

2.4.1. Call any random stimulus R drift balanced iff

£[R.0,07] = E[iR(@ 0.0
for all (@, 8, T) € R>.

Thus, a random stimulus R is drift balanced iff the
expected power in R of each drifting sinusoidal component is
equal to the expected power of the component of the same
spatial frequency, drifting at the same rate, but in the opposite
direction. That is, that expected power of every frequency is
the same, independently of whether a series of frames is
displayed in forward or reverse order. Obviously, for any class
of spatiotemporal receptors tuned to stimulus power in a
certain spatiotemporal frequency band, a drift-balanced
random stimulus will, on the average, stimulate equally well
those receptors tuned to the corresponding band, of opposite
temporal orientation.

Microbalanced Random Stimuli. Consider the
following two-flash stimulus S: In flash 1, a bright spot (call it
Spot 1). appears. In flash 2, Spot 1 disappears, and two new
spots appear, one to the left and one symmetrically to the right
of Spot 1. As one might suppose, S is drift balanced. On the
other hand, it is equally clear that a first-order motion detector
whose spatial reach encompassed the location of Spot 1 and
only one of the Spots in flash 2 might well be stimulated in a
fixed direction by §. Thus, although S is drift balanced, some
first-order motion-detectors may be stimulated strongly and
systematically by §. These detectors can be differentially
selected by spatial windowing, and thereby the drift-balanced
stimulus § can be converted into a non-drift-balanced stimulus
by multiplying it by an appropriate space/time separable



function. This property is escaped by the following subclass of
drift-balanced random stimuli.

2.4.2. Call any random stimulus I microbalanced iff WI is
drift balanced for any space/time separable (non-random)
function W.

One can think of the multiplying function W as a
"window" through which a spatiotemporal subregion of / can
be "viewed" in isolation. The space/time separability of W
insures that it is "transparent” with respect to the motion-
content of the region of to which it is applied: W does not
distort /’s motion with any motion content of its own. Thus,
the fact that / is microbalanced means that any subregion of /
encountered through a "motion-transparent window" is drift
balanced.

The following characterization of the class of
microbalanced random stimuli, and the rest of the results in
this section are from Chubb and Sperling [26].

2.4.3. A random stimulus I is microbalanced if and only if
B[y, 011,y 0 1= 10,5, £, Y1) = 0
forall (x,y, 1), (,y,r'ye 22,

Some other relevant facts about microbalanced random
stimuli:

2.4.4. For any independent microbalanced random stimuli I
andJ,

L. the product 1J is microbalanced,
and

1L the convolution I x J is microbalanced.

24.5. (a) Any spaceltime separable random stimulus is
microbalanced; (b) any constant microbalanced random
stimulus is spaceltime separable.

The following result is useful in constructing a wide range
of microbalanced random stimuli which display striking
" apparent motion.

246. Let T be a family of pairwise independent,
microbalanced random stimuli, all but at most one of which
have expectation 0. Then any linear combination of T is
microbalanced.

The Reichardt detector characterization of
microbalanced random stimuli. Two first-order motion
detectors proposed for psychophysical data [1,6] can be recast
as variants of a Reichardt Detector [3,4,31]. The Reichardt
detector has many useful properties as a motion detector
without regard to its specific instantiation [3,4].

Figure 1 shows a diagram of the Reichardt detector. The
Reichardt detector consists of a left and a right subunit that
share their inputs. The left subunit normally computes
leftward motion because the filter g ;% acts as an internal delay
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to match the external delay of a moving stimulus. The right
subunit normally computes rightward motion. The output
represents the smoothed leftward minus rightward difference.

[51] [£2]

micalcalm

[#+]

Figure 1: The Reichardt detector. The detector consists of a
left and a right subunit; the left unit normally detects leftward
movement; the right unit, rightward movement. In response to
a stimulus /, each spatial input filter (receptive field) f;
outputs a temporal function that is then convolved with a
temporal filter g;* . The correlator boxes, marked "x", ouput
the product of their inputs. The box marked "—" outputs its
left input minus its right; this output indicates the net lefiward
minus rightward motion. The box h* contains a temporal
smoothing filter to produce time-averaged output.

