
CHAPTER NINE

TOWARDS SPECIALIZATION

A goal of our theory is to understand how “higher” levels of perception
might emerge from “lower” ones, i.e., to understand “perceptual hierarchy.”
In this chapter we discuss this notion and describe a possible model of it
called framework specialization. We illustrate framework specialization with two
examples: the incremental rigidity scheme of Ullman (1983) and “specialized
chain bundles.” Our presentation is neither complete nor rigorous, but is an
extended speculation guided by work in progress.

1. Introduction to specialization

Our approach to the study of perceptual hierarchy is illustrated by a question:
Under what conditions does an ensemble of participators in a fixed reflexive
framework Θ give rise to a “higher” level observer or class of observers? We be-
lieve it is misguided to restrict attention to answers which implicitly postulate
a deterministic or reductionistic relationship between the ensemble and the
new observers, e.g., to answers postulating that the new observers are unions
or products of the participators in the ensemble. Instead, we seek an answer
which exploits the fundamental character of observers: observers perform in-
ferences which are not, in general, logically determined by the premises. In our
search for a nonreductionistic answer, we have been guided by four key ideas.

Idea 1. The premises of the new observer should be deducible in some
manner from the conclusions of the participators in the ensemble.
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The appeal of this idea is that it connects the ensemble and the new
observer nontrivially, but it also connects them nonreductionistically. For in
this case the ensemble determines only the premises of the observer it gives rise
to, not its conclusions. Many different observers can be constructed having the
same space of premises Y .

The ensemble which gives rise to a new single observer in this way we
call an instantiation of that observer. We do not call it the instantiation, for
it is likely that a given observer can have many different instantiations. The
resulting observer we call a specialization of the ensemble. Again, we do not
call it the specialization, for a given ensemble is likely to have many different
specializations. More generally, we will say that a class of inferences A is
an ascendant of a class of inferences B if all premises for inferences in A are
deductive consequences of the conclusions of the inferences in B.

Idea 2. If the premises of the specialized observer arise from the conclusions
of the instantiating ensemble, then these conclusions should be reliable.

If we want to build higher levels of perception from lower levels then
we want the lower levels to be secure before we start building. In chapter
eight we discuss precise conditions in which the perceptual conclusions of a
dynamical ensemble of participators are matched to the reality observed. The
strongest such conditions we call “stably true perception” and “stably true
perception in the limit” (8–6.8). For the conclusions of the participators to
be reliable in these strong senses the dynamics in which they participate must
have a stationary measure ν. The conclusions of the participators are then
derived from this stationary measure ν via the rcpd construction mDνπ (8–6.4,
8–6.6). The stationary measure can be viewed as describing stabilities of the
asymptotic behavior of the participator dynamics. Thus the conclusions of the
participators, to be reliable in a strong sense, are derived from stabilities of
the asymptotic behavior of their dynamics.

In keeping with Idea 1, a channeling to a specialized observer should occur
as a result of channelings in Θ to the participators of its instantiating ensem-
ble. Furthermore, to maintain consistency with our nondualistic semantics,
the objects of perception of a specialized observer should be other specialized
observers. This leads to:



200 TOWARDS SPECIALIZATION 9–1

Idea 3. The channeling between two specialized observers is expressed by
an interaction between the observers’ instantiating participator ensembles, as-
suming these ensembles to be in the same framework Θ.

One implication of this is that a single channeling, i.e., a single instant
of time, at a specialized level may involve infinitely many channelings at the
instantiating level, i.e., at the level of Θ. Such an interaction perturbs the
asymptotic behavior of each instantiating system. The asymptotic behavior of
each system in isolation must be stable in order to make any sense of the per-
turbation. Granting this stability, if the perturbed asymptotics has sufficient
regularity, each system can encode information about the other system which
caused the perturbation.

This brings us to the fourth main idea:

Idea 4. The premise of a specialized observer’s inference is a stable pertur-
bation of the asymptotics of the observer’s instantiation, a perturbation which
results from an interaction with another participator system.

Up to this point we have not given a formal definition of “perceptual
hierarchy”, i.e., of what it means for one inferencing system to be at a higher
level than another. One notion of hierarchy would be a set together with a
partial order on it. However, there is no reason to suppose that the intuitive
idea of specialization outlined above can be so expressed. IfA is a specialization
of B, and B is a specialization of C, should one suppose that A must specialize
C? Is it possible that a chain of such specializations might eventually fold back
to its origin? Should one replace a partial order with a more local notion of
order?

It is clear that we need a more precise understanding of the information
flow from a given ensemble’s conclusions to its specialization, as mentioned
in Idea 1 above. For example, following upon the discussion after Idea 2, it
may be possible to deduce the stationary measure of the instantiated ensemble
from the set of the latter’s conclusion measures, given that some or all of the
participators enjoy true perception of their ambient dynamics. In any case, in
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order to formally develop the above ideas we will assume this, so that Idea 1
may be expressed in the following form:

Idea 1 bis. The premises of the specialized observer should be deducible in
some manner from the stabilities of the dynamics of the participators in the
instantiating ensemble.

In what follows we reintroduce these ideas in a more formal setting.

2. Hierarchical analytic strategies revisited

We now consider how to construct a formal model of a perceptual hierarchy.
In 4–5 we suggest that the hierarchy arises from an analytic strategy which
decomposes the interactions of complex systems into strata, or levels, and
which describes the passage of information between strata. Within each level
the interaction appears to be homogeneous, i.e., to involve like entities. Within
a given system, and at a given level, we say that the relevant entities together
constitute the “representation” of that system at that level. Similarly, the
total interaction of two complex systems “expresses” itself at a given level
by means of the interaction of each system’s representation at that level. But
there is more to the total interaction than this: within each system information
flows between strata. This flow determines the hierarchical relationship on the
collection of strata.

When we introduced the notion of hierarchical analytic strategy in 4–5 we
spoke of “entities of like nature” which are irreducible or indecomposable at
a given level. The fundamental hierarchical relation holds between this level
and another “lower” level at which each entity has its own representation, a
representation which provide a first order decomposition of the entity. The
hierarchical connection between these two levels is expressed by a canonical
form for the passage of information from the constituents of the lower level
representation of the entity, to the entity itself at the higher level. And the
information which propagates in this canonical way arises from the interactions
between these constituents.

This is where, in a participator-dynamical model, the ideas of special-
ization fit in. In the model we develop here, reflexive observer frameworks
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represent the possible hierarchical levels, and participators on a framework are
the “irreducible entities” at that level.

Specification 2.1. To give a model of a perceptual hierarchy based on par-
ticipator dynamics is to specify the following:
(i) a form in which complex systems are represented by participators in given

frameworks, i.e., at given levels of the hierarchy;
(ii) a form in which interaction of several such systems is expressed at a given

level;
(iii) a canonical form for the passing of information between hierarchically

related levels in a single system;
(iv) a manner in which an interaction (as described in (ii)) among several

systems generates information which then propagates (within each of the
separate systems) via the connection described in (iii).

Here is a more detailed proposal for such a model. First consider (i) of
2.1. We let the expression of a complex system S at the level of the hierarchy
corresponding to the reflexive framework Θ = (X,Y,E, S, π•) be an ensemble
of participators on Θ together with a τ -distribution on Θ, satisfying a permis-
sibility condition (discussed below). We call these (participator, τ)-data the
level Θ expression of S. It follows that to a complex system, when considered in
isolation, are associated participator dynamics in various frameworks. These
participator dynamics are the expressions of the system at the various levels of
the hierarchy. Suppose that the level Θ expression of S is the participator en-
semble (ξi, {Qi(n)}n, {ηi(n)}n) for i = 1, . . . , k together with a τ -distribution
τ . These data can generate various Markov chains such as the augmented
chain on Ek × I(k) (7–3.1, 7–3.2) or the standard chain on Ek (7–4.3). How-
ever these chains contain less information than the collection of participators
together with τ , for many distinct sets of k participators and choices of τ
might give rise to the same chains. Moreover these chains omit the interpre-
tation kernels ηi(n) of the participators. For these reasons we equate the level
Θ expression of S with the (participator, τ)-data even though, by an abuse of
language, we sometimes speak of the “dynamical system which expresses S”
in Θ.

We now consider (ii) of 2.1. Suppose that two complex systems S1 and
S2 interact and that A1 and A2, respectively, are their level Θ expressions as
(participator, τ)–ensembles.

