
CHAPTER THREE

PERCEPTION AND COMPUTATION

In this chapter we indicate how the class of observers properly contains
the class of Turing machines. We discuss the simulation of observers by Turing
machines.

1. Turing observers

We begin with a brief review of Turing machine terminology. The theory of
automata considers several characterizations of Turing machines. All charac-
terizations are equivalent to defining a Turing machine as a language recog-
nizer. Let Σ be the “terminal alphabet” of a Turing machine T ; Σ is the set
of all elementary symbols which can be input to T . Let Σ∗ be the set of all
strings of finite length of elements of Σ. The language recognized by T is the
subset L ⊂ Σ∗ consisting in those strings which, when input, cause T to halt
in an “accept state.” The property of a subset L of Σ∗ which allows it to be
recognized by some Turing machine is called “recursive enumerability,” and
sets enjoying this property are called “recursively enumerable,” abbreviated
RE.1 More generally, given any countable set C we can define a subset B ⊂ C
to be RE in C if C can be embedded in some Σ∗ in such a way that B cor-
responds to an RE language in Σ∗ . In this sense we can speak of a Turing
machine “recognizing a subset B of C.” Intuitively, B is RE in C if there exists
a procedure with this property: given an arbitrary element x of C, if x ∈ B
the procedure will determine this in finitely many steps. If x /∈ B, however,
the procedure may not halt. In fact, if B is RE in C, its complement C − B

1 There are various ways to give a mathematical characterization of the
collection all RE subsets of a given Σ∗, but we will not need to do so here.
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may not be RE. If both B and C −B are RE in C, we say simply that B is a
recursive subset of C. This means intuitively that there is a recursive procedure
which will determine in finitely many steps whether or not any given element
of C is in B. A function f with a countable domain D and range R is called
recursive or Turing computable if the graph Γ of f is RE in D×R. The Turing
machine which computes f is then the one which recognizes Γ. In fact, to
compute f(d) for d ∈ D the machine can enumerate the elements of Γ until
it reaches the unique one whose first component is d; the second component
is then f(d). Thus, Turing machines can also be characterized as computers
of recursive functions. It can be shown that both the support and range of a
recursive function are RE sets.

All Turing machines have sufficient structure to be viewed as observers.
We describe below how the class of Turing machines is a subclass of the class of
observers. Simply stated, this subclass consists of observers whose inferences
are deductively valid, and the deduction in question is a Turing computation.
This accounts for but a small subclass of observers; observers more generally
perform inferences that are not deductively valid (while they have some degree
of inductive strength). Moreover, even if the inferences of an observer are
deductively valid, they need not be Turing computable.

Let T be a Turing machine, with terminal alphabet Σ, that recognizes the
language L ⊂ Σ∗. We associate to T an observer (X,Y,E, S, π, η) as follows:
we will view Σ∗ as a measurable space whose σ-algebra is its full power set.
Let X = Y = Σ∗, E = S = L, π = the identity map on Σ∗. Then for s ∈ S,
π−1{s} is just a copy of the point s, now considered as an element of E. η(s, ·)
must therefore be Dirac measure εs concentrated on this point. We will denote
by ε the kernel defined by ε(s, ·) = εs. With this notation we can state how
the class of Turing machines is a subclass of the class of observers.

1.1. The assignment

T 7→ (Σ∗,Σ∗, L, L, identity, ε)

embeds the class of Turing machines in the class of observers.

The observers which arise from Turing machines in this manner are called
Turing observers. An observer (X,Y,E, S, π, η) is isomorphic to a Turing ob-
server if and only if X is countable, E is an RE subset of X, and π is bijective.
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FIGURE 1.2. A Turing observer. X = Y = Σ∗. E = S = L. π being bijective
means that the Turing observer’s conclusions are deductively valid.

2. Turing simulation

Once we recognize Turing machines as a subclass of observers, we see that most
observers are not Turing machines: perception is a more general concept than
computation. However one can ask whether, for a given observer, there exist
Turing machines which simulate that observer and, if so, how these machines
are related. For an observer with uncountable X, Y , E, or S we ask whether
there exist Turing machines which simulate discrete approximations of the
observer. To study these questions we here define a canonical procedure for
the simulation of discrete observers. In the next section we consider the issue
of discretization.

