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Abstract 
 
 
Perception is a product of evolution. Our perceptual systems, like our limbs and livers, have 

been shaped by natural selection. The effects of selection on perception can be studied using 

evolutionary games and genetic algorithms. To this end, we define and classify perceptual 

strategies, and allow them to compete in evolutionary games in a variety of worlds with a 

variety of fitness functions. We find that veridical perceptions—strategies tuned to the true 

structure of the world—are routinely dominated by nonveridical strategies tuned to fitness. 

Veridical perceptions escape extinction only if fitness varies monotonically with truth. Thus a 

perceptual strategy favored by selection is best thought of not as a window on truth, but as a 

windows interface of a PC.  Just as the color and shape of an icon for a text file do not entail 

that the text file itself has a color or shape so also our perceptions of space-time and objects do 

not entail (by the Invention of Space-Time Theorem) that objective reality has the structure of 

space-time and objects. An interface serves to guide useful actions, not to resemble truth. 

Indeed, an interface hides the truth; for someone editing a paper or photo, seeing transistors and 

firmware is an irrelevant hindrance. For the perceptions of H. sapiens, space-time is the desktop 

and physical objects are the icons. Our perceptions of space-time and objects have been shaped, 

without malice aforethought, to hide the truth and guide adaptive behaviors. Perception is an 

adaptive interface.  
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Introduction 

What is the relationship between perception and reality? This question motivated Fechner in 

1860 to launch the field of psychophysics—and of experimental psychology more generally. 

Today, with the benefit of advances in experimental psychology and evolutionary biology, a 

broad consensus has emerged among perceptual scientists: Natural selection has shaped our 

perceptions to be, in the typical case, accurate depictions of reality, especially of those aspects 

of reality that are critical for our survival.  

This consensus is spelled out in a standard textbook on vision: “Evolutionarily speaking, 

visual perception is useful only if it is reasonably accurate … Indeed, vision is useful precisely 

because it is so accurate. By and large, what you see is what you get. When this is true, we have 

what is called veridical perception … perception that is consistent with the actual state of 

affairs in the environment. This is almost always the case with vision…” (Palmer 1999, 

emphasis his). 

Marr (1982, p. 340) agrees: “We … very definitely do compute explicit properties of the 

real visible surfaces out there, and one interesting aspect of the evolution of visual systems is 

the gradual movement toward the difficult task of representing progressively more objective 

aspects of the visual world”. 

Pizlo and his collaborators (2014, p. 227) agree: “We close by re-stating the essence of our 

argument, namely, veridicality is an essential characteristic of perception and cognition. It is 

absolutely essential. Perception and cognition without veridicality would be like physics without 

the conservation laws.” (Emphasis theirs.) 
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The evolutionary theorist Trivers (2011) also agrees: “...our sense organs have evolved 

to give us a marvelously detailed and accurate view of the outside world—we see the world in 

color and 3-D, in motion, texture, nonrandomness, embedded patterns, and a great variety of 

other features. Likewise for hearing and smell. Together our sensory systems are organized to 

give us a detailed and accurate view of reality, exactly as we would expect if truth about the 

outside world helps us to navigate it more effectively.”  

In mathematical models of perception, this theory is often couched in the language of 

Bayesian estimation, the idea being that evolution shaped our perceptual systems to integrate a 

variety of perceptual cues in order to estimate accurately the true state of the environment. 

Yuille and Bülthoff (1996) for instance: “We define vision as perceptual inference, the 

estimation of scene properties from an image or sequence of images … there is insufficient 

information in the image to uniquely determine the scene. The brain, or any artificial vision 

system, must make assumptions about the real world. These assumptions must be sufficiently 

powerful to ensure that vision is well-posed for those properties in the scene that the visual 

system needs to estimate.” 

Geisler and Diehl (2003, p. 397) agree: “In general, it is true that much of human 

perception is veridical under natural conditions. However, this is generally the result of 

combining many probabilistic sources of information...Bayesian ideal observer theory specifies 

how, in principle, to combine the different sources of information in an optimal manner in order 

to achieve an effectively deterministic outcome.”  

Why should evolution favor veridical perceptions? The intuition is that those who see more 

truly outcompete those who see less truly, and are thus more likely to pass on their genes that 

code for truer perceptions. Thousands of generations of this process have spread the genes for 
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veridical perceptions throughout our species. We are thus the offspring of those who, in each 

generation, saw a bit more truly, and can be confident that we too, in most situations, have 

veridical perceptions. 

Although this is considered a good argument for veridical perception in humans, it 

is not considered so for simpler organisms, such as insects and amphibians. Marr, for 

instance, argued that fly vision, unlike human vision, is nonveridical: “Visual systems 

like the fly’s serve adequately and with speed and precision the needs of their owners, but 

they are not very complicated; very little objective information about the world is 

obtained. The information is all very subjective …” [emphasis added] and “… it is 

extremely unlikely that the fly has any explicit representation of the visual world around 

him—no true conception of a surface, for example, but just a few triggers and some 

specifically fly-centered parameters …” (1982, p. 34). Similarly, Marr thought that frog 

vision was nonveridical: “In a true sense, for example, the frog does not detect flies—it 

detects small, moving, black spots of about the right size. Similarly, the housefly does not 

really represent the visual world about it—it merely computes a couple of parameters … 

which it inserts into a fast torque generator and which cause it to chase its mate with 

sufficiently frequent success” (1982, p. 340). Marr explained why evolution might shape 

nonveridical perceptions: “One reason for this simplicity must be that these facts provide 

the fly with sufficient information for it to survive. Of course, the information is not 

optimal and from time to time the fly will fritter away its energy chasing a falling leaf or 

an elephant a long way away …” (1982, p. 34). 

