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Abstract  

The goal of the work presented here is to find 

a model of a spiking sensory neuron that 

could cope with small variations in the 

concentration of simulated chemicals and also 

the whole range of concentrations. By using a 

biologically plausible sigmoid function in our 

model to map chemical concentration to 

current, we could produce agents able to 

detect the whole range of concentration of 

chemicals (pheromones) present in the 

environment as well as small variations of 

them. The sensory neurons used in our model 

are able to encode the stimulus intensity into 

appropriate firing rates. 

1 Introduction 

In this study, we want to investigate the encoding of 

information about pheromones in spiking neural 

networks controlling artificial agents. Initially, the 

pheromones are diffused symmetrically from a point 

source (Figure 1). In order to create pheromone sensing 

agents, we need to decide which kind of sensory neurons 

we want to use. To model the sensory neurons in a 

biological plausible way and to be able to explore 

different encoding strategies, we used spiking neurons. 

One challenge of using a spiking neural network is to 

decide the coding to use in order to map information 

received by a sensor that will transform these stimuli into 

spikes. 

Different coding strategies can be used [Floreano and 

Mattiussi, 2001]: 

a) Mapping stimulus intensity to the firing rate of the 

neuron. 

b) Mapping stimulus intensity onto the number of 

neurons firing at the same time. 

c) Mapping stimulus intensity onto the firing delay of 

the neuron. 

 

 

 

 

 

 

 

Figure 1. An agent equipped with two wheels and two antennae 

linked to two sensory neurons used to detect pheromones. 

  In order to use one of these encoding schemes, one 

needs first to decide how the input current of a sensor 

should represent its stimulus intensity. The current 

received by a sensor will be different from the one 

received by a non-sensory neuron because it will be 

based on the external stimulus intensity and not the 

activity of other neurons or sensors. We want an agent to 

be able not only to detect small variations of pheromone 

concentration but also the whole range of concentrations. 

Therefore, the agents must be equipped with sensory 

neurons that can produce spike trains at different 

frequencies depending on the pheromone concentration. 

The ideal case would be to have a linear relationship 

between the pheromone concentration and the firing rate 

of the sensory neuron. Such relationships exist in 

biological systems. For example in humans, the 

relationship between the frequency of firing of sensory 

neurons and pressure on the skin is linear [Kandel et al., 

2000]. We tried to find out how to implement such a 

relationship by carrying out different experiments using 

different expressions for the sensory neuron’s current. 

2 Experiments 

We modelled a sensory neuron as a leaky integrate-and-

fire neuron and tried different equations to calculate its 

input current. The sensory current I was always 

calculated depending on the pheromone concentration P. 

If the membrane potential, which depends on the current 

I, reaches a certain threshold θ the sensory neuron emits a 

spike. Therefore, the firing rate of the sensory neuron 
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depends on the relation between pheromone 

concentration and current (Figure 2). In our experiments, 

we tried many different functions relating the pheromone 

concentration P to the current I in order to obtain a 

desired quasi-linear relationship between the pheromone 

concentration and the firing rate of the sensory neuron. 

  

 

 

 

 

 

  We first set the sensor’s input to a concentration of 1 

and we recorded at what time a spike was emitted in 

order to determine the frequency (firing rate). We applied 

the same method to study the firing rate of the sensors 

over the whole range of pheromone concentration up to 

some maximum (that we chose to be 300). We did not 

want the sensory neuron to fire if the concentration was 

equal to 0 so only the presence of pheromones could 

stimulate a sensor. Afterwards, we modelled each 

different kind of sensory neuron as part of an agent and 

looked at the agent’s behaviour. 

2.1.  Linear relationship between 

current and pheromone concentration 
 

We first carried out experiments implementing a simple 

linear relationship, expressed by Equation (1), between 

the pheromone concentration P and the current I (Figure 

3.a) and studied the sensor’s firing rate (Figure 3.b.).  