Specifically, the Reichardt detector consists of spatial
receptors characterized by spatial window functions (receptive
fields) f; and f,, temporal filters g ;% and g,*, multipliers, a
differencer, and another temporal filter hx. The spatial
receptors f;, i =1,2, act on the input stimulus / to produce
intermediate outputs,

yltl = X filx,yHlix,y,1]

(x.y)eZ?
At the next stage, each temporal filter g;* transforms its input
y; (i,j=1,2), yielding four temporal output functions:
gj * y;- The left and right multipliers then compute the
products

[yl * gl[t]] [)’2 * 82[1]] and [yl * 82[11} [)’2* gllt]}

respectively, and the differencer subtracts the output from the
right multiplier from that of the left multiplier:
D[} =

0w i) [p2x 2] = [y10 g [ 32 £105).
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Figure 2: First-order and second-order motion mechanisms. (a) First-order motion mechanisms apply standard motion
analysis (e.g., Reichardt model) directly to the luminance signal L. Many second-order mechanisms can be modeled by a
signal transformation comprised of a spatiotemporal linear filter followed by a pointwise nonlinearity followed by
standard motion analysis. The filtering performed in (b) is space/time separable (spatial filtering and temporal filtering
occur in separate boxes), followed by a pointwise nonlinearity, which is illustrated here with a full-wave rectifier. The
motion of all the microbalanced stimuli considercd in this paper can be extracted by the second-order mechanisms
diagrammed in (b) with appropriately chosen spatial and temporal filters.

The final output is produced by applying the filter A%, whose
purpose is to appropriately smooth the time-varying,
differencer output D. Since almost all first-order mechanisms
can be expressed as, or closely approximated by Reichardt
detectors, the following result [27] is the cornerstone of the

claim that microbalanced random stimuli bypass first-order "

motion mechanisms.

2.4.7. For any random stimulus I, the following conditions are
equivalent:

(a) I is microbalanced.

(b) The expected response of any Reichardt detector to I is
0 ar every instant in time.

Varieties of microbalanced motion.

In Sections 3 and 4, we describe six random stimuli, all of
which are microbalanced, yet display consistent apparent
motion across independent realizations. For each of these
random stimuli /, the motion displayed by I can be exposed to
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standard motion analysis by a transformation
TU)=re(f 1), 50
where r o is a rectifier, and fx is a space/time separable filter.

3. Motion mediated by simple rectification and by
temporal differentiation followed by rectification.

The first two stimuli (3.1 and 3.2) place constraints only
on the temporal component of the the filter f*. Subsequent
stimuli focus on the spatial component.

3.1. Stimulus: The amplitude-modulating squarewave. The
motion of some of the microbalanced stimuli demonstrated by
Chubb & Sperling [24,26] results from modulating the
amplitude of spatially independent, visual noise. For example,
Fig. 3a shows an xt cross-section of a squarewave, stepping 1/4
spatial-cycle leftward each frame, modulating (between 0 and
1) the amplitude of a row of static, horizontally independent
black/white vertical bars. This stimulus displays obvious
leftward motion to all viewers under a broad range of viewing



Figure 3: Transformations of the contrast-modulating squarewave. All 12 panels are xt cross-sections (with time
running downward) of various transformations of stimulus 3.1, the contrast-modulating squarewave. Stimulus 3.1 itself
is cross-sectioned in (a). The horizontal dimension is x, the vertical dimension is ¢ with time increasing downward, and
the stimulus is unvarying in y . The problem of perceiving leftward motion in the dynamic display whose x¢ cross section
is represented by panel (a) is equivalent to the texture problem of perceiving orientation slanting down and to the left in
the panel (a) itself. In the left-hand column are displayed cross-sections of 3 linear transformations of the stimulus: (a) the
identity, (b) the partial derivative with respect to time, and (c) the average of the operators applied in (a) and (b). The
next column (al, bl, c1) shows the result of full-wave rectification (absolute value) of the corresponding (same-row)
linear transformations; e.g., (al) shows the result of full-wave rectifying the untransformed stimulus 3.1. Column three
shows the positive half-wave components of the same-row linear transformations in column 1; column 4 shows the
negative half-wave components. The functions in column 1 (linear transformations of the contrast-modulating
squarcwave) are all microbalanced; hence, the right-to-left motion displayed by the stimulus cannot be obtained from
these transformations by standard motion analysis. Temporal differentiation (the second-row transformations) yields