S1: A1 = {(ξ1, {Q1(n)}n, {η1(n)}n), . . . , (ξk, {Qk(n)}n, {ηk(n)}n); τk}
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S2: A2 = {(λ1, {R1(n)}n, {θ1(n)}n), . . . , (λj , {Rj(n)}n, {θj(n)}n); τj}.
(2.2)

We stipulate that a precondition for the interaction is that τk and τj are
compatible (i.e., are part of the same τ -distribution family {τi}i). We further
stipulate that the interaction itself is expressed in the augmented dynamics of
the joint participator ensemble. This is the Markov chain on Ek+j × I(k + j)
whose transition probability is

〈Q1(n), . . . , Qk(n), R1(n), . . . , Rj(n)〉̂τ , (2.3)

and whose initial distribution is

(ξ1 ⊗ . . . ξk ⊗ λ1 ⊗ . . .⊗ λj)τ , (2.4)

with the notation of 7–3.4. Thus the interaction of two systems at level Θ is
expressed by the “running” of the participator dynamical chain generated by
joining the ensembles representing the two systems separately at that level.
Note that such an interaction is meaningful only when both systems employ
compatible τ -distributions.

This description of the interaction at a level Θ is natural; it is consistent
with the “interactive” character of participators: any ensemble of participators
subject to the same τ -distribution generates markovian dynamics. It remains
to give the specifications (iii) and (iv). For (iii) we must define what it means
for two reflexive frameworks Θ and Θ′ to be “hierarchically related.” The
definition must be given in terms of the way in which information flows be-
tween the level Θ and level Θ′ expressions of a given system. This definition
determines the hierarchy, i.e., the ordering of the analytical levels. For (iv)
we must specify how information about a level Θ interaction among several
systems as stipulated in (ii) is extracted for propagation through the levels
of each system. And this specification must comport with the hierarchical
relation between levels set forth in (iii).

We may view (iii) and (iv) as imposing constraints on the single-level in-
teraction of (ii). In fact, the information that propagates according to (iii)
will be encoded in a form which enables it to pass through the hierarchical
connection. (iv) requires that the interaction itself, as specified in (ii), must
permit the extraction of this kind of information. This restricts the partici-
pator ensembles which may be parties to the interaction. These restrictions
constitute the “permissibility condition” on participator ensembles mentioned
above, the fulfillment of which is the “form” referred to in (i).
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To understand this more concretely, consider systems S1 and S2 whose
level Θ expressions are as in 2.2, and whose interaction at that level is via the
markovian dynamics described in 2.3 and 2.4. In this joint participator dy-
namics there is no reason why the identity of the original participator ensemble
should be retained. By this is meant the following. Suppose that, in isolation,
each ensemble has a stable dynamics. When the two ensembles are coupled,
their individual stabilities will be disturbed by “cross channelings,” i.e., chan-
nelings between participators not in the same ensemble. With no constraints
on the original systems, we would expect this disturbance to be so great as to
eliminate not only the original stabilities but also any possibility of a new pair
of stabilities for the individual ensembles. But the interaction data propagated
as in (iv) must be meaningful in terms of the individual asymptotics (c.f. Idea
4 of section 1). There must, of course, be a disturbance of these asymptotics in
order that an interaction at level Θ of the complex systems S1 and S2 can be
said to have taken place. But this disturbance should only perturb the stabili-
ties, not annihilate them. For the individual stabilities are the very grounding
of the propagated information.

Thus we suggest that the participator ensembles each need some cohesive
stability so that, in this sense, each ensemble maintains its individuality in
interaction and so that the resulting perturbations of the dynamics of each
ensemble have sufficient regularity to be classified. Assuming this regularity,
the perturbation of each system is the interaction data which propagates inter-
nally in that system in the sense of (iv). A cohesive stability property which
is sufficiently strong in this sense can serve as a “permissibility condition” in
2.1 (i). The enunciation of such cohesive stability properties, and their match-
ing to compatible notions of perturbation regularities, is a central problem in
devising models of perceptual hierarchy.

We summarize these ideas in

Terminology 2.5. Let a reflexive framework Θ and a channeling distribution
τ = {τk}∞k=1 be fixed. Let P be a collection whose elements are finite ensembles
of participators on Θ.
(i) A stability type for P is a class of asymptotic characteristics1 of the dynam-

ics satisfying the following conditions. The participator dynamics of each

1 We will not give a precise, general definition of the notion of “asymptotic
characteristic.” The terminology is intended to include properties of dynamics
which can be stated in terms of stationary measures of the dynamics, and,
more generally, in terms of “asymptotic” or periodic measures. See, e.g., Revuz
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ensemble in P has asymptotic characteristics in the given class. More-
over, if the dynamics is perturbed by the presence of another ensemble
in P (i.e., when we consider the new dynamics induced on the original
ensemble by running the joint participator dynamics generated by it to-
gether with another ensemble) then asymptotic characteristics remain in
the class (although they may change within it).

(ii) The stability type for P is said to have a perturbation regularity if the
following condition holds: The variation of the asymptotic characteristics
within the class of the stability type, resulting from the perturbations as
in (i), has sufficient regularity to be represented in a way which encodes
dependency of the variation on the two interacting ensembles in P.

(iii) In the presence of (i) and (ii), we say that P possesses a strong stability
type.

(iv) A permissibility condition for a stability type is a condition on the ensembles
in P, expressible in terms of the action kernels and initial distributions
of the constituent participators, which guarantees that the given stability
type, with perturbation regularity, will hold for P (as in (i) and (ii) above).
(In other words, it guarantees that P will have the given strong stability
type.

We reiterate that the central idea for propagation between levels is that the
information propagated consists in the regular perturbations of an ensemble’s
asymptotics. Given a framework Θ, the permissibility conditions on ensembles
are conditions on the τ -distribution as well as on the data for the constituent
participators. (It is expected that the interpretation kernels will play a role in
the actual extraction of the data to be propagated—c.f. Idea 2 of section 1.)
It seems likely that, even on a given framework, these considerations allow a
wide variety of permissibility conditions.

3. Framework Specialization

In this section we discuss more formally how the specialization ideas of the
section 1 give rise to canonical schemes for the representation of hierarchical
relationships. In the subsequent sections we present two examples of such
schemes, the first from computational vision and the second more abstract.

chapters 4 and 6.
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Terminology 3.1. A specialization scheme for a set P of participator ensembles
together with a τ -distribution on a framework Θ, consists of a strong stability
type and a corresponding permissibility condition (with the terminology of
2.5).

Intuitively the permissibility condition has two notable consequences. First,
the dynamics generated by any ensemble in P has a stationary measure. Sec-
ond, the dynamics induced on any such ensemble by running the joint chain
generated by it and another ensemble in the set has asymptotic stability which
is representable by a measure. The perturbation regularity expresses the rela-
tionship that holds, in general, between these latter measures and the original
stationary measures. We need not make these intuitions more precise at this
point; we only wish to here emphasize that they illustrate an assumption that
the specialization scheme is, in some such manner, based on properties of
asymptotics which can be expressed in terms of measures.

Any choice of specialization schemes leads to an explicit realization of a
hierarchical analytic strategy for participator dynamics which models the stip-
ulations of 2.1. This strategy includes a notion of an information connection
between levels of the hierarchy in the sense of 2.1 (iii) and (iv). This connection
does not exist between any pair of levels, but only between those which are “hi-
erarchically related”: information about perturbation regularities of systems
at one level propagates canonically to the next. In this way, we think of the
class of levels of the hierarchy, i.e., the class of reflexive frameworks, as having
a relation defined on it: two frameworks are related if they are connected in
this sense. We call the relation specialization; each specialization scheme gives
rise to a specialization relation.

We now give a formal definition of specialization.

Definition 3.2. Let Θ′ = (X ′, Y ′, E′, S′, π′•) and Θ = (X,Y,E, S, π•) be
reflexive observer frameworks. Let τ be a fixed channeling distribution on Θ,
and let a specialization scheme (as in 3.1) be given. Then Θ′ is a specialization
of Θ for τ and for the given specialization scheme if, for some environment
(B,Φ) supported by Θ′ (5–2.6), the following hold:
(i)

(a) Let
Z = { (participator, τ)-ensembles on Θ}

and
Z̄ = { (preparticipator, τ)-ensembles on Θ}.
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Let p : Z → Z̄ be induced by (ξ, {Q(n)}n, {η(n)}n) 7→ (ξ, {Q(n)}n).
Then there are maps I:B → Z and Ī:X ′ → Z̄ such that p◦I = Ī ◦Φ.
In other words we have a commutative diagram:

B I−→ ZyΦ

yp
X ′

Ī−→ Z̄

(b) Let D denote the set of those preparticipator (6–2.6) ensembles on
Θ having the strong stability property of the given specialization
scheme. Then Ī−1(D) = E′.

