
CHAPTER SIX

INTRODUCTION TO DYNAMICS

We begin to develop “participator dynamical systems” on environments
supported by reflexive frameworks. We introduce the notions of action kernel
and participator. For the cases of one and two participator systems, we give
a description of the participator dynamics in the language of Markov chains.
This chapter is motivational; it deals intuitively with very restricted cases. In
the next chapter we consider a more general case.

1. Mathematical notation and terminology

The dynamics developed in this chapter makes use of several mathematical
concepts from the theory of Markov chains. In this section we collect basic
terminology and notation for the convenience of the reader.1 We assume a
familiarity with the notions of conditional probability and expectation.

Let (E, E) be a measurable space. The set of measurable functions f :E →
R that are bounded is denoted by bE , and the set of measurable nonnegative
functions by E+.

Recall from chapter two that a kernel P on E is said to be positive if its
range is in [0, ∞]. It is called a transition probability or a submarkovian kernel
if P (e, E) ≤ 1 for all e ∈ E. It is called markovian if P (e, E) = 1 for all
e ∈ E. The abbreviation T.P. is sometimes used for transition probability.
If P is a positive kernel and f ∈ E+, for example, then P can be viewed as
an operator taking f to the function Pf defined by Pf(e) =

∫
E
P (e, dh)f(h).

1 For more background, beginning readers might refer to Breiman (1969) or
Narayan Bhat (1984). For advanced readers we suggest Revuz (1984).
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Similarly, if ν is a positive measure on E , then P can be viewed as the operator
on measures νP (A) =

∫
E
ν(dh)P (h, A) for A ∈ E . The composition or product

of two positive kernels P and Q is the kernel PQ(e, A) =
∫
E
P (e, dh)Q(h, A).

The n-fold product of a kernel P with itself is denoted Pn.

Let (Ω,F , P0) be a probability space and Z = {Zn}n≥0 a sequence of
random variables Zn: Ω → E. Such a structure is called a stochastic process
with base space (Ω,F , P0) and state space E. A sequence {Gn}n≥0 of subσ-
algebras of F , such that Gn ⊂ Gn+1 ∀n, is called a filtration on (Ω,F). Let
Fn = σ(Zm, m ≤ n) and Gn be a filtration such that Gn ⊃ Fn for every
n. The sequence Z = {Zn}n≥0 is called a Markov chain with respect to the
filtration {Gn}n≥0 if, for every n, the σ-algebras Gn and σ(Zm, m ≥ n) are
conditionally independent with respect to Zn; i.e., if for every A ∈ Gn and
B ∈ σ(Zm, m ≥ n), P0[A ∩ B|Zn] = P0[A|Zn]P0[B|Zn] a.s. The σ-algebras
Fn are referred to as “past” σ-algebras. When we say simply that Z is a Markov
chain (with base space (Ω,F , P0)) we mean that it is so with respect to the past
algebras Fn. Intuitively, a sequence of random variables is a Markov chain if
the probabilities for passing into the next state are completely determined by
the current state of the system.

A sequence Z = {Zn}n≥0 of random variables is called a homogeneous
Markov chain with respect to the filtration {Gn} with transition probability P if, for
any integersm, n withm < n and any function f ∈ bE , we have E0[f(Zn)| Gm] =
Pn−mf(Zm), P0 a.s., where E0 denotes the mathematical expectation op-
erator with respect to P0. The probability measure ν defined by ν(A) =
P0[Z−1

0 (A)] ≡ P0[Z0 ∈ A], for A ∈ E , is called the starting measure.

Let P be a T.P. on E. It is customary to extend the state space (E, E)
to the space (E∆, E∆), where ∆ is a point not in E called the cemetery, E∆ =
E ∪ {∆}, and E∆ = σ(E , {∆}). P extends to a markovian kernel on (E∆, E∆)
by setting P (e, {∆}) = 1−P (e, E) if e 6= ∆, and P (∆, {∆}) = 1. A canonical
probability space is the space (Ω,F , P0) where Ω =

∏∞
n=0E

(n)
∆ , and E

(n)
∆ is

a copy of E∆; where the σ-algebra F is generated by the semi-algebra of
measurable cylinders of Ω (namely sets of the form

∏∞
n=0An, where An ∈ E(n)

∆ ,
and An differs from E

(n)
∆ for only finitely many n); and where P0 is a probability

measure. A point ω = {ωn, n ≥ 0} of Ω is called a trajectory or path. The
mapping Zn: Ω → E

(n)
∆ taking ω = (ω0, ω1, ω2, . . .) ∈ Ω to its nth entry ωn

is called the nth coordinate mapping. If the sequence Z = {Zn} of coordinate
mappings on the canonical probability space forms a homogeneous Markov
chain with T.P. P , we call it the canonical Markov chain with T.P. P .

The shift operator θ is the point transformation on Ω defined by θ(ω0, ω1,
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. . . , ωn, . . .) = (ω1, ω2, . . . , ωn+1, . . .). We write θn for the n-fold iteration of
θ: θ(ω0, ω1, . . .) = (ωn, ωn+1, . . .). A stopping time T of the canonical Markov
chain Z is a random variable defined on (Ω, F) with range in N ∪ {∞} and
such that for every integer n the event {T = n} is in Fn. (N is the set of
natural numbers including 0.) The σ-algebra associated with T is the family FT
of events A ∈ F such that for every n, {T = n} ∩ A ∈ Fn. Notice that then
the random variable ZT (ω)(ω) is FT -measurable.

Let G be a group that is locally compact with countable basis (LCCB),
and let G denote the σ-algebra of its Borel sets. Given probability measures
µ1, µ2 on G, their convolution µ1 ∗ µ2 is defined to be the probability measure
which assigns to K ∈ G the measure (µ1∗µ2)(K) =

∫ ∫
1K(x+y)µ1(dx)µ2(dy).

A right (left) random walk on G is a Markov chain with state space (G, G) and
transition probability εg ∗µ (µ∗εg), where µ is a probability measure on (G, G)
which is called the law of the random walk, and εg is Dirac measure supported
at the point g ∈ G. On an abelian group there is only one random walk of law
µ, and it is invariant under translations.

2. Fundamentals of dynamics

The conclusion of an observer O’s perceptual inference is represented, as we
have discussed, by a probability measure η(s, ·). This conclusion is true in a
given semantics, according to Definition 4–3.5, if η(s, ·) is the actual regular
conditional distribution, given s, of the measurable functions Xt (defined in
4–3.1). {Xt} is a sequence of random variables indexed by a discrete time t,
taking values in configuration space X, and whose domain is some unspecified
probability space Ω. In extended semantics (4–4) there is a set B of objects
of perception; for each t, a value of Xt is associated with an interaction of O
with an element of B. These interactions are called channelings. In the case
of an environment supported by a reflexive framework (5–2.6) we have a set
of observers B which is also the set of objects of perception for each of its
members. At each instant of “reference” time (which, as we shall see, is not
the time t of the random variables Xt) the totality of channeling interactions
at that instant is described by a subset L of B and a relation χ̃ on L as in 5–3.