Let O = (X, Y , E, S, π, η) be the observer to be simulated. The objective
of the simulation is the computation of η(s,A), for all sensorial points s and
A ∈ X . However, such a computation is meaningful as stated only when S

and X are countable sets. Let us assume that X is countable and that X is
just 2X . S is then countable (since S ⊂ Y with π:X → Y surjective), but of
course X is uncountable in general. The natural way to handle this difficulty
is to restrict our attention to the recursively enumerable subsets A of X. In
fact, let A denote the collection of these subsets. A itself is countable, as
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is well-known, so that with our restriction we can view the objective of the
simulation as the computation of the function η(·, •) whose domain is now the
countable set S × A. Moreover the question of the computability of η then
takes a much simpler form, as follows. Let A be any subset of X. The infinite
sum ∑

x∈A
η(s, {x})

converges abstractly to η(s,A), but without a procedure for enumerating the
elements of A the sum has little computational meaning. If A is recursively
enumerable, however, there is an effective procedure for enumerating these
elements; hence there is an effective procedure for approximating the value
η(s,A) provided that for each x ∈ A, η(s, {x}) is computable. In this way,
the restriction of our attention to sets A ∈ A leads us to consider the question
of the computability of the η(s, {x}) for all x ∈ X. We now define canonical
simulation.

Definition 2.1. LetO be an observer whoseX is countable2 and whose X = 2X .
We will associate to O the function f :S ×X → R defined by

f(s, x) = η(s, {x})

The canonical Turing simulator of O is the machine T which recognizes S in Y

and then computes f .

It is clear that T exists if and only if O satisfies the requirements:
(i) S is recursively enumerable in Y .
(ii) f is recursive.

Generally, X and S are uncountable, so by definition there is no canonical
simulator for these observers. But even when everything is countable, the
conditions (i) and (ii) above will not be satisfied in general, so simply by
making a discrete approximation to an observer we cannot expect that it will
have a Turing simulation. However, at least in certain instances of interest to
vision researchers, discrete approximations may allow Turing simulation. For
these reasons and others it is essential to have a general theory of discretization
of observers. We now give some indication of this.

2 This can be generalized to include observers whose X is not necessarily
countable, but whose measures η(s, ·) on X are “atomic.” We will not develop
this generalization here; but it is discussed in Bennett, Hoffman and Prakash
(1987).
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3. Discretization

Our purpose in this chapter is to illustrate some ideas, and not to present a
complete theory. Accordingly we will restrict attention to Euclidean configu-
ration spaces X and premise spaces Y (with their standard Borel algebras),
and assume that π:X → Y is a projection. Let O = (X, Y , E, S, π, η) be
an observer with X = Rn+m, Y = Rn, and π projection, say onto the first
n coordinates. In order to effect a discretization, we assume an additional
datum—a finite measure λ on S. Intuitively, λ and η come from the same
source, namely a probability measure ρ on E which expresses the actual prob-
abilities of distinguished configurations in a specific universe.3 In this case the
natural choice for λ is π∗(ρ), just as the natural choice for η is a version of the
regular conditional probability distribution (rcpd) of ρ with respect to π. In
our case, since λ and η are assumed given, we can simply define the measure
ρ on E by ρ = λη:

ρ(A) =
∫
S

λ(ds)η(s,A), A ∈ E .

We will describe a canonical procedure for discretization in terms of this ρ.
This procedure will result in observers with countable configuration spaces.

Let δ be a simultaneous partition of X and Y by measurable subsets of
nonzero Euclidean volume. Let Xδ and Yδ denote the sets whose elements
represent the distinct subsets of the respective partitions. We will assume that
for ȳ ∈ Yδ , π−1(ȳ) is a union of elements of Xδ . (For example, we can partition
X and Y into hypercubes whose edges have length d, and whose vertices have
coordinates which are integer multiples of d. The resulting sets of hypercubes
are then the Xδ and Yδ. See Figure 3.1.) Given this assumption, π induces
a map πδ:Xδ → Yδ. Let Eδ denote the collection of those sets x̄ in Xδ such
that ρ(E ∩ x̄) > 0. Let Sδ = πδ(Eδ). As a consequence of these definitions, if
ē ∈ Eδ then ρ(ē) > 0, and if s̄ ∈ Sδ, λ(s̄) > 0. We will define below a kernel ηδ
(depending on the original kernel η and on δ) such that Oδ = (Xδ, Yδ, Eδ, Sδ,
πδ, ηδ) is an observer. We can think of this Oδ as a “δ-discretization” of O.