   � � ��   (1) 

 
 

 

 

   

After a few experiments using different values for K, 

we realized that the sensor was saturating (Figure 3.b) 

due to the nature of the sensory neuron (leaky integrate-

and-fire [Koch, 1999]). In fact, above a small value of 

pheromone concentration, the current produced was too 

high and the sensor fired at its maximum rate. After 

implementation in the agent, we saw that it was not able 

to detect the difference between a concentration of 200 

and 250 for example. 

2.2.  Linear relationship with offset 

between current and pheromone 

concentration  
 

Then, we tried to use the same equation but with an 

added baseline current and a much smaller slope (K2) 

(Equation (2) and Figure 4.a). We made these changes 

knowing that our sensor responds to a small range of 

currents with a large bandwidth. 

                                  � � �� � ���                               (2) 
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Figure 3.a. Current density (in Ampere per Farad) input 

to sensory neuron using Equation (1) with K=0.41. 

Figure 3.b. Resulting firing rate of sensory neuron. The 

maximum firing rate of a neuron is around 300 Hertz. 

Figure 2. Mapping pheromone concentration into spikes. 

Figure 4.a. Current density input to sensory neuron using 

Equation (2) with K1 = 0.41 and K2 = 0.0053. Note that in this 

graph, the ordinate scale is different than in Figure 3.a and the 

current density is very low.  
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   With this equation, we had a more linear relationship 

between pheromone concentration and the firing rate of 

the sensor (Figure 4.b) so the agent should have been able 

to detect smaller variations. Unfortunately, the sensor did 

not use its whole bandwidth and its resolution was 

relatively poor. Therefore, another kind of functional 

relationship had to be tried. 

 

2.3.  Non-linear relationship between 

current and pheromone concentration 
 

Concerning the neurons we are using, we know the limits 

of currents and the corresponding firing rate.  For every 

cell (motorneurons, sensors, and interneurons):  ��	
 � 0.4 �� � 0.6 ��� ��������	�
 � 20 �� � 300 ��� 
 

    We also know that the firing rate of a leaky integrate-

and-fire neuron is given by [Koch, 1999]: 

 

          � � � �  �
� !"�#$% � �

�#$%&'(
)�&* !+, -        (3) 
 

   Where:  

• tth is the mean time to reach the threshold value  

• Vth is the threshold voltage (a spike is emitted if the 

membrane potential is above this value). 

• tref is the refractory period. 

• I is the current 

• R is the resistance (constant) 

• C is the capacitance (constant) 

• τ = RC (time constant) 

 

   Given that our sensory neuron is modelled as a leaky 

integrate-and-fire neuron, we rearranged Equation (3) to 

find an equation (4) for the current (Figure 5.a) that 

would always produce a linear relationship between the 

pheromone concentration and the firing rate of the 

sensory neuron (Figure 5.b). 

                           � � . !/ 0 �
�&1234 #$%5 & 67%859:                 (4) 

  

   To get a linear relationship between the current and the 

pheromone concentration, we replaced < f > by P and to 

make sure the frequency was between 0 and 300, we 

needed: 

• 
. !/ � 0.4 ;</Ω 

• ?�1@ � 3 1000 � 0.003⁄ C 
• D � 1 20 � 0.05⁄ C 

 

 

 

 

 

 

   With this equation, an agent is able to detect a small 

variation in the pheromones concentration using its whole 

bandwidth. We created Equation (4) artificially but we 

can use it as a guide to look for an equation commonly 

found in biological systems that describes a similar 

relationship and a graph similar to Figure 5.a. 

 

2.4.  Hill  functions 
 

We know that pheromones and other odours bind to 

receptor proteins situated in an animal’s olfactory sensory 

neurons [Wyatt, 2003]. The current generated by the 

sensory neurons depends on their binding capacity. We 
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Figure 4.b. Resulting firing rate of sensory neuron. 

Figure 5.a. Current density input to sensory neuron using 

Equation (4). 

Figure 5.b. Resulting firing rate of sensory neuron. 



first investigated an equation used by biochemists 

describing the binding of ligand molecules to proteins: a 

Hill function [Stryer, 1988]. 