(ii)
Let O1 and O2 be observers in Θ′ (i.e., in B). A channeling between
O1 and O2 corresponds to the markovian dynamics in Θ resulting
from the join of the two participator ensembles I(O1) and I(O2) on
Θ.

(iii)
(a) The points of Y ′ parametrize variations of asymptotic characteristics

that are meaningful for the preparticipator systems represented (via
Ī) by the points of X ′.

(b) The distinguished premises S′ of Θ′ correspond to asymptotic varia-
tions which express the perturbation regularity provided by the spe-
cialization scheme (c.f. 2.5).

(iv)
(a) Given e′ ∈ E′ and x′ ∈ X ′, then π′e′(x

′) ∈ Y ′ represents the pertur-
bation of the preparticipator system Ī(e′) on Θ which results from its
interaction with the system Ī(x′).

(b) If x′ ∈ E′ then π′e′(x
′) ∈ S′. (This just summarizes the effect of (i)(b)

above, i.e., that points of E′ correspond to preparticipator ensembles
that have the given strong stability type.)

(i)–(iv) of this definition correspond (in toto) to (i)–(iv) of 2.1. The con-
cept of specialization captures the notion of a hierarchical analytic strategy in
the form of a relation on the class of reflexive observer frameworks. The en-
vironment (B,Φ) supported by the framework Θ′ (whose existence is required
by the definition in order for Θ′ to be a specialization) plays only a syntacti-
cal role in the definition: the issues which are most central to the question of
the specialization of the frameworks themselves are issues of preparticipator
dynamics.
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Terminology 3.3. Specialization and Instantiation. Let Θ′ be a specialization
of Θ, and let O be an observer in Θ′. If O is a distinguished observer with
Φ(O) = e′ ∈ E′ we say that O is the specialization of the participator system
I(O), and that e′ is a specialization of the preparticipator system Ī(e′). Simi-
larly, if A is an arbitrary participator (or preparticipator) system on Θ, we say
that A specializes if it has the strong stability property of some specialization
scheme. We do not say that x′ ∈ X ′ is a specialization of Ī(x′), or that O is
a specialization of I(O) unless x′ or O are distinguished, i.e., unless x′ ∈ E′ or
Φ(O) ∈ E′.

The term instantiation denotes the opposite of specialization. For example,
with notation as above we say that Θ is an instantiation of Θ′. However, we
use the term “instantiation” to apply to arbitrary (including nondistinguished)
configurations and observers, whereas we use the term “specialization” in the
distinguished case alone. Thus, for x′ ∈ X ′, we say that the preparticipator
system Ī(x′) instantiates x′; for the observerO in Θ′ we say that the participator
system I(O) instantiates O. The maps I and Ī are called instantiation maps.
We also say that interactions of participator or preparticipator systems on Θ
instantiate channelings on Θ′. Thus, for observers O1 and O2 with Φ(O1) = x′1
and Φ(O2) = x′2, we say that the markovian dynamics generated by joining
the preparticipator ensembles Ī(x′1) and Ī(x′2) (or participator ensembles I(O1)
and I(O2)) instantiates the channeling between O1 and O2.

To fix these ideas, let us review how specialized observers make infer-
ences. Let Θ′ be a specialization of Θ. Let e′1, e

′
2 ∈ E′, and let Oe′1 and Oe′2

be observers whose perspectives are π′e′1 and π′e′2
respectively. Then Oe′1 and

Oe′2 are associated respectively to participator ensembles A1 and A2 on Θ. A
channeling between Oe′1 and Oe′2 is instantiated by the participator dynamics
generated by joining A1 and A2. In the joint dynamics certain properties of the
dynamics of the original, separate participator systems are modified, but the
systems have sufficient cohesive stability so that these perturbations are not
excessively chaotic; the perturbations possess a certain regularity. The distin-
guished premises S′ of the observers in Θ′ parametrize structure perturbations
with this type of regularity. In particular, the perturbation of the participa-
tor dynamics generated in A1 alone, as a result of A1 being joined with A2,
corresponds to a point s′ ∈ S′. In fact s′ = π′e′1

(e′2); it is Oe′1 ’s premise from
the channeling between Oe′1 and Oe′2 . Now Oe′1 makes an inference from this
premise expressed as a conclusion measure, which is a probability measure on
π′e′1
−1(s′) ∩ E′; if η′ is Oe′1 ’s interpretation kernel, the measure in question is

η′(s′, ·). In terms of the specialization, for each subset C ′ of E′, η′(s′, C ′) is
the probability that the perturbation represented by s′ resulted from joining
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A1 with another participator system which instantiates an element of C ′.
So far we have not taken notice of the role of the interpretation kernels

in an instantiation. In fact, (i)(a) of 3.2 asserts that the role played by the
interpretation kernels of the participators in the ensemble I(O) is relevant to
O itself only insofar as O’s own interpretation kernel is concerned. Indeed, the
environment (B,Φ) is not uniquely determined by the definition; essentially
distinct choices for (B,Φ) correspond to essentially different ways for the inter-
pretation kernel of the observers O in Θ′ to relate to the interpretation kernels
of the participators in I(O).

The fibre π′e′1
−1(s′)∩E′ contains e′2, the perspective of the observer which

actually channeled with Oe′1 . But in general there will be many other points in
the fibre, and the probability measure will not be concentrated at e′2; a priori
we can say only that the interpretation kernel η′ of the specialized observer
Oe′1 is supported on E′. In fact E′ expresses the bias of the specialized ob-
server toward systems with the particular strong stability property specified
in the specialization scheme. This means the following. Suppose the instan-
tiation A1 of Oe′1 interacts with any participator system, say B, on Θ, in the
sense of running the markovian participator dynamics generated by the join of
the participator ensembles underlying A1 and B. Suppose that the resulting
perturbation of A1 exhibits the regularity characteristic of the given special-
ization scheme, corresponding to a point s′ ∈ S′. Then Oe′1 will interpret the
perturbation as having arisen due to an interaction of A1 with a preparticipa-
tor system on Θ which is the instantiation of some point of E′, i.e., a system
which has the strong stability property. Thus, in order for Oe′1 ’s inferences to
be inductively strong the notion of perturbation regularity which distinguishes
the premises S′ must be substantially specific to the notion of strong stability
which distinguishes the configurations E′. In other words, when a participator
system satisfying the permissibility condition undergoes a perturbation with
the given regularity, then the chances must be very good that this perturbation
was caused by interaction with another permissible participator system.

In the same way we can discuss the instantiation of false objects. As usual,
for e′ ∈ E′ let Oe′ denote a distinguished observer in Θ′, and let A be the stable
participator system in Θ which instantiates Oe′ . Suppose A interacts with an
unstable participator system C for which Ī−1(p(C)) is in X ′ − E′. Suppose
that the resulting perturbation of A exhibits the same regularity property as
do perturbations of A resulting from its interaction with stable systems. Then
C is an instantiation of a false object for Oe′ . Note that in (iv) of (3.2) no stip-
ulation is made about the premises of nondistinguished observers in Θ′ which
result from channelings with any other observer, distinguished or nondistin-
guished. This is so even though for nondistinguished as well as distinguished
observers channelings are instantiated in the same way, namely by the inter-
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action of the participator systems in Θ which correspond to the observers’
configurations in X ′. The difference is that for a nondistinguished observer
in a reflexive framework there is no a priori relation between its configuration
and its perspective map; thus, even though a channeling for a nondistinguished
observer arises from an interaction of the instantiating participator system as-
sociated to the observer’s configuration, and even though the premise resulting
from the channeling is a point of Y ′ corresponding to a structure perturbation
which is in principle meaningful for the participator system, yet in the absence
of any information about the perspective map there is no basis from which to
impute meaning to the premise of the nondistinguished observer in terms of the
interaction.