So that we can outline our intentions, let us assume for the moment that
ηδ has already been defined. Our intention is to compare the various discretiza-
tions (for different δ) with each other and with the original observer. To this
end, we give a canonical embedding of the discrete spaces Eδ and Sδ in the
original X and Y . More precisely, we associate to each ē ∈ Eδ a point in X and

3 Such a λ arises naturally in the discussion of noisy perceptual inferences
(cf. 2–4).
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FIGURE 3.1. A discretization of an observer.

to each s̄ ∈ Sδ a point in Y by means of mappings α:Eδ → X and β:Sδ → Y ,
such that the diagram

Eδ
α−→ E′δ ⊂ Xyπδ yπ

Sδ
β−→ S′δ ⊂ Y

commutes. Here we have put E′δ = α(Eδ), S′δ = β(Sδ); these are countable
and hence measurable. When this is done, any kernel on Eδ relative to Sδ via
πδ can be transported, using α and β, to a kernel on E′δ relative to S′δ via π.
In particular, ηδ may be transported in this manner to η′δ. In this sense we
can then consider an observer O′δ = (X, Y , E′δ, S

′
δ, π, η′δ). We think of O′δ

as a geometric embedding of Oδ into the original spaces X and Y , and as a
discrete approximation of the original observer O = (X,Y,E, S, π, η). E′δ and
S′δ do not actually lie on E and S in general, but converge to E and S as the
partition δ gets arbitrarily fine.
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To achieve this let us first consider how to embed Sδ in Y . Given the
subset of Y represented by the element s̄ ∈ Sδ, we may find its center of
mass with respect to the measure λ (restricted to s̄). This center of mass will
not, in general, lie in S, but it is the natural punctual representative of s̄ in
Y . Recalling that for s̄ ∈ Sδ λ(s̄) > 0, we may now define the embedding
β:Sδ → Y by

β(s̄) =
∫
s̄

s λs̄(ds) (3.2)

with
λs̄(ds) =

1
λ(s̄)

1s̄(s)λ(ds), s̄ ∈ Sδ.

That is, λs̄ is the normalized restriction of λ to the hypercube s̄.
Similarly, we wish to define a center-of-mass embedding for Eδ using ap-

propriate measures on X. For purposes of finding the center of mass of ē in
Eδ, it may seem natural to use the normalization of the restriction of ρ to ē.
However, as we shall see below, a slightly different choice of measure on ē is
much better suited to the task at hand. To this end, let ρē be the normalized
restriction of ρ to ē, that is,

ρē(C) =
ρ(C ∩ ē)
ρ(ē)

.

By construction of Eδ, this yields a probability measure on ē. It is straight-
forward to verify that since η is the rcpd of ρ with respect to π, the measure
ρē also possesses an rcpd with respect to π, a version of which is given by the
formula

ηē(s, de) =
η(s, de)
η(s, ē)

1ē(e)

(which is defined up to a set of π∗ρē-measure zero in its first argument, and
which we may take to be a markovian kernel off this zero-measure set). As
usual, by composing ηē with the measure π∗ρē we can reconstruct ρē. We shall,
however, compose ηē with λπ(ē) instead, defining a new measure νē as

νē(C) =
∫
π(ē)

λπ(ē)(ds) · ηē(s, C), ē ∈ Eδ,

where C is any measurable subset of ē. This is, by construction, a probability
measure supported on ē, which gives the embedding of Eδ in X by the map α
as follows:

α(ē) =
∫
ē

e νē(de), ē ∈ Eδ. (3.3)
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As indicated above we will denote the image α(Eδ) in X by E′δ and the image
β(Sδ) in Y by S′δ.