motion-ambiguous functions; rows 1 and 3 yield functions whose motion is extractable by standard motion analysis.

conditions, despite the fact that (as is easily proven from
propositions 2.4.5a and 2.4.6) it is microbalanced.

Simple rectification exposes the motion of the
amplitude-modulating squarewave. As suggested by Figs.
3al, 3a2, and 3a3, simple full-wave or half-wave rectification
(i.e. setting f* to the identity in Eq. (1)) suffices to expose
motion carried by amplitude-modulation. However, simple
rectification fails to expose the motion in the following
stimulus.

3.2. Stimulus: The contrast-reversing squarewave. A
sideways stepping squarewave is used to alternately multiply
the contrast of spatially independent noise by +1 and —1. Fig.
4a shows an xt cross-section of a squarewave that steps
leftward 1/4 spatial-cycle at regular temporal intervals,
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reversing the contrast of black/white vertical bars as it moves.
Like the amplitude-modulating squarewave, this contrast-
reversing squarewave displays vivid leftward motion to all
viewers under a broad range of viewing conditions;
nonetheless, it is microbalanced (another easy consequence of
propositions 2.4.5a and 2.4.6).

Simple rectification fails to reveal the motion of the
contrast-reversing squarewave. As illustrated in Figs. 4al,
4a2 and 4a3, simple rectification does not expose the motion of
the contrast-reversing squarewave to standard motion analysis:
full-wave rectification yields a uniform field, while half-wave
rectification yields a mere dc-shifted rescaling of the original
stimulus. Indeed, any purely spatial filter followed by
rectification is equally ineffective at revealing this motion [27].
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Figure 4: Transformations of the contrast-reversing squarewave. All 12 panels are x¢ cross-scctions (with time running
downward) of various transformations of stimulus 3.2, the contrast-reversing squarewave, which is itself is cross-
sectioned in (a). See caption of Fig. 3 for a description of the transformations and panel arrangement. All of the functions
in the left column (the linear transformations of the contrast-reversing squarewave) are microbalanced, so the right-to-left
motion displayed by the stimulus cannot be obtained from these transformations by standard motion analysis. The purely
pointwise transformations (the rectifications shown in the first row) also yield microbalanced functions and hence no
simply-accessible motion. However, after any of the rectifying transformations in rows (b) or (c), the stimulus motion is

accessible to standard motion analysis.

Temporal differentiation followed by rectification
reveals the motion of the contrast-reversing squarewave.
The obvious transformation to expose the motion of this
stimulus to standard motion analysis is temporal differentiation
followed by half-wave or full-wave rectification. The result of
differentiating the contrast-reversing squarewave with respect
to time is shown in Fig. 4b. The motion of this temporal
derivative remains microbalanced (a consequence of
prepositions 2.4.4 1. and 2.4.5a). However, as suggested by
Figs. 4bl, 4b2 and 4b3, either full-wave (Fig. 4b1) or half-
wave (Figs. 4b2 & 4b3) rectification suffices to reveal the
motion of the temporal derivative of the contrast-reversing
squarewave to standard analysis. However,