We now begin to construct a class of models for environments supported
by reflexive frameworks; these models are called “participator dynamical sys-
tems.” We do this using entities called “participators”; a participator manifests
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as an observer in BE at each instant of reference time. The subset D of B at
reference time n always contains the set of participator manifestations at time
n. The determination of D and χ can be discussed in terms of participators (we
discuss this in 7–2). In the process of this development, an analytical viewpoint
emerges in which the participators themselves are the center of attention.

This chapter is informal; for clarity we present many of the ideas in special
cases. In the next chapter we provide a formal development.

The motivation for dynamics

Consider two observers, A and B, in a reflexive framework (X, Y , E, S, π•)
of the type shown in Figure 5–2.9. Recall (from 5–2.8) that this means there
exist points a, b ∈ E such that A = (X, Y , E, S, πa, ηA) and B = (X, Y ,
E, S, πb, ηB), where ηA, ηB are some conclusion kernels. We depict this in
Figure 2.1, where the observers A and B channel to each other. Each makes
an inference about the perspective map of the other, i.e., about the point of
E that represents the perspective of the other. Figure 2.1 shows the premise
s = πa(b) of A’s perceptual inference, and the ray of configuration points x such
that πa(x) = s (labelled in the figure as π−1

a {s}). A’s conclusion measure ηA is
supported on the set ξ = π−1

a {s}∩E, which includes b. But ξ includes infinitely
many perspectives other than B’s as well, some of which are indicated by the
smaller dashed circles with numbers above. Thus A is faced with perceptual
uncertainty: What was the perspective of the observer that channeled? Was
it 1, 2, b, 3, . . .? In general, A cannot pick just one perspective as the answer
to this question. Instead A concludes that it is perspective 1 with probability
P1, perspective 2 with probability P2, perspective b with probability Pb, and
so on. This is the content of A’s conclusion measure ηA(s, ·).

How is A’s conclusion measure ηA(s, ·) to be chosen? On what basis
can A conclude that the other observer’s perspective was 1 with probability
P1, 2 with probability P2, etc? The answer we give is roughly as follows. A
markovian dynamics of perspectives naturally arises in the context of reflexive
frameworks. That observers in the framework perceive truly means that their
η’s should be related to the asymptotic behavior of this dynamics. Intuitively,
the probability assigned by η(s, ·) to a point e ∈ E should be a conditional
probability derived from the frequency with which the perspective correspond-
ing to that e is adopted by participators in the given dynamical context. In
this sense, the given dynamics plays the role of the “environment” in which
these observers are embedded. To make these ideas more precise, we begin by
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FIGURE 2.1. Perceptual uncertainty in a reflexive framework.

discussing how a dynamics of perspectives arises on reflexive frameworks.
When A and B channel, the premise s of A’s perceptual inference greatly

restricts what A can conclude about B’s perspective. Yet A has, in gen-
eral, infinitely many choices remaining, for B’s perspective could be any in
π−1
a {s} ∩ E. Suppose A and B retain their perspectives after channeling.

Then if they channel again A has precisely the same set of choices—and the
same ambiguity—regarding B’s perspective as before. In other words, if the
observers do not alter their perspectives after an observation then there is no
point to further observations. A can channel with B as many times as you like,
but the same premise s will result every time, and with it the same ambiguity
of interpretation. Moreover, should A and B never change perspectives the
whole question of how ηA is chosen would be trivial: the ideal ηA(s, ·) would
be Dirac measure supported on b, and ηA(s′, ·) for s′ 6= s would need not be
defined. Indeed, the construction of reflexive frameworks would be pointless.

Let us, then, allow observers in a reflexive framework to change perspective
following a channeling. That is, let us allow some kind of dynamics of per-
spectives on reflexive frameworks. Several questions immediately arise. How
shall observers change perspective? Since the perspective of an observer in a
reflexive framework (together with its conclusion measure) is its only means of
individuation, does not a change in perspective actually mean a change in ob-
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server? If so, then what is it that is manifesting itself as a different observer at
each step of the dynamics? Furthermore, dynamics requires sequence. What
is the formal structure of this sequence? What is the formal structure of the
dynamics? How, precisely, shall η be related to the resulting dynamics? We
consider these questions in turn here, and in succeeding chapters.

Action kernels

How should we allow observers to change perspective in reflexive frameworks?
There are two basic issues. First, what information should be used to select
the new perspective of an observer after a channeling? Second, should the
new perspective be chosen deterministically or probabilistically? We discuss
these issues in the context of Figure 2.2. This figure shows observers A and
B channeling to each other. In consequence of the channeling, A’s premise is
sA, and B’s premise is sB . The figure shows A changing its perspective from
πa to πa′ , and B changing from πb to πb′ . Of course, after these changes A
and B are no longer the same observers since they no longer have the same
perspectives. We denote the new observers A′ and B′. As can be seen in
the figure, the only information available to choose A’s new perspective is
its current perspective and the premise sA. Similarly, mutatis mutandis, for
B. Therefore, for maximum generality, we assume that an observer’s next
perspective is some function of its current perspective and current premise.
Shall this function be deterministic or probabilistic? Again, for maximum
generality, we assume that the next perspective is chosen probabilistically,
according to some measure. (The deterministic case is the special case that the
measure governing the choice of next perspective is a Dirac measure.) Further,
we assume this measure to be a probability measure; after we introduce the
notion of participator, we will interpret this assumption.

In light of these considerations, we could propose that the change in per-
spective of an observer A should be governed by a probability measure that
is selected based on A’s current perspective and current premise. However, a
sense of symmetry suggests that A’s probability measure should depend not
on its absolute perspective, but on the “difference” between its perspective
and that of B. Symmetry also suggests that the probability that A moves to
A′ should depend only on the “difference” in perspective between A and A′.
Now to talk about differences of perspective in E requires some structure on
E. For instance, E might be a principal homogeneous space for some group
of “translations.” More generally, the minimum structure necessary here is a



114 INTRODUCTION TO DYNAMICS 6–2

X

B A
ab

sAsB

a’

b’

B’

A’

FIGURE 2.2. Changing perspective on a reflexive framework.

symmetric framework (Definition 5–5.1). However, since the purpose of this
chapter is to introduce basic ideas of observer dynamics, we defer (until chap-
ter seven) a systematic presentation at this level of generality. Throughout
this chapter we assume, for simplicity,

Assumption 2.3. We are working in a symmetric framework (X, Y , E, S,
G, J , π) in which G = X is an abelian group written additively and J = E

is a subgroup. Equivalently, we can say that (X,Y,E, S, π•) is a reflexive
framework in which X is an abelian group, E ⊂ X is a subgroup, and there
exists a map π:X → Y such that for each e ∈ E, πe(x) = π(x− e).

Thus we can speak of “differences in perspective” without thinking twice.
The reader may rely for intuition on examples like Example 5–4.3: one can
think of X as Rn (with vector addition as the group operation) and E as a
measure zero subgroup thereof.