We now show that these embeddings α and β respect the original map π

in the sense that for any ē ∈ Eδ, π(α(ē)) = β(πδ(ē)). This is satisfying, as it
displays a consistency of the perspective maps at all scales, and expresses a
connection between the discretizations at the various scales.

To see why π(α(ē)) should equal β(πδ(ē)), note that since π is linear, we
may take π inside the integral defining α(ē), so that

π(α(ē)) =
∫
ē

π(e)νē(de)

=
∫
π(ē)

λπ(ē)(ds)
∫
ē

ηē(s, de)π(e).

But ηē(s, ·) is supported on the fibre where π(e) = s, so that

π(α(ē)) =
∫
π(ē)

λπ(ē)(ds) · s
∫
ē

ηē(s, de)

= β(πδ(ē)).

If we had used the measure ρē in defining the embedding α of Eδ, we would
not have obtained this result.

Finally, we come to the definition of ηδ, which appears in Oδ = (Xδ, Yδ,
Eδ, Sδ, πδ, ηδ), and O′δ = (X,Y,E′δ, S

′
δ, π, ηδ). ηδ is the discretization of η

ηδ(s̄, {ē}) =
∫
s̄

λs̄(dt)η(t, ē), s̄ ∈ Sδ, ē ∈ Eδ. (3.4)

This is by construction a markovian kernel on Sδ × Eδ. Here we are merely
averaging the contributions from the various original fibres of π in the given
partition subset ē. We can view ηδ as a kernel on S′δ ×E ′δ, simply by using the
identifications α and β.

In general, Eδ and Sδ need not be recursively enumerable, and a fortiori
the function f , defined as in 2.1 above using ηδ, need not be recursive. Thus a
discretization Oδ of a non-Turing observer O may not have a Turing simulation.

4. Effective simulation: The algebraic case

There is at least one natural class of observers for which suitable discretizations
sometimes have canonical Turing simulations. These are the “algebraic ob-
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servers,” such as the biological motion observer of chapter one or the structure-
from-motion observer of chapter two. In the case of the structure-from-motion
observer (section four of chapter two), E is the locus of points in R18 satis-
fying Equations 2–4.2 through 2–4.9, and S is the image of E in R12 by the
projection π. The polynomial equations defining E have integer coefficients.
Thus we can apply the following general result:

4.1. Suppose Y = Rn, X = Rn+m, and π:X → Y is projection onto a set
of n of the coordinates of X. Suppose E is the locus of zeroes in X of a
finite set of polynomial equations (in the n + m variables of X) with integer
coefficients. Let S = π(E), and let Xδ, Yδ, Eδ, Sδ, πδ be the discretizations
resulting from the partition δ of X and Y as described in the previous section,
where δ can be any partition into subsets whose boundaries are defined by any
integer coefficient algebraic equations.4 Then
(i) Sδ is a recursive subset of Yδ;
(ii) Eδ is a recursive subset of Xδ. For all ȳ ∈ Yδ, π−1

δ (ȳ) ∩ Eδ is a recursive
subset of π−1

δ (ȳ) (and therefore of Xδ).

This result obtains by applying the Theorem of Tarski on the decidability
of polynomial inequalities.5 We omit the details here.

Condition (i) of 4.1 corresponds to the first requirement (given in section
two above) for the Turing simulator of Oδ to exist. Condition (ii) is a necessary
condition for the function f associated to the observer Oδ to be recursive, but
it is certainly not sufficient for this purpose; this depends ultimately on the
nature of ηδ.

Finally, we suggest that the real issue vis-à-vis the relationship between
perception and computation is not so much the existence of a Turing simula-
tion for a given discretization of the observer, but is rather the structure of
the collection of all the Turing simulations (assuming they exist) for the dis-
cretizations of the observer at a collection of scales. Here we give only a brief
sketch of these ideas.