Temporal differentiation followed by rectification fails
to expose the motion of the amplitude-modulating
squarewave. Differentiating the amplitude-modulating
squarewave (Fig. 3a) with respect to time sacrifices all the
motion content of this stimulus (See. Fig. 3b). The
differentiated stimulus (Fig. 3b) is completely ambiguous in
motion-content, and subsequent transformations (e.g. full- or
half-wave rectification: Figs. 3b1, 3b2, 3b3) cannot reclaim the
original stimulus motion.
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To recapitulate: The motion of the amplitude-modulating
squarewave (Fig. 3a) is exposed by simple half-wave or full-
wave rectification (Figs. 3al, 3a2, 3a3). However, rectificaticn
fails to expose the motion of the contrast-reversing squarewave
(signal in Fig. 4a; rectifications in Figs. 4al, 4a2, 4a3). On the
other hand, temporal differentiation followed by half-wave or
full-wave rectification suffices to expose the motion of the
contrast-reversing squarewave to standard analysis (Figs. 4b,
4b1, 4b2, 4b3), but fails to reveal the motion of the amplitude-
modulating squarewave (Figs. 3b, 3bl, 3b2, 3b3).

A single transformation which reveals the motion of
both stimuli 3.1 and 3.2 to standard motion-analysis can easily
be obtained by letting f* of Eq. (1) be a temporal linear filter
(spatial component = identity) with impulse response gwen by
Fig. 5.

The result of applying such a filter to the contrast-
modulating squarewave is shown in Fig. 3c. As Figs. 3cl, 3c2,
and 3c3 suggest, full- or half-wave rectification of the output
(Fig. 3¢) exposes the motion of the contrast-modulating square
to standard analysis. And as Figs. 4c, 4cl, 4c2 and 4c3
indicate, the same transformations expose the motion of the
contrast-reversing squarewave to standard analysis.
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Figure 5: The impulse response of a temporal filter suitable to
extract the motion of the contrast-modulating squarcwave
(Fig. 3a), and of the contrast-reversing squarewave (Fig. 4a).
The filtered responses are shown in Figs. 3c and 4c.
Subsequent rectification makes the motion accessible to
standard motion analysis (see bottom row of Figs. 3 and 4).

4. Motion carried purely by spatial texture.

There are many microbalanced random stimuli whose
motion depends on the spatiotemporal modulation of spatial
texture. The most obvious transformations to expose texturally
conveyed motion to standard motion analysis are given by
T )=r o(f = I), with the separable filter f* being purely
spatial (temporal component = identity). The spatial filter f*
should be viewed as a "texture-grabber”. fx will respond with
varying power throughout regions of the visual field,
depending on whether or not the texture to which it is tuned
populates those regions. However, the output of a linear filter
to a texture is positive or negative according to the phase of the
texture. That is, multiplying the contrast of the texture by —1
will multiply the filter’s output by —1. The purpose of
rectification is to report the presence or absence of texture,
independent of phase. The result T(/) is a spatiotemporal
function whose value reflects the movement of the
(f*)—texture across the visual field as a function of time.
Elaborations of this scheme have been applied to modeling
texture perception by Caelli [32], Bergen & Adelson [33], and
Sutter, Beck & Graham [34].

To study texturally conveyed motion, it is important to
bypass not only first-order motion mechanisms, but also
irrelevant second-order mechanisms, such as the temporal
mechanisms proposed above for accessing the motion of the
amplitude- and contrast-reversing squarewaves—stimuli 3.1
‘and 3.2). A particular subclass of microbalanced random
stimuli serves this purpose.

4.1. Random stimuli microbalanced under all pointwise
transformations.

Many signal transformations encountered in perceptual
models can be expressed as cascades of pointwise (re) and
space/time separable LSI transformations (f%). For visual
processing that is limited to such cascades, the following
question is of considerable interest: What conditions must be
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satisfied by a random stimulus I in order that rel be
microbalanced for any function r:R — R? For any such 7, the
cascade fx(rel) does not suffice to reveal I’s motion to
standard analysis, as each successive transformation leaves the
stimulus microbalanced. Thus /’s motion can only be
perceived by a mechanism which applies a cascade that
includes a nontrivial LSI transformation followed by a
pointwise nonlinearity.