We return now to the question of the probability measure governing changes
in perspective. In light of our assumptions, this is a measure on a group E,
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telling how probable are various translations from the current perspective. We
can capture the dependence of the measure on the observer’s current premise
by associating to each premise s of the observer a measure on the group of
translations that acts on E. The appropriate mathematical device to do this
is a kernel Q that we call an action kernel. For each premise s, the measure
Q(s, ·) is a probability measure on the group of translations that acts on E,
(the group being, in this chapter, E itself).

X

B A
ab

sA

sB

FIGURE 2.4. Action kernels. The shading of the upper circular region represents
the density of the probability distribution QA(sA, ·). Similarly, the shading of the
lower circular region represents the density of the probability distribution QB(sB , ·).

These notions are illustrated in Figure 2.4. Once again, two observers A
and B channel with each other. A’s premise is sA. The measure QA(sA, ·),
derived from A’s action kernel QA, is depicted by a shaded disk with a dashed
line drawn from A to the center of the disk. The darkness of a region within this
disk encodes the probability that A will adopt a perspective in that region as
its next perspective. Darker regions are more probable than lighter ones. A’s
expected new perspective happens, in the case illustrated, to be the perspective
represented by the center of the disk. In general there will be some probability
that an observer does not change its perspective after a channeling. (However
for pictorial clarity the disk is not drawn large enough to include A’s own
perspective.)
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Definition 2.5. Under Assumption 2.3, an action kernel is a markovian kernel
Q:E × E → [0, 1] such that Q(e, ·) = Q(e′, ·) if π(e) = π(e′). Given Q, to
each e1 ∈ E we can associate a kernel Qe1 :E × E → [0, 1] by Qe1(e, Γ) =
Q(e− e1, Γ).

Suppose Q is an action kernel. Since Q(e, ·) depends only on π(e) we could
equally well define it as a kernel S × E → [0, 1]. In fact we will sometimes
write Q(s, ·); this will mean Q(e, ·) for any e such that π(e) = s. Similarly
Qe1(e, ·) depends only on πe1(e). The interpretation of the action kernel is as
follows: Q(e, Γ) is the probability that the observer will change perspective
by an increment in the set Γ, given that it channeled with an observer whose
perspective differed from its perspective by e. If the first observer is at e1,
then Qe1(e1 +e, Γ) is an equivalent way to write this. The terminology “action
kernel,” when used for a given kernel Q:E × E → [0, 1], signals our intention
to consider the family of kernels {Qe}e∈E .

Participators

In our discussion of action kernels we have spoken as though an observer in a
reflexive framework could change its perspective map π. We said, for instance,
that an action kernel gives the probabilities with which an observer might
adopt various new perspectives. Now this way of speaking, though convenient,
cannot be correct; the definition of observer does not permit a given observer
to change its perspective. On the contrary, the definition requires an observer
to have a fixed perspective map π:X → Y . Therefore, the formal entity that
changes perspective according to the dictates of an action kernel is not itself
an observer. Instead this entity manifests itself at each instant as an observer
in the context of a reflexive framework. This new formal entity we call a
“participator.”

Definition 2.6. A participator on a reflexive framework (X, Y , E, S, π•) (under
Assumption 2.3) is a triple, (ξ, {Q(n)}n, {η(n)}n), where n varies over the
nonnegative integers, ξ is a probability measure on E, each Q(n) is an action
kernel, and each η(n) is a family of interpretation kernels for the reflexive
framework. (That is, η(n) = {ηe(n)}e∈E , where, for each e ∈ E, (X, Y , E,
S, πe, ηe(n)) is an observer.) If all the Q(n) are equal to a fixed action kernel
Q, we denote the participator simply by (ξ,Q, η(n)), and call it a kinematical
participator with action kernelQ. If, for some n, a participator A = (ξ, {Q(n)}n,
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{η(n)}n) on a reflexive framework (X, Y , E, S, π•) has perspective πn, then
we call the observer An = (X, Y , E, S, πn, η(n)) the manifestation of A at time
n. We also say that A manifests as An. A preparticipator is a pair (ξ, {Q(n)}n)
with ξ and Q(n) as in a participator.

The formal definition of participator is based upon the following intu-
itions. A participator must have a first perspective; this is the purpose of ξ.
The probability measure ξ on E, called the initial measure of the participator,
governs the choice of the first perspective of the participator. When we say that
a participator is initially “at e” or “has perspective e” we mean a participator
for which ξ is Dirac measure at e; formally, we write ξ = εe. A participator
must also have a means of changing perspective; this is the purpose of the ac-
tion kernels Q(n). The changes in perspective are discrete and sequential, with
respect to a notion of time that we discuss shortly. The notation means that
the nth change of perspective in this sequence is governed by the action ker-
nel Q(n). Since the action kernels give probabilities for change of perspective
conditioned by premises arising from channelings, the perspective changes of
participators are probabilistic and are driven by channelings. The terminology
“kinematical participator,” for the special case when all the Q(n) are identi-
cal, indicates that this case gives rise to systems with a property analogous to
constant velocity. This does not mean that the motion of the participators is
“linear” in the usual geometric sense of the word. Rather, it means that the
instantaneous state-change data (in this case, given by the action kernel) is
time invariant.

We discuss shortly a dynamics of perspectives that arises from the mutual
observations of an ensemble of participators in a common reflexive framework.
This dynamics is a Markov chain whose state space is a product of copies of E,
one for each participator in the ensemble. In this chapter we consider a simpli-
fied version of the dynamics which is determined entirely by the action kernels
and initial measures of the participators. To specify a (canonical) Markov chain
on some space one need only give its initial measure and transition probability.
The initial measure of the markovian dynamics of perspectives is simply the
product of the initial measures of the participators; we study the transition
probability in chapter seven. In the special case of kinematical participators
the resulting Markov chains are homogeneous. In this case we will sometimes
use the word kinematics rather than dynamics.

A participator dynamics on a reflexive framework incorporates a nond-
ualistic model of extended semantics. There is some set B of observers in
the framework; B serves as the objects of perception for each observer in the
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framework. In participator dynamics the set B has a special property; this
property consists in a precise condition on the subset BE . Let us begin with a
fixed set K of participators; say it is this set of participators whose dynamical
interaction constitutes the given participator dynamical system. BE is then the
set of all possible instantaneous manifestations for the participators in K. To be
precise, suppose each j ∈ K is represented (ξj , {Qj(n)}n, {ηj(n)}n). Then

BE =
⋃
n

{(X,Y,E, S, πe, ηj(n))| e ∈ E, j ∈ K}. (2.7)

Taking a union over the various instants of time n implies that we do not
distinguish the observers (X, Y , E, S, πe, ηj(n)) and (X,Y,E, S, πe, ηj(n′))
(for e and j fixed) if it happens that the kernels ηj(n) and ηj(n′) are equal for
distinct times n, n′. By contrast, for j 6= j′ ∈ K and for a given e ∈ E, the
observers (X, Y , E, S, πe, ηj(n)) and (X, Y , E, S, πe, ηj′(n)) are counted as
distinct elements of B, even if the kernels ηj(n) and ηj′(n) are the same.