 

                          F�G, I, ;� � 2J
KJ"2J                       (5) 

 

   Where: 

• k is the concentration of molecules when h is equal 

to 0.5 

• m is the Hill coefficient and is considered as an 

estimate of the number of binding sites of a protein.  

• x is the concentration of ligands 

 

   Archibald Hill used this equation in 1910 to describe 

the binding of oxygen to Hemoglobin. It seems 

appropriate to use Hill functions to describe the shape of 

the current produced by the sensor as they are very 

similar to Equation (4).  

 

   The first Hill function (6) we used was too simple to fit 

the function (4). An example with m = 1, K1 = 50 and K2 

= 100 is given in Figures 6.a. and 6.b. Once again, we 

realized that the sensor was saturating quite rapidly. 

 

                               � � �� ) LJ
MNJ"LJ-                          (6) 

 

 

 

 

 

   We used a MATLAB fitting routine to find appropriate 

constant values for a second Hill function using Equation 

(6), to minimize the difference between the two functions 

(6) and (4) (as shown in Figure 5.a.) in order to have a 

function that would create a near linear relationship 

between the pheromone concentration and the firing rate 

of a sensory neuron like the function (4) (Figure 7). 

 

 
 

 

 

 

   Unfortunately, this function was not as good as (4). In 

fact, the sensor could not detect a pheromone 

concentration of 1. So we decided to add an offset to the 

function. 

 

2.5.  Hill  functions with offset 
 

                            � � �� ) LJ
MNJ"LJ- �  O                     (7) 

 

   This time, the MATLAB routine found a value for b 

too high so the sensor could fire even if it did not 

perceive any pheromones (Figure 8). So we tried to 

constrain the value of b to be less than 0.4 (Figure 9). 

Unfortunately, the current produced was the same (= 0.4) 

for a large range of small pheromone concentration so the 

agent could not detect differences of concentration in this 

range. We concluded that it was difficult to use a Hill 

function for the sensors’ current so that the agents would 

be able to detect a very small and very high pheromone 

concentration. Hill functions with coefficients > 1 are 

sigmoidal so we decided to use a more general sigmoidal 

function. 

0

10

20

30

40

50

60

0 50 100 150 200 250 300

C
u
r
r
e
n
t 
d
e
n
si
ty
 (
A
/F
)

Pheromone concentration

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

F
r
e
q
u
e
n
c
y
 (
H
z
)

Pheromone concentration

0

10

20

30

40

50

60

0 50 100 150 200 250 300

C
u
r
r
e
n
t 
d
e
n
si
ty
 (
A
/F
)

Pheromone concentration

Figure 6. Current density input to sensory neuron using 

Equation (6). 

Figure 6.b. Resulting firing rate of sensory neuron. 

Figure 7. Current density input to sensory neuron using 

Equation (6) with K1 = 2.38*10
7, K2 = 7104 and m = 4.13. The 

thin curve is Equation (4) and the thick one is Equation (6). 

 



 

 

 

 

 

 

 

 
2.6.  Sigmoid function 
 

Due to the fact that the function (4) (Figure 5.a) 

resembles the first part of a sigmoid function, we decided 

to investigate general sigmoid functions. 

 

                          � � �� P �
�"123)!QRSN -T                      (8)  

 

 

   We also fit this function to (4) (Figure 10). 

Unfortunately, the sensor could not detect 1 unit of 

pheromone so we added an offset to the function. 

 

 
 

 

 

 

 
2.7.  Sigmoid function with offset 
 

                   � � �� P �
�"123)!QRSN -T � O               (9) 

 

   We found a function very similar to (4) but with an 

offset too high (Figure 11). So the sensor was firing even 

when it did not receive any information. We therefore 

constrained b to be less than 0.08 and found a very 

similar function with a small offset (Figure 12.a). After 

modelling a sensor using this function, we finally 

produced a relationship between the pheromone 

concentration and the sensor’s firing rate (Figure 12.b) 

that was less linear than by using (4) but perfectly 

adequate to allow the agent to detect small and large 

variation of pheromone concentration. 
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Figure 8. Current density input to sensory neuron using 

Equation (7) with K1 = 2.33*10
6, K2 = 2348, m = 5.23 and b 

= 2.65. The thin curve is Equation (4) and the thick one is 

Equation (7). 