Indeed, we have already encountered a simple example of
such a stimulus, the contrast-reversing squarewave, stimulus
3.2, which we shall call J in this discussion. We demonstrated
above that simple rectification cannot expose the motion of J
to standard analysis, and it is easy to see that this observation
generalizes beyond rectifiers to all pointwise transformations:
Any pointwise transformation applied to J yields a rescaled
version of J plus a constant. Input and output are both
microbalanced.

The motion carried by the contrast-reversing squarewave
J is exposed by rectifying the output of certain LSI
transformations (e.g. the temporal derivative) of J. However,
no pointwise transformation applied by itself to J suffices to
expose J’s motion content to standard analysis. Iu studying
the processing stages that mediate second-order motion
perception, it may be of some importance to know that a given
stimulus is "immune" to a certain transformation or a certain
type of transformation (as J is immune to pointwise
transformations). This motivates the following notion [27]:

4.1.1. Call any random stimulus / microbalanced under a
given transformation T iff T (/') is microbalanced.

In connection with pointwise transformations, we have
the following two results [27]:

4.1.2. Let I be a random stimulus such that, for any
@,y 6),(,y,¢)e 2 Ilx,y,t] and IX',y',1'] have a
continuous joint density. Then the following conditions are
equivalent:

under

1. I is microbalanced all

transformations.

pointwise

2. The joint density f of Ilx,y,t}withI[x',y" . 1) and
the joint density g of I[x,y, ' 1withI1{x',y’, t] satisfy

fo,.q)+f(q,p)=8P.q)+8(q,p)
forallp,q € R.

4.1.3. (Corollary) For any random stimulus I, if the joint
density of I[x,y,t] with I[x",y’", '] is identical either to the
joint density of I[x,y,t'] with I[x",y’,t] or to the joint
density of I[X',y,t] with Ilx,y,1']1 for every
,y,8), &,y ,r')Ye Z, then I is microbalanced under all
pointwise transformations.

4.2. Texture quilts.

The results of section 4.1 can easily be applied to
construct a wide variety of stimuli for which the first effective
stage of processing for motion involves a non-pointwise



transformation. If, as most models presume, processing
channels are restricted to cascaded pointwise and LSI
transformations, then this initial transformation must be (non-
trivially) LSI. By themselves, however, LSI operators are
insufficient to expose the motion of microbalanced random
stimuli to standard analysis.

Thus, interposed between the initial LSI transformation
and standard motion analysis there must be a (nonlinear)
pointwise transformation. For the contrast-reversing
squarewave, the LSI transformation of temporal differentiation
followed by the pointwise transformation of full-wave
rectification suffices to expose the motion to standard analysis.

Like the contrast-reversing squarewave, the following
stimuli (i) are microbalanced under all pointwise
transformations, and (ii) display consistent apparent motion
across independent realizations. Unlike the contrast-reversing
squarewave, the texture-grabbing filters appropriate for the
following stimuli are spatial rather than temporal. In fact, it
can be shown [27] that each of the stimuli 7 presented in this
section is microbalanced under all purely temporal
transformations; i.e., under all transformations whose output at
a given point (x,y,?) in space/time depends only on the
history of input at the spatial point (x,y). Thus, none of the
transformations that sufficed to expose the motion of the
amplitude-modulating and contrast-reversing squarewaves
would reveal the motion of / to standard motion analysis.

All the examples of this section exploit the same essential
trick: briefly displayed patches of static, random-phased
texture occur in specific spatiotemporal relations to each other,
and appropriate measures are taken to ensure that the resulting
stimulus is microbalanced under all pointwise transformations.
We call such stimuli texture quilts. The texture Qquilts
constructed in our examples (exemplars are shown in Figs. 6b,
7d, 8b and 8c) all display decisive apparent motion from left to
right, when viewed either monocularly or binocularly from a
distance such that they span about 4 horizontal retinal degrees,
with frames displayed at 15 Hz.

Binary texture quilts.

The easiest constructions of quilts that are microbalanced
under all purely temporal transformations use stimuli that have
only two contrast values. We show how to construct a generic
binary-valued quilt and provide some specific examples.