Given that the permissibility condition and the perturbation regularity of
a specialization scheme depend on stationary or asymptotic measures, it fol-
lows that the role of true perception in specialization is twofold. First, the ex-
istence of true perception is a step in the direction of stability in the sense that
true perception requires stationary measures. Of course, the strong stability
needed for specialization requires more than the simple existence of stationary
or asymptotic measures for each instantiating system. For instance, these sys-
tems need to stabilize in the presence of other such systems in some way yet to
be defined. Second, true perception—be it on the part of all or merely some of
the participators in the instantiating system—is necessary for the conclusions
of the specialized observer to be inductively strong. In fact, the distinguished
specialized observer O infers the identity of the system which interacts with its
instantiation I(O); the premise for this inference is the perturbation of I(O)’s
structure which results from the interaction.

Recall that 3.2 (i) states that in a given environment (B,Φ) the interpreta-
tion kernels of the participators in the ensemble I(O) functionally constrain the
interpretation kernel of O itself. However, the definition does not stipulate any
details about this constraint: the manner in which the specialized observers’
interpretation kernels are related to those of the participators in the instanti-
ations is a “free variable” in the specialization relation between frameworks.
The various choices correspond to the various environments (B,Φ) which fit
in the definition 3.2. In particular there are many possibilities for formulating
interpretation strategies for the specialized observers, whose principle is to ex-
ploit in some manner true perception down at the level of the instantiation.
And it is such strategies which intuitively lie at the heart of the specialization
idea.

There is not a unique way to specialize, nor to instantiate, a given frame-
work. Beginning with the framework Θ we can consider various specialization
schemes which make sense for Θ. But even if we fix the specialization scheme
there is not a unique framework which is a specialization of Θ. For example
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one can restrict attention to various subclasses of all those participator sys-
tems which specialize in the sense of the given scheme, and then consider a
framework Θ′ whose distinguished configuration set E′ parametrizes the par-
ticipator ensembles in one such subclass. The parametrization itself can be
made in various ways. Once this is done, however, the perspective maps π′e′ in
Θ′ are essentially determined by the specialization scheme. In fact, π′e′1(e′) is
the point of S′ which represents the dynamical perturbation of the participator
system on Θ which instantiates e′1, resulting from the join of that system with
the system which instantiates e′.

As we have remarked above, the concept of specialization of frameworks
defines a relation on the set of all reflexive frameworks which we think of as
a hierarchy relation a. We do not prove here that specialization is transitive,
but a few considerations make this plausible. Denoting specialization by a, if
A a B then the premises of A are perturbations of stationary measures for the
dynamics of ensembles on B. If B a C then premises of B are perturbations
of stationary measures for ensembles on C. For transitivity A a C must also
be true; the premises of A must be perturbations of stationary measures for
ensembles on C as well as on B. But, since B a C, configurations (elements of
X) of B correspond to ensembles on C. And at each instant each participator
in an ensemble on B must manifest as a configuration of B, i.e., (via the map
Ī) as an ensemble on C. Thus, ensembles on B can be thought of as ensembles
of ensembles on C. It is then at least plausible that the premises of A could
correspond to perturbations of the stationary measures of ensembles on C.

We notice that for one framework to be a specialization of another does
not imply that the intrinsic mathematical properties of the frameworks are
different. For example, it is possible that two frameworks are abstractly iso-
morphic, yet one is a specialization of the other. Thus specialization provides a
universal way to interpret frameworks in terms of others via the relation in the
lattice, but does not constrain the intrinsic, purely mathematical, structure of
the individual frameworks.

We have not discussed the way in which information propagates down-
ward in the lattice, only upward. The downward propagation has to do with
the effect that the presence of specialized systems have at the lower level.
Intuitively, they propagate coherence. However, their effect (if one looks at
dynamics down in Θ which are really joint dynamics with the specialized sys-
tem, but are represented as though the specialized system is not there) may
be described as a modification of the τ -distribution or of the action kernels in
Θ. These two formulations of their effect may be equivalent, and the expres-
sion of that equivalence may be a “natural law,” like Newton’s law relating
force and acceleration or more probably like the Einsteinian version relating
metric geometry and force-acceleration. For remember that the τ -distribution
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is somehow intimately related to metric-like notions on E, while changes in
the action kernels of participators is intimately related to “acceleration” in the
same spirit in which the action kernels themselves correspond to “velocity.”

4. On Ullman’s incremental rigidity procedure

4.1. Preliminary remarks and overview. We present an example of specializa-
tion inspired by Ullman’s “incremental rigidity scheme,” a procedure whereby
a viewer can generate and update an internal three-dimensional model of an ex-
ternal object as the object moves in space relative to the viewer. One assumes
that the object consists of, say, n+ 1 feature points and that the “correspon-
dence problem” has been solved, i.e., that the viewer can track each point
over time. We further assume that the viewer deploys a moving coordinate
system in which the same one of these points is always at the origin. Then
the vectors from this origin to the other n points describe at each instant of
time. Finally we assume that the viewer has access only to two-dimensional
orthographic projections (onto some fixed image plane) of these n vectors. The
viewer updates its internal three-dimensional model based on
(i) its current model,
(ii) the latest two-dimensional projection of the object.
The viewer chooses that new model, from among all those compatible with the
new information (ii), whose three-dimensional structure differs minimally from
that of the current model. If the resulting sequence of models converges to a
stable rigid structure then the viewer infers that the object has that same rigid
structure. If, in the limit, the sequence of models exhibits some periodicity,
then the viewer infers that the object has the type of quasi-rigidity expressed
by the periodicity.

Ullman called this the “incremental recovery of 3-D structure from rigid
and rubbery motion.” The phrase “recovery of 3-D structure” here refers to
the conclusion of an inference about the stable three-dimensional structure of
the object, not about its instantaneous three-dimensional structure. One way
an object might exhibit a stable or long-term 3-D structure is to forever move
rigidly. Another way is to expand and contract periodically.

Just as the conclusion of the inference in Ullman’s scheme refers to sta-
bility of structure, so also the premise of the inference depends upon a form
of stability. An essential feature of Ullman’s scheme is that the premise of the
inference is derived from the long-term, i.e., asymptotic, behavior of a certain
dynamical interaction. For Ullman this is an interaction between viewer and
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physical object. For us all interactions are between observers; physical objects
represent the conclusions observers reach in consequence of their interactions.

We now study an observer-theoretic treatment of this inference. We con-
sider a symmetric observer framework Θ in which the observers’ inferences
regard instantaneous 3-D structure. On this framework we have a participator
dynamics whose asymptotic stabilities give rise to premises for a “higher level”
observer which infers a long-term structural regularity. This is a specialized ob-
server, i.e., an observer in a framework Θ′ which is a specialization of Θ in the
sense of section three. Thus the observers in Θ′ infer long-term stabilities; the
observers in Θ infer instantaneous rigidity. Now, neglecting translation, in-
stantaneous rigid motion is the same as instantaneous rotation, so we will take
Θ to be the symmetric framework of instantaneous rotation observers studied
in 5–6. Recall that a distinguished premise in this framework consists of two
frames of n vectors, together with a reference axis, which are compatible with
an interpretation that the frames are related by a rotation of R3 about that
axis. In practice this means that, in our incremental rigidity procedure, two
such consecutive frames of n vectors are required to trigger a step. This is in
contradistinction to Ullman’s original procedure, where any single frame of n
vectors triggers a step.

We begin with the symmetric framework Θ = (X, Y , E, S, G, J , π)
of instantaneous rotation observers. We will describe a specialization scheme
and a framework Θ′ = (X ′, Y ′, E′, S′, π′•) which is a specialization of Θ for this
scheme. This specialization is simple. Points of E′ correspond (via Ī of 3.2, (i))
to preparticipator ensembles on Θ consisting of one preparticipator. Similarly,
the distinguished observers in Θ′ correspond (via I of 3.2, (i)) to participator
ensembles consisting of one participator. For example, let O′ be a distinguished
observer in Θ′ whose configuration Φ(O′) ∈ E′ corresponds to the ensemble
consisting of the sole preparticipator A in Θ; we say “A instantiates O′.” O′

uses the incremental procedure to make inferences as follows. Suppose that A
is involved in a participator dynamics on Θ with another participator B (or
more generally some set of participators). The asymptotic behavior of this
dynamical interaction instantiates a single channeling at the level of Θ′ for O′.
From this channeling O′ infers, if possible, B’s rigid or quasi-rigid structure.
Here is how we think of this as an incremental rigidity scheme:

(i) At any time t (in the reference time for the dynamics in Θ) the state
e(t) ∈ E of A is the “current model” of the instantaneous structure of B.