Definitions of BE other than 2.7 are possible. For example we could have
taken a disjoint union over n rather than ordinary union as we did in 2.7. This
means that the manifestations of a given participator at distinct moments n,
n′ would always be viewed as distinct elements of B, even if the perspectives
and conclusion kernels of the two observers were identical. This would allow
the present manifestation of a participator to interact with a previous manifes-
tation of the same participator—let us call this a “memory interaction”—in a
manner which permits keeping track of the distinct times. However, using 2.7
it is still possible for a present and a past manifestation of a single participator
to interact. The difference is that now, if these two manifestations happen to
be identical as observers, then they are also considered identical as objects of
perception; they are represented by the same element b ∈ B. Thus the inter-
action in question is characterized by b channeling with itself. (According to
5–3.2 and 5–3.4 this means that at the given instant there is a distinguished
subset D ⊂ B containing b, and an involution χ of D such that χ(b) = b.)
In other words, in the context of 2.7, a memory interaction may be analyti-
cally indistinguishable from a self-channeling, whereas in the alternate (disjoint
union) approach memory interaction and self-channeling are always distinct.
Whether this difference is theoretically significant is an open question.

We can now interpret the requirement that action kernels are markovian
(2.5), i.e., that if Q is an action kernel then for each e ∈ E the measure
Q(e, ·) is a probability measure on E. This means that the set of participators
which manifest themselves as observers is the same set at each instant of time:
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participators do not appear or disappear while a scenario is running. To see
this, recall that if Q is the action kernel of a participator A, the measure Q(e, ·)
assigns probabilities to A’s perspective at time n + 1 (given that, at time n,
A channeled with some participator whose perspective is e). And if Q is not
markovian, i.e., if Q(e, E) < 1, then there is positive probability that A has
no perspective at time n + 1, so that it is not manifested as an observer in
the framework at that time. However, though A must manifest as an observer
at each time n, A’s manifestation need not channel at each time n. In other
words, the subset L of B which is the domain of the channeling relation at
time n may be a proper subset of the set of all participator manifestations at
time n. We see, then, that the markovian requirement on action kernels is a
matter of convention, not a restrictive assumption: since we do not require the
participators to channel at every instant, and since the dynamics is driven by
channeling, the net effect on the dynamics is the same whether a participator
does not manifest at time n, or manifests but does not channel at time n.

Reference and proper times
Dynamics requires some notion of time or sequence. Our notion of time in the
context of participator dynamics is guided in part by the ideas of Einstein:

“ The experiences of an individual appear to us arranged in a series
of events; in this series the single events which we remember ap-
pear to be ordered according to the criterion of ‘earlier’ and ‘later,’
which cannot be analyzed further. There exists, therefore, for the
individual, an I-time, or subjective time. This in itself is not mea-
surable. I can, indeed, associate numbers with the events, in such
a way that a greater number is associated with the later event than
with an earlier one; but the nature of this association may be quite
arbitrary.”2

The only events in a reflexive framework with which to associate numbers
are the discrete acts of observation and the consequent changes in perspective.
To each participator, then, we assign a number, called the “proper time” of
that participator, such that the number increases only when the participator
makes an observation. Every channeling that involves that participator in-
creases its proper time. Thus discrete acts of observation constitute the units
of subjective time in this framework. We will give a more formal treatment

2 Einstein (1956), p. 1.
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of proper time in chapter seven; the examples we present in this chapter are
simplified (artificially) so that the proper time of each participator coincides
with “reference time” (defined below).

The setting of the dynamics described here is different from the space-
time setting assumed in physics. In place of physical space we have the space
of possible observer perspectives, and in place of physical time we have the
sequence of discrete observations of participators.

A particular channeling may not include the perspectives of some partic-
ipators in the dynamics. In this case the proper times of the excluded par-
ticipators are not increased, but the proper times of the others are increased.
Therefore, even if the proper times of all participators begin with the same
value, say zero, their proper times will eventually differ due to channelings
that exclude some participators. We cannot then, in general, take the proper
time of any particular participator to be the time parameter of the markovian
dynamics of the ensemble. For this we need a time parameter that increases
for every channeling whether or not that channeling includes a particular par-
ticipator. This time parameter we call “reference time.” In a given dynamical
setting in which we have a fixed set K of participators, we may take the ref-
erence time to be a copy of the nonnegative integers, called “R,” which is the
domain of the time index “n” of Definition 2.6 for all the participators in K.
Thus in speaking of reference time we are making the assumption that these
indices have a common domain.

The reference time in a given dynamical context (corresponding to a set
K of participators) is not the same as the active time in the sense of 4–2.1
for the observers in the set BE of 2.7. In fact, reference time is associated
to a set of participators, not to a set of observers. And the reference time
need not include those instants when the participators channel only to non-
distinguished objects of perception. It need only include those instants when
participator observations occur, and by the term ‘observation’ we always mean
a channeling which results in a distinguished premise (which causes the output
of a conclusion, etc.). Now a channeling with a non-distinguished object of
perception may result in a distinguished premise (“false targets”), and an
instant of time in which this occurs (for the manifestation of a participator)
would have to be included in reference time. But if no distinguished premises
occurred at the given instant for any of the participators, then that instant
would be excluded from reference time.

Recall, by contrast, that since the active time of an observer indexes the
Xt’s, it consists by definition precisely of those instants when the observer
receives any channeling, from a distinguished object of perception or not.
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Definition 2.8. With the terminology of 5–3, (i) a participator channeling se-
quence is a function, ζ, from the natural numbers to the space of channelings,
ζ: N→ I, with the following property. Let ζ(n) = (Ln, χ̃n), where Ln ⊂ B and
χ̃n is an involution of Ln. Let Kn = (Dn, χn) denote the distinguished part
(5–3.4) of ζ(n). Then for each n ∈ N, Dn is not empty. N is called the reference
time for the sequence.3 (ii) As in 2.6, let An ∈ BE denote the manifestation of
participator A at reference time n. To each participator A in the dynamics is
associated its proper time, T A: N→ N, defined inductively as follows:

T A(n) =


0 if n = 0
T A(n− 1) + 1 if An ∈ Dn and πΦ(An)(Φ(χn(An))) ∈ S
T A(n− 1) otherwise.

At every instant of reference time, the proper time of at least one par-
ticipator is increased. Definition 2.8 says that the unit of subjective time for
a participator is a single act of channeling, i.e., the performance of a single
perceptual inference. Since at any step of reference time some participator
manifestations may not channel, it follows that the proper times for different
participators vary: proper time is relative to the participator. In fact it will
be seen in chapter eight that, given any ensemble of participators, each par-
ticipator’s proper time is a stopping time for the associated dynamical Markov
chain.