4.2.1. A general technique for constructing binary texture
quilts that are microbalanced under all purely temporal
transformations. Let o < Z2 be a set of points in space (those
which will take nonzero values at some time during the
display). For the number N of frames comprising the quilt,
associate with frames 1 through N a family

01,02 ..., O

of jointly independent random variables, each of which takes
the value 1 or -1 with equal probability. In addition, associate
with frames 1 through N, a family

fir i=1,2.,N

of functions, with f; assigning O throughout all frames except
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the i*, and within frame i, assigning O everywhere except ,
with o being mapped into {1,~1}. Then, construct the
stimulus

B =0, f1+9,fa+.+0n -

It is easily derived from corollary 4.1.3 that B is
microbalanced under all pointwise transformations. The proof
that B is microbalanced under all purely temporal
transformations is in [27].

4.2.2. Stimulus: The sidestepping, randomly contrast-
reversing, vertical edge. Figure 6b displays nine framcs
comprising a particularly simple binary texture quilt. Note that
the vertical dimension of Fig. 6b combines time and vertical
space. The representation in Fig. 6b is precisely equivalent to
a strip of movie film with frames arranged vertically above
each other, separated by grey lines. Between successive grey
lines is displayed the actual two-dimensional luminance
function displayed to subjects. Fig. 6a shows the functions f
through f ¢ used in the construction. f assigns the value —1 to
all points (x,y, t) within the spatiotemporal block of the first
frame, and O to all other points. f, assigns the value 1 to the
points in the leftmost eighth of the second frame, the value —1
to the points in the right seven eighths, and 0 to all points
outside the second frame. The functions coloring successive
frames shift the bright/dark edge rightward through the frame
until in frame 9, the field is uniformly bright. Multiplying each
frame i = 1, 2,..., 9 by its associated random variable ¢; yields,
in this particular realization, the stimulus given in Fig. 6b.

frame

—

Nelie N e WU, IR R )

(b)

Figure 6: Edge-driven motion from an ordinary edge and
from a binary texture quilt. (a) A rightward moving light/dark
edge visible to first- and second-order motion detectors. Nine
frames are shown; each frame shows exactly what is
displayed, an area of contrast +1 and area of contrast —1. (b)
A realization of the sidestepping, randomly contrast-reversing
vertical edge. This random stimulus is microbalanced under
all purely temporal transformations; therefore its rightward
motion remains inaccessible to standard motion analysis even
after an arbitrary, purely temporal transformation. Each of the
frames 1 — 9 of (b) was derived from the corresponding frame
of (a) by multiplying that entire frame by a random variable
that takes the value 1 or —1 with equal probability. The nine
frame random variables are jointly independent.



Figure 7: Orientation-driven second-order motion from a binary texture quilt. (a) Four frames of a probabilistically
defined sinewave grating that steps rightward 90 degrees between frames. The rightward motion in (a) is accessible to all
motion detectors. (bl) Four frames of a static, vertical squarewave grating; (b2) Four frames of a static horizontal
squarewave grating. (c) A rightward translating texture pattern. For every white point in (a), the corresponding value in
(c) is chosen from the vertical square-wave grating in (b1); for every black point, the corresponding value in (c) is chosen
from the horizontal square-wave grating in (b2). Stimulus (c) is not microbalanced; its motion is accessible to standard
motion analysis. (d) A texture quilt. The frames of (d) are derived by multiplying the corresponding frames of (c) by
jointly independent random variables, each of which takes the value 1 or —1 with equal probability. The texture quilt
realized in (c) is microbalanced under all purely temporal transformations; therefore its rightward motion is unavailable to
standard motion analysis, even after an arbitrary, purely temporal transformation.

The motion displayed by this quilt is clearly driven by the
randomly contrast-reversing edge that steps from left to right
through the course of the display. Almost any bandpass spatial
filter followed by a rectifier will suffice to expose this motion
to standard analysis. The following quilt requires a more
specifically tuned texture-grabbing spatial filter.