(ii) A’s action kernel is defined such that A executes the updating procedure
associated with the scheme.

If this dynamics induces the right kind of asymptotic regularity on the
trajectories of A, then O′ infers that B has the appropriate stability. The exis-
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tence of such an asymptotic regularity on A’s trajectories corresponds to what
Ullman calls the “convergence” of the incremental procedure. In our terminol-
ogy it means that O′’s premise resulting from the channeling is distinguished.
In (i) above we used the quotes on “current model” to stress that it has no a
priori perceptual status, even instantaneously, at the level of the specialized
observer O′. Indeed, an instant of time for O′ is that time in which a channel-
ing occurs for O′; and this must correspond to sufficient time at the level of Θ
for the entire participator dynamics involving A to reveal asymptotic stability.
Thus an instant of reference time on Θ is not meaningful for O′. With this in
mind we can present the situation in more detail.

4.2. We use the notation and terminology of 5–6 for the framework Θ of
instantaneous rotation observers. Let us fix the point c0 ∈ E, and henceforth
denote the fundamental map πc0 (5-6.20) simply by π. For example, for con-
venience of visualization we can take c0 to be a configuration whose reference
axis A is the positive z-axis, and whose v is the unit vector in the positive x
direction.

We now discuss A’s action kernel {Qe}e∈E . Recall that this is a family of
markovian kernels on E, one for each e ∈ E (7–1.1). The kernel Qe describes
how A moves in response to a channeling when A is at e. In our case the action
kernel will be symmetric, i.e., {Qe}e∈E is generated by a single markovian ker-
nel Q:J ×J → [0, 1]. Given Q, we define Qe by Qe(e1,∆) = Q(e1e

−1,∆e−1).
This is the probability that A will move from e into the set ∆ ⊂ E given that
it received a channeling from e1. The fact that the action kernel is symmetric
means that this probability depends only on the position of e1 relative to e,
and of ∆ relative to e (in the sense of the group action of J on E). Finally,
we recall that Q(, ·) = Q(′, ·) if π() = π(′).

Suppose that, at a particular time t, A is at e and A channels with another
participator at e1. This channeling results for A in the observation event
s = π(e1e

−1) ∈ S. The updating procedure of (ii) above means, firstly, that A
then moves so that its new state is a possible state of the participator which just
channeled to him, i.e., A’s new state will lie in π−1(s). Secondly, it means that
the new state selected in π−1(s) will minimize the distortion of the underlying
rigid structure entailed in the state change.

A’s motion, then, is based on minimizing a certain nonnegative function φ
on π−1(s), a function which measures the structural modification associated to
the move. Now everything is already relativized with respect to A’s perspective
e; if  ∈ π−1(s), the selection of  means that A will move from e to e. Thus
the function in question is naturally a function on J , because the elements of J
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are intrinsically the “moves” whose structural effect we wish to measure.2 We
would expect, then, that the definition of the function φ itself is independent
of both e and s; then, whenever a premise s is presented, the procedure is to
minimize φ on the subset π−1(s) ⊂ J . π−1(s) is a one-dimensional manifold
with four connected components; this follows from the fact that the same is
true for p−1(s) and that π = fc0 ◦ p (5–6.20) where fc0 is an isomorphism.

The function φ is by no means uniquely specified, for one may conceive
of many different ways of testing “rigidity.” However, the representation 5–
6.17 of J leads naturally to a description of a class of reasonable φ’s. In fact,
in terms of this representation, and of the expression for e in 5–6.19, it is
easy to see that it is precisely the nonzero γi’s, ζi’s and λi’s which contribute
nonrigidity to the transformation e 7→ e. δ simply augments the magnitude
of the angular velocity of the instantaneous rotation embodied in e; β rotates
the entire structure e. More specifically, the α’s and ζ’s perturb the structure
additively while the λ’s perturb it multiplicatively. Hence, we should require
that

4.3. φ is a monotone function of |γi|, |ζi|, and |λi−1|, where |γi| denotes the
distance (along the circumference) from γi to the identity element of the circle
group S1.

Now given φ we can use it to define the action kernel Q of A. Intuitively,
we want to minimize φ on π−1(s), and then let Q(, ·) be Dirac measure concen-
trated at the minimum (when π() = s). This is a deterministic action kernel;
A’s next state is uniquely determined by its current state and the observation
event s which results from the channeling. But in general φ has a no unique
minimum on each π−1(s). Therefore we consider nondeterministic action ker-
nels for A. And we need not minimize φ. Instead we proceed as follows: Let µ
denote some natural “unbiased” measure (such as Haar measure) on J and let

F = {φ satisfying (4.3)|
∫
E

1
φ
dµ = 1}. (4.4)

2 The identification of J with E simply gives a way to “visualize” the ele-
ments of J . In this sense the choice of c0 in the definition of π means that A
“thinks of itself” as c0, and refers to an element of j ∈ J in terms of what A
would then become if it were modified by j (see 5–6.22 ff).
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We identify functions in F that differ on a set of µ measure zero, i.e., we
think of 1/φ as an element of L1(J, µ). We can then identify φ ∈ F with the
probability measure µφ = (1/φ)dµ on J . Now there is a canonical way to
generate the kernels Q given φ’s:

4.5. To φ ∈ F we associate the kernel defined by Q(, ·) = m
µφ
π (π(), ·).

That is, Q is the rcpd of µφ with respect to π. (If we wish, we can replace
F by a suitable completion. Then among the new limit measures we recover
the Dirac measures of the deterministic case mentioned above.)

In this way any φ ∈ F is associated with an incremental rigidity proce-
dure, the one executed by the participator A whose action kernel is defined
as in 4.5. Intuitively, if A interacts with a participator B then A converges
asymptotically to the trajectory of B. The question of whether or not there
is convergence in any particular case depends a priori on the choice of φ, on
the initial distribution of A, and on the motion and shape of B. We do not
consider this question in detail. The point of view we want to emphasize here
is that of the “rigid object” as a conclusion of a specialized observer, not as an
object of perception for that observer.

4.6. If {Te}e∈E is B’s action kernel then, for any e and e1, the measures
Te(e1, ·) are supported on the orbit through the point e of the subgroup R of J
given by αj = 0, ζj = 0, λj = 1 (for all j). This subgroup of J , parametrized
by β and δ, is isomorphic to SO(3,R)×S1. Thus B will stay in a fixed R-orbit
in any interaction.

There is another natural way to think about the φ’s in terms of this
subgroup R: each choice of φ as in 4.3 gives a “distance function” to R on
J . To see what this means in terms of participator dynamics on E, consider
a participator A on Θ whose action kernel Q is of the form of 4.5 for such
a distance function φ. Suppose that at time t (reference time on Θ) A is at
e ∈ E and channels with an observer at e1 ∈ E. Suppose e1 = j1e, j1 ∈ J . A
then moves to je, where j is in the fibre π−1(π(j1)), with a probability that
depends on the distance of j to R; the smaller the distance, the greater the
probability. Thus, the effect of the action kernel Q is to make A tend to move
on R-orbits in E.
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We now give a sample definition for the specialized framework Θ′, and
for the specialization scheme that leads to it. We start with the specialization
scheme; we use the terminology of 3.1. Let R be the subgroup of J defined in
4.6. The strong stability condition on participator ensembles is the following
asymptotic R-orbit property: the dynamics admits a stationary measure which
is supported, say, on a finite union of R orbits in Ek, where k is the number
of participators in the ensemble. Recall that the strong stability condition
must hold not only for the dynamics of each permissible participator ensemble
individually, but must also hold for the dynamics induced on it by the joint
system it generates with any other permissible ensemble. In our case this is
part of the definition of the condition. Thus the strong stability condition is
really a condition on sets of ensembles, not just on individual ensembles: any
condition which defines a set of participator ensembles with these properties
can serve as a “permissibility condition.” The perturbation regularity is that
the R orbit property of the asymptotics is preserved under perturbation, i.e.,
under interaction with another permissible ensemble.