Recall that with the introduction of the observer O′δ we have a natural way
to compare the discretizations of the original observer O for various partitions
δ. Let us consider a set ∆ of partitions, which we can view as partially ordered
by “fineness”: δ1 is finer than δ2 if every element of Xδ1 is a subset of some
element of Xδ2 . Let us further assume that if δ1 is finer than δ2, and if moreover

4 This includes the cases where the partitioning subsets are hyperrectangles
or hypercubes. Recall that the cylinder π−1

δ (ȳ) is a union of elements of Xδ.
5 See, e.g., Jacobson 1974.
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Oδ1 and Oδ2 have canonical Turing simulations T1 and T2, then there is a
natural way to compare T2 with T1 as Turing machines. Finally, assume that we
have fixed an appropriate notion of equivalence of Turing machines. Granting
all this, the following sample definition gives the flavor of what we have in
mind:

Definition 4.2. O has a ∆-effective simulation if
1. Each Oδ for δ ∈ ∆ has a canonical Turing simulation.
2. The comparisons between the machines corresponding to sufficiently fine
δ’s is an equivalence.

3. As δ gets fine, the limit of the ηδ is η.6

O has a ∆-effective simulation if the family of discretized observers ob-
tained from O using the partitions in ∆ has a certain stability. Intuitively,
what is significant is not the particular family of partitions ∆, but rather that
there exists even one ∆ for which the definition is satisfied, provided that this
∆ contains arbitrarily fine partitions. The definition then asserts that the
original O, although it may be given as a non-discrete object, has a Turing
machine representation which is stably scale-independent. This motivates the
following sequel to Definition 4.2:

Definition 4.3. With the notation and assumptions as above, suppose that
there exists a family ∆ which contains arbitrarily fine partitions for which O
has a ∆-effective simulation. Then we will say simply that O has an effective
simulation.

Here is a sample conjecture to accompany our sample definition:

4.4. Suppose O = (X,Y,E, S, π, η) satisfies the hypotheses of 4.1. Suppose
that for some integer k, exactly k points of E lie over each point s of S via π,
and that η(s, ·) assigns probability 1/k to each of these k points. Then O has
an effective simulation.

We cannot give a detailed analysis of 4.4 here since the notion of Turing equiv-
alence used in Definition 4.2 has not been precisely specified. We mention,
however, that the key idea is to find a family ∆ of partitions so that, for
all sufficiently fine δ ∈ ∆, the following property holds: For each s ∈ S and
ē ∈ Eδ, ē ∩ E contains at most one point from the original fibre π−1(s) ∩ E.

6 Here we mean that the transports of the ηδ to E′δ converge to η as the E′δ
converge to E.
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For this purpose the δ’s cannot, in general, be hypercube partitions; in fact the
simplest δ’s that work are hyperrectangle partitions, where the proportions of
the rectangles depend on the “slope” of E relative to S. In particular these
proportions will need to vary within the same partition δ, depending on the lo-
cation of the hyperrectangle in X. In any case, once the δ’s have this property,
all the maps πδ are k-to-one, and one can check (using Definition 3.4 of ηδ)
that given s̄ ∈ Sδ, ηδ(s̄, ·) is simply the constant function 1/k on π−1(s̄) ∩ Eδ
(and is identically 0 on Xδ − (π−1(s̄) ∩ Eδ)). Since the set π−1(s̄) ∩ Eδ is RE
by 4.1, it then follows that ηδ(s̄, ·) is Turing computable.

We summarize the main ideas: For a ∆-effective simulation, as δ ∈ ∆ gets
finer, both the combinatorial geometry of the maps πδ and some essential com-
putational character of the ηδ must stabilize. Moreover, the Oδ must converge
to O. What we have, then, is a system of successively finer discretizations
Oδ, converging to O, whose stable structural properties (i.e., properties which
hold for all sufficiently small δ) reflect the perceptually relevant properties of
the original O. Thus, the fundamental structure of O is accessible at finite
stages of discretization, in a manner which is independent of scale, at least
for sufficiently small scales. It seems clear that, in the absence of this kind of
stability, the existence of Turing simulations for the individual Oδ’s alone is
an insufficient hypothesis to justify a “perception as computation” viewpoint.
We propose, rather, that the analysis of effective simulation is an appropri-
ate context in which to investigate the relationship between perception and
computation.