 

Figure 9. Current density input to sensory neuron using 

Equation (7) with K1 = 3.45*10
4, K2 = 1378, m = 4.297 

and b = 0.4. Dashed curve is Equation (4) and the other 

one is Equation (7). 

 

Figure 10. Current density input to sensory neuron using 

Equation (8) with K1 = 2.38*10
8
, K2 = 59.35 and h = 1210. 

The thin curve is Equation (4) and the thick one is Equation 

(8). 

 

Figure 11. Current density input to sensory neuron using 

Equation (9) with K1 = 2.7*10
7
, K2 = 51, h = 973 and b = 

1.7. The thin curve is Equation (4) and the thick one is Equation 
(9). 

 



 

 

 

 

 

 

3 Conclusion 

The long-term goal of our research that sets the context 

for this study is to create agents able to find and interact 

to pheromones diffused symmetrically from a point 

source. In order to achieve this goal, we had to find a 

model of spiking sensory neuron that could cope with 

small variations of pheromone concentration and also the 

whole range of concentrations. We tried many different 

functions to map the pheromone concentration onto the 

current of the sensory neuron in order to produce a linear 

relationship between the concentration and the firing rate 

of the sensor. After unsuccessful trials using linear 

currents, we created an equation that would by definition 

achieve this task and used it as a model to help us find a 

similar function that is also used in biology. We 

concluded that by using a biologically plausible sigmoid 

function in our model to map pheromone concentration to 

current, we could produce agents able to detect the whole 

range of pheromone concentration as well as small 

variations. The sensory neurons used in our model are 

able to encode the stimulus intensity into appropriate 

firing rates. Moreover, using this model of sensory 

neurons, we managed to create a simulated robot capable 

of chemotropotaxis. We are currently studying how an 

agent can use two different types of information encoding 

strategies depending on the level of chemical 

concentration. 

References 

[Floreano and Mattiussi, 2001] Dario Floreano and 
Claudio Mattiusi. “Evolution of Spiking Neural 
Controllers for Autonomous Vision-Based Robots”. 
In Proceedings of the international Symposium on 
Evolutionary Robotics From intelligent Robotics To 
Artificial Life. T. Gomi, Ed. Lecture Notes In 
Computer Science, vol. 2217. Springer-Verlag, 
London, 38-61. 2001. 

[Kandel et al., 2000] Eric R. Kandel and James H. 
Schwartz and Thomas M. Jessell. Principles of 
Neural Science, 4th edition, McGraw-Hill. 2000. 

[Koch, 1999] Christof Koch. Biophysics of 
computation, Information processing in single 
neurons, Oxford University Press: New York, New 
York. 1999. 

[Stryer, 1988] Lubert Stryer. Biochemistry, Third 
Edition, W. H. Freeman and Company, New York. 
1988. 

[Wyatt, 2003] Tristram D. Wyatt. Pheromones and 
Animal Behaviour, Communication by Smell and 
Taste, Cambridge University Press. 2003. 

 

 

0

10

20

30

40

50

60

0 50 100 150 200 250 300

C
u
r
r
e
n
t 
d
e
n
si
ty
 (
A
/F
)

Pheromone concentration

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

F
r
e
q
u
e
n
c
y
 (
H
z
)

Pheromone concentration

Figure 12.a. Current density input to sensory neuron using 

Equation (9) with K1 = 3.9*10
4, K2 = 59, h = 691 and b = 

0.08. The thin curve is Equation (4) and the thick one is 

Equation (9). 

 

Figure 12.b. Resulting firing rate of sensory neuron. 