We now describe one possible specialized framework Θ′ for this special-
ization scheme, one which is especially (and artificially) simple. We assume
that we have a fixed τ -distribution on Θ. We can let X ′ be a set of (prepartic-
ipator, τ)-ensembles each consisting of only one preparticipator (and the τ is
the fixed one); the map Ī of 3.2 is then just the inclusion map. The elements
of E′ involve preparticipators whose action kernel is like the one given in 4.5
for a particular choice of φ. We assume that the functions φ and the initial
measures of these preparticipators have been chosen so that the set E′ has the
following property:

4.7. The dynamics generated by a preparticipator in E′ with any other
preparticipator in X ′ has a stationary measure in E2; the dynamics generated
by two preparticipators in E′ has a stationary measure supported on a finite
union of R-orbits in E2.

By saying that the dynamics “has” a stationary measure we mean that the
initial measure converges to the stationary measure under the action of the
dynamics. Also, when we say a “preparticipator in E′” we mean the ensemble
in E′ consisting of that one preparticipator. It may require work to show
that there exist φ’s and initial measures such that the resulting E′ has this
property. However, since our objective here is just to illustrate the basic ideas
of specialization, we simply assume they exist.

Let pr1:E2 → E be projection on the first factor. Let Y ′′ denote the set of
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measures on E2 which are stationary measures of the joint dynamics generated
by some e′ ∈ E′ and some x′ ∈ X ′; we here use the property of E′ in italics
in the preceding paragraph. Now let Y ′ denote the set of all measures on E
which are of the form pr1∗(ρ) for some ρ ∈ Y ′′. Let S′ denote those measures
in Y ′ which arise as above in the case where both e′ and x′ are in E′. Note
that if a measure ρ on E2 is supported on a finite union of R-orbits in E2, then
pr1∗(ρ) is supported on a finite union of R-orbits in E. It follows that each
measure in S′ is supported on a finite union of R-orbits in E. We can now
define π′e′(x

′): it is the element of Y ′ which represents pr1∗(ρ), where ρ is the
stationary measure on E2 of the joint dynamics generated by e′ and x′. We
have thus defined the reflexive framework Θ′ = (X ′, Y ′, E′, S′, π′•); note that
we have not shown this framework to be symmetric. Conditions (ii), (iii), (iv)
of Definition 3.2 are satisfied for Θ′ with respect to our given specialization
scheme. And the map Ī of (i) of 3.2 is defined as the inclusion. We have
not yet discussed the map I of 3.2(i) (and the significance of the commutative
diagram there) for our present situation; we consider this briefly below.

We discuss the relevance of Θ′ to the original problem of rigid object
perception. The elements of E′ do not represent rigid objects, because the
action kernels of the preparticipators of E′ are of the type of the Q of 4.5 for
some φ, and not of the type of the T of 4.6. In other words, unlike a “rigid
object,” a preparticipator with an action kernel Q does not remain in a fixed
R-orbit regardless of its channeling interactions. It is still possible that some
elements of X ′ represent rigid objects since for such elements not in E′ we
have made no stipulation about the action kernel of the preparticipator. We
regard a “rigid object” as being a conclusion of a specialized observer. In fact,
it is the conclusion of a distinguished observer in Θ′ resulting from a premise
s′ ∈ S′ which is a measure (a pr1∗(ρ) as above) supported on a single R-orbit.
In general, a point of S′ is a measure supported on a finite union of such
orbits; the conclusion resulting from such a premise is a “quasi-rigid” object
which is a superposition of “rigid conclusions.” These latter correspond to
the components of the measure on the distinct orbits of the union. If O′ is a
distinguished observer in Θ′ whose configuration is e′ then the conclusion of
O′ in response to the premise s′ is a probability measure on π′e′

−1(s′); in fact
it is the measure η′(s′, ·), where η′ is the interpretation kernel of O′. The rigid
(or quasi-rigid) object is O′’s representation of this measure.

The definition of specialization (3.2) requires that we adduce a particular
environment (B,Φ) supported by Θ′. Then when we speak of an “observer in
Θ′” having a property which shows some aspect of the specialization we mean
an observer in this B. To define an environment on Θ′, or at least to define
the distinguished part of it, we describe the interpretation kernels which are
associated with various points of E′. The commutative diagram of (i) of 3.2
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means that, for the environment (B,Φ), there is some relationship between the
interpretation kernels of the observers O′ in B and the interpretation kernels
of the participators in the ensemble I(O′). For example, consider the observer
O′ whose configuration Φ(O′) is e′ ∈ E′. e′ is an ensemble consisting of a
preparticipator (ξ,Q) on Θ. The commutative diagram then requires that O′

itself is associated (via I) to an ensemble consisting of the one participator
A = (ξ,Q, η), for some η. Let η′ denote the interpretation kernel of O′. A
complete demonstration that Θ′ is a specialization of Θ requires that we state
a relationship between η′ and η which holds for all the observers in a set B.
We will not analyze this further here; we will only reiterate the basic idea that
true perception plays a major part in this relationship. Namely, the assumption
that η truly reflects the asymptotic behavior of participator A alone is the
basis of a strategy expressed by η′, a strategy for the specialized perceiver O′

to make inferences based on perturbations of those asymptotics.

5. Chain-bundle specialization

We now sketch one approach to specialization, called “chain bundle specializa-
tion,” which can be applied to symmetric observer frameworks under certain
conditions. Starting with a symmetric framework Θ = (X,Y,E, S,G, J, π), we
use a specialization scheme (3.1) which exploits the group action of J on E to
define the permissibility condition on participator ensembles and of the pertur-
bation regularity. The scheme is valid under conditions which we make explicit
below. The mathematical content of certain of these conditions (which pertain
to the perturbation regularity) is not yet clarified; for this reason the approach
is speculative. However, we believe that the scheme is valid for natural and
nontrivial classes of examples; we discuss this after presenting more details.

5.1. We introduce notation for certain elementary constructions associated
with measurable group actions. Let Γ be a measurable group and Z a mea-
surable space; let a measurable left action z → γz of Γ on Z be given. Then
there is an induced left action of Γ on the set Z of measurable functions on Z,
namely

f → γf, (γf)(z) = f(γ−1z).
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This action is linear, i.e., γ(f1 + f2) = γf1 + γf2. We also use the notation γf
in place of γf . Thus we will also write the action as

f → γf.

In this manner we think of γ ∈ Γ as a linear operator on Z or on the space
Zb of bounded measurable functions. Now let K be a kernel on Z. K may be
viewed as a linear operator on Z via

Kf(z) =
∫
K(z, du)f(u).

We can then define a left action of Γ on kernels by

K → γK = γKγ−1;

the notation on the right means γ ◦ K ◦ γ−1 in the sense of composition of
linear operators on Z. The notation γK thus makes sense for any operator
on Z (not only those associated to kernels). If K preserves bounded functions
then so does γK. In terms of arguments, we have explicitly

γK(z,A) = K(γ−1z, γ−1A).

where A is a measurable set in Z; this is easily checked.
Any measure µ on Z can be viewed as a linear functional on Z. In this

sense, for γ ∈ Γ we can define γµ to be the composition µ ◦ γ−1. This gives a
left action of Γ on the space M of measures on Z:

µ→ γµ.

γµ(A) = µ(γ−1A).

Proposition 5.2. With the notation as above,
1. For any operator K and function f ,

γ(Kf) = γK γf

2. If K is a kernel and µ is a stationary measure for K:

µK = µ⇒ γµ γK = γµ.
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Proof. Straightforward.

Definition 5.3. Let Γ be a measurable group, and suppose Z and W are
spaces on which Γ acts measurably. Let p:Z →W be a measurable map. p is
called a Γ-homomorphism if γp(z) = p(γz) for all γ ∈ Γ and z ∈ Z. In this case
the data

Zyp
W

is called a Γ-bundle if p is surjective. If the action of Γ on Z (and hence on W)
is transitive, it is called a transitive Γ-bundle. Z is called the “total space” of
the bundle, p is called the “projection map,” and W is called the “base space.”

We will build bundles from participator systems on a given symmetric
framework Θ. Under certain conditions we will be able to view the total space,
base space, and projection map of the bundle as the distinguished configuration
space, the distinguished premise space, and the perspective map of a new
symmetric framework Θ′ which is a specialization of Θ.