According to Definition 2.8, the proper time of a participator A increases
not only if its manifestation channels with a distinguished object of percep-
tion, but also if it channels with a false object. A false object is an object
of perception Bn ∈ B − BE such that πΦ(An)(Φ(Bn)) ∈ S. If Bn is a false
object then, using the terminology of 2–3, Φ(Bn) is a false target. Channel-
ings with false objects affect participator dynamics since participators, unable
to distinguish false objects from true, change perspective according to their
action kernels upon channeling with false objects. In this book we attempt no
serious investigation of the role of such channelings in participator dynamics.
In fact we ignore false objects and assume that, at each instant of reference

3 Thus a participator channeling sequence assigns a nonempty channeling
to each instant of reference time. At every instant of reference time the man-
ifestation of at least one participator channels. In this book we consider only
those sequences such that the sets Dn have some fixed maximum size.
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time, participator manifestations channel only with other participator mani-
festations. (As an informal justification for this one might assume that the
statistical properties of the action kernels somehow take into account these
extraneous channelings.) This is the content of the following “closed system”
assumption:

Assumption 2.9. Closed system. For each reference time n, Dn is contained
in the set of participator manifestations at time n.

One further assumption should be noted. We conceive of the change of
perspectives of participators on a reflexive framework as probabilistic. How-
ever, we have not given explicit details of the underlying probability spaces
on which the dynamical mechanism depends. Our proposal for the underlying
framework will be made in the next chapter. Here we note only the following
characteristic:

Assumption 2.10. Independent action. At any instant of reference time, and
given the current perspectives of all participators and the current channeling
involution, the perspectives of the participators at the next instant of reference
time are independent random variables.

For example, suppose we have three participators A, B and C with action
kernels QA, QB and QC respectively, and with channeling involution χ =
{(A,B)} (so that C is not channeled to). Then the probability that, at the
next instant, A ∈ ΓA, B ∈ ΓB , and C ∈ ΓC is

QA,eA(eB ,ΓA)QB,eB (eA,ΓB)1ΓC (eC).

That is, we need simply take a product of the appropriate probabilities for the
individual participators.

3. Kinematics of a single participator

In this section we consider the kinematics of perspectives that arises in a system
consisting of a single kinematical participator. We find that this kinematics is a
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random walk. In the next section we consider a kinematics of two participators.
We consider the general case in the next chapter.

Consider a single participator on a symmetric framework (X, Y , E, S, G,
J , π) satisfying Assumption 2.3. Let ξ = εe, e ∈ E. The first manifestation
of this participator then has perspective map πe, defined by πe(g) = π(g − e),
g ∈ X. The only channeling possible, since there is but one participator, is
a “self channeling,” viz., a channeling in which χ(e) = e. The participator’s
premise is then πe(e), i.e., π(0), where 0 denotes the identity element of our
additive abelian group E. This applies to each instant of the participator’s
proper time and, since there are no other participators, the system is inert
at all other instants. It follows from this that the same perceptual premise
s0 = π(0) ∈ S obtains at each step of the kinematics. And, denoting by Q the
action kernel of the participator, this implies that the same probability measure
Q(s0, ·) for the next perspective obtains at each step of the kinematics. This
implies that the kinematics is a random walk of law Q(s0, ·) with respect to
the discrete time which is the participator’s proper time and, in this special
case, the reference time.

4. Kinematics of pairs

We now consider a system involving two kinematical participators. In such a
system each participator might channel with itself, with the other participator,
or not at all, at each step of reference time. In this section we assume for
simplicity that each participator channels with the other at each step of the
kinematics. In the next chapter we consider the general case.

Again we are in the situation of Assumption 2.3. When two participators,
A and B, observe each other, each changes its perspective according to its
action kernel. This leads to a new difference in their perspectives. This change
in the relationship between their perspectives is governed by a kernel P which
we can define as follows: for each e ∈ E and Γ ∈ E , P (e, Γ) is the probability
that, as the result of a change in their perspectives, the new perspective of B
relative to A (i.e., the difference of their new perspectives) will lie in the set Γ,
given that the present difference in their perspectives is e. We can compute P
from the action kernels of the individual participators as illustrated in Figure
4.1. The figure shows two participators with initial perspectives a and b. The
perspective of B relative to A is e (that of A relative to B is −e). After
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observing, A changes perspective by an amount dk and B changes perspective
by an amount dh. This leads to a new difference in perspective e−dk+dh (or
−(e− dk + dh)).

Let Q and R denote the action kernels of the participators whose current
perspectives are a and b respectively. Then the probability that A changes
perspective by an amount dk given that B’s perspective differs from A’s by an
amount e is Q(e, dk). Similarly, the probability that B changes perspective by
an amount dh given that A’s perspective differs from B’s by an amount −e is
R(−e, dh). The probability of the joint event that A changes by dk and B by
dh is, by Assumption 2.10, Q(e, dk)R(−e, dh). That is, the probability that
the new difference in perspective is e − dk + dh, given that the old difference
in perspective was e, is given by Q(e, dk)R(−e, dh). Thus, to determine what
is the probability that the new difference in perspective lies within a region
Γ ∈ E , we simply find the measure of the region {(k, h) ∈ E×E| e−k+h ∈ Γ}
with respect to the product measure Q(e, dk)⊗R(−e, dh) on E × E. This is
the same as the integral∫

E×E
1Γ(e− k + h)Q(e, dk)R(−e, dh);

we conclude that P (e, Γ) is this integral.

X

B A
ab e

dk

e-
dk

+d
h

dh

FIGURE 4.1. Two participators change perspective.
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Note that P is time independent (assuming, as we do, that Q and R are)
and is also independent of the absolute perspective. Thus we can summarize:

4.2. Suppose A and B are participators with action kernels Q and R re-
spectively. Assume a channeling sequence where A channels only to B and
vice versa. Then the proper times of A and B are the same. With re-
spect to this proper time the successive perspectives of B relative to A (i.e.,
the successive differences in their perspectives) form a homogeneous Markov
chain with state space E and transition probability P given by P (e, Γ) =∫
E×E 1Γ(e− k + h)Q(e, dk)R(−e, dh).

The dependence of P on the action kernels Q and R can be conveniently
and suggestively expressed in terms of a natural “bracket operation” which is
derived from convolution of measures.

First, recall that if α, β are measures on the group (E, E), then the con-
volution of α with β, denoted α ∗ β, is the measure on (E, E) defined by

α ∗ β(Γ) =
∫
E×E

1Γ(k + h)α(dk)β(dh) (Γ ∈ E).

Notation 4.3. If N is a kernel on (E, E),
(i) N† denotes the kernel N†(e, Γ) = N(−e, −Γ), (e ∈ E, Γ ∈ E);
(ii) Ne(·) denotes the measure N(e, ·).

Definition 4.4. If Q and R are kernels on (E, E), [Q, R] is the kernel on (E, E)
given by

[Q, R](e, Γ) = (Qe ∗R†e)(e− Γ).

Proposition 4.5. With notation as above, P = [Q, R].
Proof.