4.2.3. Stimulus: Oppositely oriented, randomly contrast-
reversing squarewaves selected by a drifting grating. In
Fig. 7d are displayed the four frames comprising another
binary texture quilt also constructed using technique 4.2.1.
Figure 7c shows the functions f 1, f, f3, and f 4 used in the
construction. Each of these frames was constructed by using
the corresponding frame of the probabilistically defined,
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}ightward stepping sinusoid of-Fig. 7a to sample between the

two squarewave gratings shown in Figs. 7bl and 7b2. The
texture quilt realized in Fig. 7d is derived by randomly
reversing the contrast of each of the frames of Fig. 7c. For the
realization given in Fig. 7d, the random variables ¢;, ¢,, ¢3 and
04 used to multiply the frames of Fig. 7c take the values —1,
-1, 1, and 1 respectively.

Sinusoidal texture quilts.

It is simple to elaborate technique 4.2.1 to a method for
constructing quilts involving textures of arbitrarily many
contrast values. We illustrate the principle in the construction
of a generic quilt comprised of patches of sinusoidal grating
and we provide two specific examples.



4.2.4. A general technique for constructing sinusoidal
texture quilts microbalanced under all purely temporal
transformations. A generic sinusoidal quilt has N frames.
Pixels of each frame are filled by choosing between a pair of
sinusoids assigned to that frame. The critical constraints (to
insure chat the resulting stimulus will be microbalanced under
all purely temporal transformations) are that the different
sinusoids thus patched together, within a given frame and
across different frames, must be of equal amplitude and have
jointly independent, uniformly distributed random phases.

Specifically, for i =1,2,..,N, with N the number of
frames comprising the quilt, let W; be a function, temporally
constant within frame /, assigning either 1 or —1 to all points
(x,y,1) in the i* frame, and O to all points outside the i**
frame. We use W; to sample between static sinusoidal gratings
with random phases and different spatial frequencies.
Apparent motion can often be generated with such displays by
shifiing each successive sampling function W;,, in a fixed
direction relative to W;.

Let

®,, 91, 6)1, 81, wy, 62, 6)2, 92, ey Wy, ON, E)N, GN

be integers. For each frame i of the texture quilt being
constructed we shall use W; to sample between two sinusoids,
C; and C ;. For some integer P (independent of frame), C; has
a spatial frequency of ®;/P cycles per horizontal pixel and
6;/P cycles per vertical pixel. €; has a spatial frequency of
@;/P cycles per horizontal pixel and 8,/P cycles per vertical
pixel.

The phases of all of the sinusoids patched together i the
quilt are independent random variables. To be precise, let

Pis b'l P2, I32,.,,, PN f—)N’

be jointly independent random variables, each assuming with
equal probability a value from amongst the integers
0,1,..,P—1. Thenforall (x,y,t) e Z° set

N
S =38,
i=l

where, for each i,
cos 2n(ey;x +6;y +p;)/P) f W;[x,y,t]1=1,
S;lx,y,11 = { cos @n(@;x +8,y +p)P) if WiLx,y,r]1=-1,

0 otherwise.
Like the generic binary texture quilt B, S is
microbalanced under all purely temporal transformations [27].

4.2.5. Stimulus: Oppositely oriented, random-phased
sinusoids selected by a drifting grating. The sinusoidal
analog to the binary texture quilt of Fig. 7d is shown in Fig. 8b.
In Fig. 8a are shown the functions W, W, W3, and W4 used
to select between horizontal and vertical gratings. For this
quilt, @; =6; =0, for i =1,2,3,4; and for some integer F
(with F/P the number of cycles per pixel), ®; =6; =F.

The motion displayed by the texture quilt of Fig. 8b
evidently depends on the difference in orientation between the
textures mixed in each frame. Of course, we can just as easily
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keep orientation constant and vary spatial frequency instead.

4.2.6. Stimulus: Random-phased sinusoids of different
spatial frequencies, selected by a drifting grating. Figure 8c
shows a texture quilt using the sampling functions of Fig. 8u,
but setting @; = 6; =28, =28, fori =1,2,..., 4.