5.4. We begin with a symmetric observer framework Θ = (X,Y,E, S,G, J, π)
with fixed τ -distribution τ . Let k > 0 be an integer, and consider k symmetric
action kernels Q1, ..., Qk on Θ. We can then construct the markovian kernels
P̂0 = 〈Q1, . . . , Qk 〉̂τ on Ek × I(k), and P0 = 〈Q1, . . . , Qk〉τ on Ek. P̂0 and
P0 are, respectively, the transition probabilities for the augmented and stan-
dard dynamical Markov chains respectively, of an ensemble of k kinematical
(i.e., time homogeneous) participators whose action kernels are Q1, ..., Qk. Now
the properties of participator ensembles which are relevant to a specialization
scheme may be best expressed in terms of the augmented dynamics of the
ensemble, rather than the standard dynamics. Nevertheless for simplicity of
exposition we restrict our attention to the standard dynamics.

The group J of the framework Θ acts measurably on Ek on the left via
its given measurable action on E:

j(e1, ..., ek) = (je1, ..., jek).
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More generally, let J ′ be a group which is a measurable extension of a subgroup
of J . This means that we are given a group homomorphism α:J ′ → L where
L ⊂ J is a subgroup; further, J ′, L, and α are measurable. In this case the
action of J on Ek induces a measurable left action of J ′ on Ek by letting
γe = α(γ)e for γ ∈ J ′, e ∈ Ek.

Assume we are given such a J ′, which we view as acting on Ek in this
manner. Suppose ν0 is a stationary measure for the kernel P0 on Ek. Then we
can define γP0 and γν0 as in 5.1, and the conclusions of Proposition 5.2 hold,
namely

5.5. For all γ ∈ J ′, and measurable functions f on Ek,

γ(P0f) = γP0
γf,

and γν0 is a stationary measure for γP0:

γP0
γν0 = γν0.

Now we can describe our chain bundle. Let

E′1 = {( γP0,
γν0) | γ ∈ J ′},

S′ = {γν0 | γ ∈ J ′},

π′1:E′1 → S′, π′1(P, ν) = ν. (5.6)

The left action of J ′ on kernels and on measures gives a left action of J ′ on
E′1, namely

γ1( γP0,
γν0) = ( γ1(γP0), γ1( γν0)) = ( γ1γP0,

γ1γν0).

It is then clear that
E′1yπ′1
S′

is a transitive J ′–bundle.
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The terminology “chain bundle” indicates that points in the total space
E′1 are γ-homogeneous Markov chains on Ek. The chain is specified by its
transition probability, namely γP0 for some γ ∈ J ′, and its starting measure
γν0. This starting measure is also a stationary measure for the chain by 5.5
since, by hypothesis, ν0 is stationary for P0. For ν ∈ S′, π′1−1(ν) is the subset
of E′1 consisting of all those chains whose specified starting (and stationary)
measure is ν.

Consider a preobserver O′ = (X ′, Y ′, E′1, S
′, π′1), where X ′ is a set of

Markov chains on Ek containing E′1, and Y ′ is a set of measures on Ek con-
taining S′. The inferences of O′ are at a “higher level” than the inferences of
observers in Θ: each premise of O′ represents a possible stability of a whole
dynamical system in Θ, and a corresponding conclusion represents a Markov
chain in Ek with that stability. This description of the meaning of O′’s obser-
vations obtains because the group action on E′1 preserves stationarity of the
measures, as in 5.5. However, the inferences of O′ are not even ascendants of
those of Θ. The reason for this is that while the initial Markov chain (P0, ν0)
is a participator chain in the sense that P0 = 〈Q1, ..., Qk〉τ for some action
kernels Q1, ..., Qk, the same is not necessarily true for (γP0,

γν0) for arbitrary
γ ∈ J ′. This means that the premise γν0 ∈ S′, while it is a stationary measure
for some markovian dynamics in Ek, is in no meaningful way derived from
conclusions of observers in Θ.

On the other hand, suppose

Assumption 5.7. For every γ ∈ J ′ we can find action kernels (γ)R1, ...,
(γ)Rk

on Θ such that
γP0 = 〈 (γ)R1, ...,

(γ)Rk〉τ .

(We may suppose that when γ is the identity element of J ′ the (γ)Ri’s are the
original Qi’s). Then for each γ we can imagine an ensemble (γ)A of kinematical
participators,

(γ)A = { (γ)Ai}ki=1,
(γ)Ai = (ξi, (γ)Ri, ηi) (5.8)

where the starting measure ξ1⊗...⊗ξk, together with the transition probability
γP0, give rise to a chain on Ek with stationary measure γν0. Let us also
suppose that these participators have stably true perception (8–5.8), so that
the interpretation kernels ηi are related to the stationary measure γν0, via an
rcpd construction similar to the one used with the “D operation” of 8–5.4 ff.
We may even imagine that the situation at hand is sufficiently constrained
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so that the collection of ηi’s is informationally equivalent to the stationary
measure γν0. Under these conditions we can say that the premises in S′—
the various measures γν0—are deduced from the conclusions of observers in Θ,
namely the observer manifestations of all the participators (γ)Ai for γ ∈ J ′.
It follows that, in this context, elements of S′ represent premises of inferences
which are ascendants of the inferences in Θ.

Thus, assuming 5.7 and 5.8, let

E′ = { (γ)A | γ ∈ J ′}.

π′0:E′ → S′, π′0( (γ)A) = γν0. (5.9)

J ′ acts on E′ simply by acting from the left on the symbol (γ) in (γ)A. In this
way we can consider E′ and E′1 to be isomorphic as measurable J ′–spaces,
and then the J ′–bundles π′0:E′ → S′ and π′1:E′1 → S′ are isomorphic. But in
contrast to the inferences from S′ to E′1, the inferences from S′ to E′ are now
ascendants of inferences in Θ. And what is more, they have a chance to be
inferences of observers in a specialization of Θ; for the configuration space of
such a specialization consists by definition of participator ensembles in Θ. In
other words, assuming 5.7 holds, we may be able to construct a specialization
Θ′ of Θ in which E′ and S′ are the distinguished configuration and premise
spaces; we indicate, however, that 5.7 alone is not sufficient for the existence
of Θ′. We will discuss this question below, but first we present an important
class of examples where 5.7 holds.

The action of J ′ on E′ described above is not intrinsic; it has been trans-
ported artificially to E′. We have indicated this by writing the superscript γ
in parentheses in (γ)A and (γ)Ri. The point is that these superscripts do not
here refer to any well-defined mathematical operation, as they do in the case
of the γP0. In effect, in 5.7 we assume only that for each γ ∈ J ′ an (γ)A exists;
we have not assumed that the (γ)A are generated by some intrinsically defined
group action on participator ensembles, starting from some such ensemble in
which the action kernels are the original Q1, ..., Qk. However in the class of
examples we now present there is such an intrinsic action which generates the
(γ)A.

Recall (5.4 ff) that we are starting with a group J ′ which is an extension
of a subgroup L of J ; J is the distinguished structure group of our original
framework Θ = (X,Y,E, S,G, J, π).

Proposition 5.10. Suppose that (1) τ is a translation-invariant τ -distribution
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on Θ, and that (2)
Jyπ|J
S

is a bundle for the action of L on J by conjugation. Then there is a left action
of J ′ on the set of symmetric action kernels on Θ; in terms of the generator Q
of the action kernel (7–1.1) the J ′-action is expressed by

Q(·, •)→ (γ)Q(·, •) =def Q(γ−1 · γ, γ−1 • γ), γ ∈ J ′. (5.11)

with the property: if Q1, ..., Qk are any symmetric action kernel generators on
Θ, then

γ〈Q1, ..., Qk〉τ = 〈 (γ)Q1, ...,
(γ)Qk〉τ . (5.12)

Proof. To say that Q is the generator of a symmetric action kernel on Θ means
that Q:J × J → [0, 1] is a kernel with the property that if π(j1) = π(j2)
then Q(j1, ·) = Q(j2, ·). Given such a kernel Q, (γ)Q = Q(γ · γ−1, γ · γ−1)
is clearly also a kernel on J ; it remains to show that if π(j1) = π(j2) then
Q(γj1γ−1, ·) = Q(γj2γ−1, ·). But to say that π is a bundle for L acting on J
by conjugation means that π(j1) = π(j2) ⇒ π(γj1γ−1) = π(γj2γ−1), so the
desired result follows from the property of Q.