P (e, Γ) =
∫
E×E

1Γ(e− k + h)Q(e, dk)R(−e, dh)
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=
∫
E×E

1e−Γ(k − h)Q(e, dk)R(−e, dh);

change variables so that h is replaced by −h:

=
∫
E×E

1e−Γ(k + h)Q(e, dk)R(−e, −dh)

=
∫
E×E

1e−Γ(k + h)Q(e, dk)R†(e, dh)

= (Qe ∗R†e)(e− Γ) = [Q, R](e, Γ).

For the moment, let P ′ denote the kernel for the Markov chain of per-
spectives of A relative to B. On the one hand, it is geometrically evident that
P ′(e, Γ) = P (−e, −Γ) (where, as above, P denotes the kernel for the perspec-
tives of B relative to A). On the other hand, from Proposition 4.5 we find that
P ′ = [Q, R]. We conclude

Proposition 4.6. For any kernels Q, R,

[Q, R] = [R, Q]†.

This may also be verified directly from Notation 4.3 and Definition 4.4.

We close this section with several remarks. First, nothing prevents A
and B from occupying the same perspective in E at a given instant. Second,
the situation considered in this section, where each participator channels only
to the other (and not to itself) is the opposite extreme of that treated in
the previous section, where a participator channels only to itself. To make
the comparison appropriate, imagine two kinematical participators A and B,
each channeling only to itself. In this case we would get a Markov chain on
E × E; in each factor we would have a random walk, (one for A and one
for B) as in the previous section. These random walks would be completely
“uncoupled.” In the situation treated in this section the perspectives of A
and B are completely coupled: it is very unlikely that we would get anything
resembling a random walk by looking at their sequences of states separately
(or jointly). In the general setting, the question of the relative frequencies
of cross-channelings and self-channelings in, say, a two participator dynamical
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system is described by an additional datum, called a τ -distribution, which we
think of as describing the “informational conductivity” of E. Depending on the
τ -distribution, the dynamical chain generated by an ensemble of participators
with given action kernels will express some degree of coupling of the random
walks each participator would undergo were there no cross-channelings. We
will study this in more detail in the next chapter. The main idea here is that,
given an ensemble of participators and a τ -distribution, a dynamical Markov
chain is generated.

5. True perception among pairs

We have seen that a dynamics of perspectives arises naturally on reflexive
frameworks. Intuitively, the purpose of the dynamics is to allow the participa-
tors to “perceive truly,” i.e., to choose conclusion measures η(s, ·) which in fact
reflect the probabilities of events on the reflexive framework. Specifically, if
participator A channels with B, leading to a premise sA, then A should arrive
at a conclusion measure ηA(sA, ·) which correctly describes with what proba-
bility the perspective of B, relative to A, lies in various subsets of π−1

a (sA)∩E.
In this section we specify conditions in which each participator, in a system
of two mutually observing participators, can perceive truly the perspective of
the other. Chapter eight addresses the issue of true perception formally and
in greater generality.

We assume, as in the previous section, that there are no self-channelings;
all channelings are cross-channelings. In chapter seven we consider more gen-
eral dynamics, but several ideas are revealed by considering the simpler case.

We found in the last section that the kinematics of relative perspectives
for two participators is markovian with transition probability P . The theory
of Markov chains describes some interesting properties of this kinematics that
are relevant to the problem of true perception. We describe these properties
informally now, and formally in the next chapters.

Depending on the details of the transition probability P , one finds that the
state space E of the markovian dynamics contains different “pockets” which
act like traps; if the state of the chain happens to enter one of these pockets,
then the chain will forever stay within that pocket almost surely. For this
reason these pockets are called “absorbing sets.” The complement in the state
space of all the absorbing sets is a pool of states called the “transient states.”
This is depicted in Figure 5.1, where the white disks represent absorbing sets
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E

FIGURE 5.1. Absorbing sets on the state space of a markovian dynamics. White
disks represent absorbing sets. Blue regions represent transient states.

and the states outside the disks are the transient states. An absorbing set may
contain infinitely many states. If a chain enters an absorbing set, the chain
then marches probabilistically from state to state within the absorbing set,
and almost surely never enters a state outside of the absorbing set.

One finds that, for each absorbing set C, there is a unique probability
measure supported on C which describes the long term behavior of the chain,
once it is trapped in C. This measure, say m, gives for each subset D of the
absorbing set a probability, m(D); m(D) can be interpreted as the relative
frequency that the trapped chain is found within D over a very long time. The
measure m is called a “stationary” measure; an example of such a measure for
a dynamics of two participators is shown in Figure 5.2. Darker regions indicate
higher frequency states. The little circles drawn over the stationary measure
indicate the perspectives each participator happens to adopt at some instant
of the dynamics.4

Now if a two participator dynamical chain enters an absorbing set with
stationary measure m, then each participator can reach true perceptual conclu-

4 Figure 5.2 does not represent the stationary measure on the original state
space of the Markov chain. The original state space is a product space, E2,
where there are two participators in the chain. Figure 5.2 represents the sta-
tionary measure on a single copy of E, which describes the perspective of B
relative to A.
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FIGURE 5.2. A stationary measure. Darker regions indicate higher probability
states.

sions if its conclusions η are related appropriately to m. That is, a participator
perceives truly if its perceptual conclusions η are matched to the dynamical
reality observed, namely m. The way to match η to m is to make the measures
η(s, ·) the appropriate conditional probability measures of m, as depicted in
Figure 5.4. This figure shows the stationary measure m of the dynamics of one
participator relative to another, where the latter’s perspective is always taken
to be the origin at each step. At the instant shown, the two participators are
channeling, leading the participator at the origin to have premise s. It can be
seen that the appropriate conclusion η for this premise is the conditional prob-
ability of m when m is restricted to the line between the participators, viz.,
the line π−1(s). By choosing η(s, ·) to be this probability measure, the partic-
ipator at the origin has its perceptual conclusions matched to reality. Thus, in
the case of a two participator dynamics involving only cross-channelings, the
equation that specifies when perception matches reality simply asserts that the
conclusion kernel η is the rcpd with respect to π of a stationary measure m.
A measure m is stationary under the action of the transition probability P if
m = mP , i.e., if

m(I − P ) = 0, (5.3)

where I is the identity operator. In the dynamics considered here, this equa-
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tion, together with the stipulation that η is the rcpd of m, is the “perception
= reality” equation. Note that there are in general many absorbing sets, each
with its own stationary measure, so that the measure m is not uniquely de-
termined even when P is fixed. Therefore, to determine if perception matches
reality, we must be careful to use the appropriate stationary measure.

FIGURE 5.4. A participator’s conclusion measure should be derived as the rcpd of
the appropriate stationary measure.

Now if the chain never enters an absorbing set, i.e., if the dynamics is
not stable, then there is no stationary probability measure to use to compute
η. True perception is not possible. There are no probability measures η(s, ·)
that are matched to the dynamical reality. We see that a stable dynamics of
perspectives is necessary for true perception.