The empirical observations with texture quilts are that
motion can be perceived when texture patches move across the
field, even when the texture-conveyed motion is contrived so
that there are no spatiotemporal correlations in the stimulus to
support standard motion analysis [11,17], and when second-
order temporal processing can be excluded [27]. These
texture-conveyed motions are detected by convolving the input
stimulus with a spatial texture-grabbing filter tuned to the
moving texture, then rectifying the output of the filter (to
indicate the presence or absence of the texture), and subjecting
the rectified output to standard motion analysis. That
supraordinate texture orientation is easily perceived in the x,y
representations of the texture-conveyed motion (Figs. 7d, 8b
and 8c) indicates that there exists second-order orientation
processing of textures in the space domain analogous to the
second-order motion processing of textures in the motion
domain.

5. Summary.

Section 1 introduced the distinction between first- and
second-order motion mechanisms. Section 2 reviewed the
fundamental  results  concerning  drift-balanced and
microbalanced random stimuli. Microbalanced random stimuli
are useful in the study of second-order motion perception
because (i) they are guaranteed not to systematically stimulate
first-order (Fourier-energy analytic or autocorreiational)
motion mechanisms, and (ii) it is easy to produce
microbalanced random stimuli that display consistent,
compelling apparent motion across independent realizations.

Section 3 described microbalanced random stimuli that
displayed different types of apparent motion. The contrast-
modulating squarewave (Stimulus 3.1) suggests that some
instances of microbalanced motion may be exposed to standard
motion analysis by simple rectification. The contrast-reversing
squarewave (stimulus 3.2) suggests that other instances of
microbalanced motion are exposed by rectifying the temporal
derivative of the stimulus. Moreover, the motion of stimulus
3.1 can not be exposed by temporal differentiation followed by
rectification, whereas the motion of stimulus 3.2 can not be
exposed by simple rectification. A temporal filter with the
impulse response given in Fig. 5 (including terms for both
temporal differentiation and temporal identity), followed by
rectification, does suffice to expose the motion of both stimuli
3.1 and 3.2 to standard motion analysis. For each of these
stimuli, the optimal spatial filter to expose the motion is the
identity.

Section 4 introduced the notion of a random stimulus
microbalanced under all pointwise transformations. Section
4.1 provided necessary and sufficient conditions for a random
stimulus to be of this sort. Such stimuli / are significant
because pointwise transformations applied directly to / merely
result again in microbalanced random functions; thus the first



frame

(b)

Figure 8: Sinusoidal texture quilts—motion driven by differences in orientation or in spatial frequency. The 4 frames in
(a) are used to select between two sinusoidal patterns. Stimuli (b) and (c) are realizations of two such random stimuli,
each of which is microbalanced under all purely temporal transformations. The sinusoids mixed in (b) differ in
orientation, while the sinusoids mixed in (c) have the same orientation, but differ in spatial frequency. The phases of
sinusoids are jointly independent across frames, and across sinusoids of different frequency mixed in the same frame.

transformation in any respect effective at exposing /’s motion
to analysis must be non-pointwise. If the transformations
applied to the visual signal are limited to cascades of (i) linear
shift-invariant operators and (ii) pointwise operators, then the
first processing stage effective in revealing the motion of /
must be a nontrivial linear transformation. Moreover, since /
is microbalanced, this linear filter must be followed by at least
a pointwise nonlinearity for /’s motion to be revealed to
standard analysis.

Section 4.2 illustrated random stimuli—texture quilts
(stimuli 4.2.2, 4.2.3, 4.2.5 and 4.2.6)—that yielded compelling
texture-conveyed apparent motion. These stimuli were
microbalanced under all purely temporal transformations.
Their motion cannot be exposed by simple rectification, nor
indeed by any purely temporal transformations, no matter how
nonlinear. The perception of texture quilt motion can be
modeled in terms of a spatial texture-grabbing filter followed
by rectification and standard motion analysis. Thus, the
minimal system to account for all the demonstrations of
second-order motion perception presented here would consist
of a temporal filter that has both an identity and a temporal
differentiation component, a band-selective spatial filter
followed by a rectifier and standard motion analysis.
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