Now, to prove 5.12, we begin with the kernel γ〈Q1, ..., Qk〉τ on Ek. For
e = (e1, .., ek) ∈ Ek,∆ = ∆1 × ...×∆k ∈ Ek,

γ〈Q1, ..., Qk〉τ (e,∆) = 〈Q1, ..., Qk〉τ ( γ−1e, γ−1∆)

by 5.1 and 7–4.1. This last expression is∑
χ∈I(k)

τ(γ−1e1, ..., γ
−1ek;χ)

∏
i∈D(χ)

Qi
(
(γ−1eχ(i))(γ−1ei)−1, (γ−1∆i)(γ−1ei)−1

) ∏
i/∈D(χ)

εγ−1ei(γ
−1∆i)

=
∑

χ∈I(k)

τ(e1, ..., ek;χ)

∏
i∈D(χ)

Qi
(
(γ−1eχ(i))(γ−1ei)−1, (γ−1∆i)(γ−1ei)−1

) ∏
i/∈D(χ)

εγ−1ei(γ
−1∆i)
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since τ is translation invariant. Recall that (γ−1eχ(i))(γ−1ei)−1 denotes that
element j ∈ J such that j(γ−1ei) = γ−1eχ(i). It is then evident that

(γ−1eχ(i))(γ−1ei)−1 = γ−1(eχ(i)e
−1
i )γ,

and similarly
(γ−1∆i)(γ−1ei)−1 = γ−1(∆ie

−1
i )γ.

Moreover γ−1ei ∈ γ−1∆i ⇐⇒ ei ∈ ∆i, so that

εγ−1ei(γ
−1∆i) = εei(∆i).

Thus, the last expression above may be written∑
χ∈I(k)

τ(e1, ..., ek;χ)
∏

i∈D(χ)

Qi
(
γ−1(eχ(i)e

−1
i )γ, γ−1(∆ie

−1
i )γ

) ∏
i/∈D(χ)

εei(∆i)

=
∑

χ∈I(k)

τ(e1, ..., ek;χ)
∏

i∈D(χ)

(γ)Qi((eχ(i)e
−1
i ),∆ie

−1
i )

∏
i/∈D(χ)

εei(∆i)

= 〈 (γ)Q1, ...,
(γ)Qk〉τ (e,∆).

Scholium 5.13. Let a group Γ act measurably on the left on a space Z.
In 5.1, for γ ∈ Γ we considered the linear operation on the function space Z
induced by z → γz; we used the same symbol γ to denote this linear operator:
(γf)(z) = f(γ−1(z)). Thus there is an induced left action of Γ on functions,
namely f → γf (or γf). Now suppose Γ acts on Z on the right. We can consider
the linear operator on functions induced by z → zγ, and we also get a left
action on functions, namely f → γf , where now (γf)(z) = f(zγ). If Γ acts on
Z both on the left and right, then we will use the notation (γlf)(z) = f(γ−1z).
and (γrf)(z) = f(zγ). For example we consider our group J ′ acting on itself
by multiplication on both the left and right. γl and γr are distinct in general
(unless J ′ is abelian), but they commute. If we view kernels Q:J ×J → [0, 1]
as operators on functions in the usual way, then we can express the left action
Q→ (γ)Q as follows:

(γ)Q = (γlγr)Q(γlγr)−1.

Example 5.14. Suppose that in the framework Θ we have S = J/H for a
subgroup H of J , and π:J → S is the canonical projection; these are frame-
works like those of Example 5–4.1. Let L ⊂ J be any subgroup contained in
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the normalizer of H in J , i.e., L is any subgroup of J in which H is normal.
Then π:J → S is also a bundle for the action of L by conjugation. In fact,
a fibre of π is a coset jH, and for l ∈ L we have l(jH)l−1 = (ljl−1)H (since
Hl−1 = l−1H) which is another coset. Thus conjugation by l permutes the
fibres of π as claimed.

Suppose that we have a framework Θ with a τ -distribution which satisfies
the hypotheses of Proposition 5.10. We would like to construct a framework
Θ′ which is a specialization of Θ, in which (with notation as in 5.8 through
5.11) E′ and S′ are the distinguished configuration and premise spaces, and
J ′ is the distinguished symmetry group. We assume that the action of J ′ on
the set E′ of participator ensembles is compatible with the action of J ′ on
action kernels given by 5.11. More explicitly, we can start with an “initial”
participator ensemble

A = {Ai}ki=1, Ai = (ξi, Qi, ηi).

Then we assume that

γA = { γAi}ki=1,
(γ)Ai =

(
(γ)ξi,

(γ)Qi,
(γ)ηi

)
(5.15)

where (γ)Qi is as in 5.11. The action of γ on the ξi and the ηi is assumed given,
but we need not stipulate its properties now.

Now to build Θ′, let us assume that we have chosen some set X ′ of (say
k-fold) participator ensembles which contains E′, and some set Y ′ of measures
on Ek which contains S′. We further assume that we have a group G′ which
contains J ′ and acts on X ′ in a manner which extends the action of J ′ on E′.
For simplicity, however, we will focus our attention only on the distinguished
part of the structure, E′, S′, J ′. We can define a fundamental map π′:J ′ → S′

using π′:E′ → S′ and our “initial” element A ∈ E′:

π′:J ′ → S′, π′(γ) = π′0( (γ)A) = (γ)ν0. (5.16)

In this way we get a symmetric framework

Θ′ = (X ′, Y ′, E′, S′, G′, J ′, π′). (5.17)

We now discuss the question: Is Θ′ is a specialization of Θ in the sense of
3.2? The primary issue here is the nature of the specialization scheme 3.1. Our
distinguished configurations E′ are already described as a set of participator
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ensembles on Θ, namely the set of all the (γ)A. De facto, in any specialization
scheme which applies to this situation, participator ensembles of this type must
satisfy the permissibility condition of the scheme. Recall that the role of the
permissibility condition is to ensure two things: first that the separate per-
missible participator ensembles have asymptotically stable dynamics; second
that the perturbation of these stable asymptotic characteristics of one such
ensemble by its interaction with another has sufficient regularity to encode
information about the interaction in accessible form. Then, according to Defi-
nition 3.2, the possible regular perturbations which arise in this manner must
be parametrized by S′, and they must encode accessible information about the
interactions in a very precise sense: Suppose the two ensembles (γ1)A, (γ2)A
correspond to points e′1, e

′
2 of E′. The interaction of these ensembles per-

turbs the asymptotics of (γ1)A in a manner which is encoded by the element
π′e′1

(e′2) = π′(γ2γ
−1
1 ).

We want to see what this means in our case. Using the same notation as in
5.4, let us denote the transition probability of the initial participator ensemble
A by P0, so that

P0 = 〈Q1, ..., Qk〉τ .
We have fixed a stationary measure for P0 on Ek, denoted ν0, and

S′ = { (γ)ν0 | γ ∈ J ′}.

According to the definition of π′ given in 5.16, π′(γ) = (γ)ν0. Thus the per-
turbation regularity requirement may be stated as follows.

5.18. The interaction of the ensembles (γ1)A and (γ2)A perturbs the asymp-
totics of (γ1)A in a manner which is encoded by the measure γ2γ

−1
1 ν0.

Broadly speaking, there are two ways in which 5.18 might hold: concretely,
and abstractly. In the concrete way the perturbation information is encoded
in the properties of the measure γ2γ

−1
1 ν0 as a measure. In the abstract way the

information is simply encoded in the group element γ2γ
−1
1 which is attached

to the measure. How might the concrete way work? Recall that for every
γ ∈ J ′, γν0 is stationary for γP0; by 5.2 and 5.12 this kernel is the transi-
tion probability for the ensemble (γ)A. Under suitable hypotheses (say on the
initial ensemble A) the interaction in question may perturb (γ1)A so that its
stationary measure γ1ν0 is canonically deformed toward γ2ν0, and moreover so
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that the measure γ2γ
−1
1 ν0 is some type of derivative of this deformation. This

possibility is mathematically appealing. On the other hand, the abstract way
for 5.18 to hold requires only that some canonically specified aspect of the total
perturbation may be classified by the group-theoretic difference γ2γ

−1
1 between

the two interacting systems. We do not analyze these questions further here,
and in fact no definitive analysis is now available. In the next chapter, when
necessary, we will simply assume 5.18 is satisfied, so that we have a bona fide
specialization scheme for which Θ′ is a specialization of Θ.