In chapter ten we discuss how, to each absorbing set, there are associated
in a natural manner complex-valued eigenfunctions of the transition probabil-
ity P . We show that the squared amplitude of these eigenfunctions yields a
probability measure which is stationary or asymptotic (a property, to be dis-
cussed later, which is slightly weaker than stationarity).
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6. An example

We close this chapter with an illustration of participator dynamics by means
of a specific and elementary example, including a computation of its stationary
measures. Consider the symmetric framework (X, Y , E, S, G, J , π), where

X = R, E = Z (the integers),

Y = S = {1, 0,−1}, G = 〈R,+〉, J = 〈Z,+〉,
π(x) = sgn(x) (6.1)

and where the signum function “sgn” is given by

sgn(x) =

{ 1, if x > 0;
0, if x = 0;
−1, if x < 0.

(6.2)

Suppose we have two participators labelled “1” and “2” respectively, which
channel with each other at each instant of reference time. As before, we do not
allow self-channeling. Both participators are assumed to have the same action
kernel Q, defined as follows:

Q(0, ·) = ε0(·)
(where ε0(·) is Dirac measure at 0); if r 6= 0,

Q(r, x) =

 ρ, if x = sgn(r);
1− ρ, if x = sgn(−r);
0, otherwise.

(6.3)

(Here r is the relative position before channeling and x is the participator’s
change in position after channeling; we assume that the quantity ρ lies between
0 and 1). In words: if a channeling came from the participator’s current
position, there is no movement. Otherwise, the participator moves one step in
the direction from which the channeling came, with a probability of ρ, or one
step away from that direction, with the complementary probability of 1− ρ.

Imagine that the two participators are initially separated by a nonzero dis-
tance. After they channel, their relative distance will either remain unchanged,
or will have changed by two units. These are the only possibilities. (If they



132 INTRODUCTION TO DYNAMICS 6–6

were initially at the same position in E, nothing will change.) This is expressed
in the following derivation of the dynamical kernel P of the joint markovian
dynamics (as introduced in section four above). Note that the dynamics is
relativized; it is a dynamics on the group Z of the relative displacements of
participator 2 with respect to participator 1.

1− ρ← • → ρ ρ← • → 1− ρ

∗ ∗ ∗| ∗ ∗ ∗ ∗| ∗ ∗ ∗ ∗© ∗ ∗ ∗ ∗ | ∗ ∗ ∗ ∗| ∗ ∗ ∗ ∗| ∗ ∗ ∗ ∗| ∗ ∗ ∗ ∗© ∗ ∗ ∗ ∗ | ∗ ∗ ∗ ∗| ∗ ∗∗

Participator 2 Participator 1

FIGURE 6.4. A markovian two-participator dynamics with E = Z. The current
relative separation is r = −5. After a channeling each participator will jump in the
indicated directions with the given probabilities.

Proposition 6.5. Let r denote the current relative separation and q the
relative separation after channeling. Then the kernel P of the dynamics is
given by
If r = 0,

P (0, q) = ε0(q). (6.6)

If q = r, r 6= 0,
P (r, q) = 2ρ(1− ρ). (6.7)

If q = r − 2sgn(r), r 6= 0,
P (r, q) = ρ2. (6.8)

If q = r + 2sgn(r), r 6= 0,
P (r, q) = (1− ρ)2. (6.9)

If q 6= r, and q 6= r ± 2
P (r, q) = 0. (6.10)
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Proof. The result is a consequence of the assumption of independence between
the jumps of the individual participators, as expressed in Proposition 4.5. By
that Proposition we see that

P (r, q) = [Q,Q](r, q)

=
∑
z,w

Q(r, z)Q(−r, w)1q(r − z + w)

=
∑
w

Q(r, (r − q) + w)Q(−r, w). (6.11)

The result then follows from the definition 6.3 of Q, after analyzing the possi-
bilities into the indicated cases.

Notice that
∑
q P (r, q) = 1, for all r ∈ Z.

Up to an arbitrary initial probability measure ξ on the group Z, we have
described the Markov chain which is the (relative) dynamics. We may now
inquire into the long-term behavior of the dynamics, as introduced in section
five.

Suppose that ν is a probability measure on Z. Recall that ν is said to be
stationary for the chain with T.P. P if

νP = ν,

i.e., if for all q ∈ Z, ∑
r

ν(r)P (r, q) = ν(q).

This is just equation 5.3 transcribed to our situation. For convenience we
extract the r = 0 term in the sum on the left, to get∑

r 6=0

ν(r)P (r, q) + ν(0)ε0(q) = ν(q). (6.12)

If ρ = 1, the participators simply move towards each other after any
channeling. Imagine that the participators are initially an even distance apart.
Then they will move towards each other until they are at the same point,
thenceforth to remain there. If they were to start an odd distance apart,
they would eventually find themselves one unit apart. From then on they
would oscillate, with relative positions of ±1. Thus when ρ = 1 there are two
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stationary measures: Dirac measure ε0(·) at the origin and a measure µ given
by µ(+1) = µ(−1) = 1/2, µ(q) = 0 if q 6= ±1.

In general, the set of measures stationary with respect to a given T.P. is
always a convex set. That is, if λ and σ are stationary, so is aλ+ bσ whenever
0 ≤ a, b ≤ 1 and a+ b = 1. In particular, in our situation when ρ = 1 the set
of stationary measures consists of all convex combinations aε0(·) + bµ(·).

Note that, regardless of the value of ρ, ν(·) = ε0(·) is always a stationary
measure for P . It is interesting that the only set of values of ρ for which the
dynamics has a stationary measure other than ε0(·) is the interval ( 1

2 , 1]. In
the rest of this section we will demonstrate this fact and explicitly determine
the stationary measures.

If ρ = 0 it is intuitively clear from 6.3 that the chain wanders off to infinity,
if it is not already at the origin. Thus, if ρ = 0, the Dirac measure at zero is
in fact the only stationary measure. Henceforth we assume ρ 6= 0.

Now applying Proposition 6.5 to equation 6.12, we identify the following
cases:

(i) If q = 0,

ν(0) = ρ2(ν(2) + ν(−2)) + ν(0). (6.13)

(ii) If q = ±1,

ν(±1) = 2ρ(1− ρ)ν(±1) + ρ2ν(∓1) + ρ2ν(±3). (6.14)

(iii) If q = ±2,

ν(±2) = 2ρ(1− ρ)ν(±2) + ρ2ν(±4). (6.15)

These cases are special; for the general case |q| ≥ 3, we have

ν(q) = 2ρ(1− ρ)ν(q) + ρ2ν(q + 2sgn(q)) + (1− ρ)2ν(q − 2sgn(q)),

which, with a little algebra, may be re-expressed as follows:

(iv) If |q| ≥ 3,

ν(q) = c2ν(q + 2sgn(q)) + s2ν(q − 2sgn(q)). (6.16)

where

c2 =
ρ2

ρ2 + (1− ρ)2
, s2 =

(1− ρ)2

ρ2 + (1− ρ)2
; (6.17)

note that c2 + s2 = 1.

Equation 6.16 is a linear difference equation with constant coefficients. Its
solutions may be obtained by substituting the trial solution ν(q) = xq, x 6= 0.
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Doing so, we get

xq = c2xq+2sgn(q) + s2xq−2sgn(q), |q| ≥ 3 (6.18)

Now the substitution x → x−1 into 6.18 converts any solution for q ≥ 3 into
one for q ≤ −3, as may easily be checked. This allows us to concentrate on
6.18 for positive q only. So doing, and dividing out by xq−2, we arrive at the
characteristic equation

c2x4 − x2 + s2 = 0. (6.19)

Solving this for x2, we get x2 = 1 or (s/c)2. (A quick way to see this is to set
c = cos θ and s = sin θ and to use elementary trigonometric formulas.)

If s = c, these two solutions to 6.19 are the same. This happens when
ρ = 1/2. For the moment, assume s 6= c. Put

t =
(s
c

)2

=
(

1− ρ
ρ

)2

. (6.20)

We may immediately solve 6.16 for ν at the even integers. If ρ 6= 1/2 (i.e.,
t 6= 1), every solution to 6.16 is, at even values of q, of the form

ν(2k) =
{
a+ + b+t

k, if k ≥ 2
a− + b−t|k|, if k ≤ −2

(t 6= 1) (6.21)

for some constants a±, b±.
Consider now t = 1. Then s2 = c2 = 1/2 and, by 6.16, ν(q) is an average

of ν(q + 2) and ν(q − 2):

ν(q) = 1
2ν(q + 2) + 1

2ν(q − 2).

The characteristic equation of this difference equation is

x4 − 2x2 + 1 = 0,

so that x2 can only be unity. In this case, we have

ν(2k) =
{
a+ + b+k, if k ≥ 2
a− + b−|k|, if k ≤ −2 (t = 1), (6.22)

for some constants a± and b±, as the general solution of 6.16.
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Lemma 6.23. If ν is a stationary measure with respect to the T.P. P of
Proposition 6.5, then

ν(2k) = 0 for all k ∈ Z, k 6= 0.

Proof: Since ν is a probability measure, {ν(2k)}∞k=0 is a summable sequence
of non-negative terms. Hence a+ = a− = 0. If ρ = 1 (i.e., t = 0 by 6.20), by
6.21 we are done.

Next assume that 0 < t 6= 1. By 6.13 we have ρ2(ν(2) + ν(−2)) = 0. But,
since ρ 6= 0, the non-negative quantities ν(2) and ν(−2) are both null. By
6.15, the same holds for ν(4) and ν(−4). When k = 2, 6.21 says

0 = ν(4) = 0 + b+t
2

0 = ν(−4) = 0 + b−t
2,

that is, b+ = b− = 0. Thus the result obtains if t 6= 1.
If t = 1, the same requirement of summability shows, using 6.22, that only

ν(0) could possibly be nonzero.

We turn now to the computation of ν at odd integral points. Assume that
ρ 6= 1

2 (i.e., t 6= 1). We solve the formal difference equation in 6.16 for ν at the
odd integers. The general solution has the form

ν(2k + 1) = c+ + d+t
|k|, if k ≥ 0;

ν(2k − 1) = c− + d−t
|k|, if k ≤ 0,

(6.24)

for some constants c+, d+, c−, and d−. As in the even case, summability
requires that c+ = c− = 0 and that t < 1. Thus, in terms of q = 2k + 1 (for
k ≥ 0) or q = 2k − 1 (for k ≤ 0), our general solution is,

for ρ 6= 1
2

ν(q) =
{
d+t
|q−1|/2, for odd q ≥ 0;

d−t|q+1|/2, for odd q ≤ 0.
(6.25)

In particular,
ν(1) = d+, ν(−1) = d−. (6.26)

Since
∑
q ν(q) = 1, we have that

∑
qodd ν(q) ≤ 1. Thus

∑
k≤0

d−t
|k| +

∑
k≥0

d+t
|k| =

d+ + d−
1− t ≤ 1. (6.27)
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In terms of ρ (using the definition 6.20 of t), this says that

1 ≥ ρ ≥ 1
1 +

√
1− (d+ + d−)

(6.28)

(which restricts ρ to the interval (1
2 , 1]). We know that ν(2k) = 0 if k 6= 0

(Proposition 6.23). Thus, by 6.27,

ν(0) +
d+ + d−

1− t = 1

or

ν(0) =
2ρ− 1− ρ2(d+ + d−)

2ρ− 1
,

1
2
< ρ ≤ 1. (6.29)

We are now in a position to delineate all possible stationarities of this
chain. This is significant, for once we know the stationary measures it is
possible to describe the “true perception” of the dynamical situation by a
given participator, as discussed in the previous section of this chapter. We
shall not delve into such detail here; our purpose is to give a feel for how the
dynamics is analyzed. We end this chapter with the following theorem.

Theorem 6.30.
(i) If 1

2 < ρ ≤ 1, there is a one-parameter family of probability measures
stationary with respect to the T.P. P (given in 6.5) of the dynamical
chain of our example. With parameter denoted by d, this family may be
described as:

ν(q) =



d

(
1− ρ
ρ

)|q−1|
, if q is odd and q > 0;

d

(
1− ρ
ρ

)|q+1|
, if q is odd and q < 0;

0, if q is even and q 6= 0;
2ρ− 1− 2ρ2d

2ρ− 1
, if q = 0.

The range of allowed values of the parameter d is contained in the closed
interval [0, 1]. For fixed ρ ∈ ( 1

2 , 1] the range is [0, (2ρ− 1)/2ρ2].
(ii) If 0 ≤ ρ ≤ 1

2 , the only stationary measure is ε0(·).
Proof. Consider (i). For q odd we have equation 6.25. Recalling from 6.20
that t1/2 = (1− ρ)/ρ, we obtain the first two formulas below.
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ν(q) =



d+

(
1− ρ
ρ

)|q−1|
, if q is odd and q > 0;

d−

(
1− ρ
ρ

)|q+1|
, if q is odd and q < 0;

0, if q is even and q 6= 0;
2ρ− 1− ρ2(d+ + d−)

2ρ− 1
, if q = 0.

The third formula above is Lemma 6.23 and the fourth is equation 6.29.
Substituting the formula for odd q into 6.14 we get

d± = 2ρ(1− ρ)d± + ρ2d∓ + ρ2d±

(
1− ρ
ρ

)|±2|
,

which reduces to d+ = d−. Set d = d+ = d−; the range of allowed values of
the parameter d as given in the statement is computed by requiring that

0 ≤ ν(0) =
2ρ− 1− 2ρ2d

2ρ− 1
≤ 1.

This concludes (i).
It remains to verify (ii). We have already done so for 0 < ρ < 1/2,

since 6.28 shows us that the fact that ν is a probability measure requires that
ρ ≥ 1/2. Moreover, the instance ρ = 1/2 requires, in the same way as in 6.22
above, that

ν(2k + 1) =
{
a+ + b+k, if k ≥ 1
a− + b−|k|, if k ≤ −1

which is only summable if it is in fact zero.