 
Marr’s point is well taken. Natural selection is a search procedure that yields satisficing 

solutions, not optimal solutions.  This is evident, for instance, in the backwards structure of the 
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vertebrate eye which forces light to pass through bipolar and ganglion cells before being caught 

by photopigments, and which consequently requires a blind spot—a hole in the retinal mosaic—

to allow the optic nerve to exit the eye; cephalopod eyes, which evolved separately, do not 

suffer these problems (Land and Nilsson 2012). Thus perceptual systems that evolve by natural 

selection need not be optimal in structure and need not deliver optimal information, just 

information sufficient for survival and reproduction.  

There are many examples of satisficing perception in nature. Dragonflies, for instance, have 

aquatic larvae and must find water to lay their eggs. Dragonfly vision has a simple trick to find 

water: Find horizontally polarized light reflections (Horvath et al 1998; 2007). Water strongly 

reflects horizontally polarized light, so this trick often guides successful oviposition. 

Unfortunately for the dragonfly, oil slicks and shiny tombstones also reflect such light, 

sometimes more strongly than water. Dragonflies are fooled by such slicks and tombstones to 

lay eggs where they cannot survive. In the niche where dragonflies evolved, their perceptual 

trick normally works, but where that niche has been disturbed by H. sapiens with oil slicks and 

tombstones, the same trick can be fatal.  

Male jewel beetles fly about looking for the glossy, dimpled and brown wing-casings of 

females. When males of H. sapiens began tossing out empty beer bottles that were glossy, 

dimpled and just the right shade of brown, the male beetles swarmed the bottles and ignored the 

females, nearly causing the extinction of the species (Gwynne and Rentz 1983). The beetles’ 

perceptions relied not on optimal information but rather on heuristics that worked in the niche 

where they evolved. 

Thus natural selection has shaped the perceptual systems of many organisms to rely on 

fallible heuristics. Yet there is consensus among perceptual scientists that natural selection has 
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shaped the perceptions of H. sapiens to be, in the normal case, veridical. This raises obvious 

questions: What precisely are the conditions in which natural selection favors veridical 

perceptions? Are we correct in assuming that H. sapiens, unlike flies, frogs and beetles, has 

been shaped to have veridical perceptions? 

Fortunately, we aren’t forced to speculate about the answers to these questions. Evolution 

by natural selection can be studied using mathematical tools such as evolutionary game theory, 

evolutionary graph theory, and genetic algorithms (Hofbauer and Sigmund 1998; Mitchell 1998; 

Lieberman et al. 2005; Nowak 2006; Samuelson 1997; Sandholm 2007). One can study 

competitions between perceptual strategies, and compute probabilities for strategies to emerge, 

go extinct, coexist, or dominate. 

The first step is to define perceptual strategies, and classify them by how informative they 

are about the objective world. This yields an understanding of possible relationships between 

perception and reality that is more nuanced than a simple dichotomy between veridical or not. 

We can then use evolutionary games and genetic algorithms to study the relative fitness of these 

perceptual strategies. 

The collection of strategies considered must be exhaustive; otherwise we might miss a 

winning strategy. In particular, we must include strategies that see none of the true facts, some 

of the true facts, and all of the true facts. Even if we suppose that human perception is veridical 

today, we must consider all possible strategies, veridical or not, in order to explore the plausible 

hypothesis that we evolved from species whose perceptions were not veridical. And we must 

entertain the hypothesis that any one of these strategies, veridical or not, might now be favored 

by natural selection, even for human perception.  

We will see that there are really two separate questions to be answered. First, is the 
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vocabulary of our perceptions isomorphic to aspects of objective reality so that our language of 

perceptions could, in principle, describe the objective truth? Second, if so, do our perceptual 

systems in fact succeed in describing the true state of affairs in the world? 

With this background we now define the strategies that we will study. 

 

Perceptual strategies 

We need a definition of perceptual strategy that’s broad enough to include all relevant 

strategies—otherwise our evolutionary games and genetic algorithms might inadvertently 

overlook viable strategies. Some models of color perception, for instance, posit a metric on 

color experiences, and represent perceptual differences among colors by distances in the metric 

(Koenderink 2010; Mausfeld and Heyer 2003). This works well for color, but might not for 

other perceptions. Perhaps, for instance, no metric adequately models taste: Is a marinara sauce 

closer in taste to apples or to blueberries? This question might have no answer. Thus it seems 

too restrictive to require that all perceptual strategies have associated metrics. 

 But it always seems necessary to model the probabilities of various perceptions, and how 

these probabilities vary with states of the world. If, for instance, one assumes that the world 

contains surfaces and light sources, one must model how the probability of perceiving different 

colors is related to the reflectance functions of surfaces and the spectral distributions of the 

incident light sources. Or, if one assumes that the world contains various odorant molecules, one 

must model how the probability of perceiving different smells is related to the distribution of 

odorant molecules.   Thus it seems necessary to use so-called measurable spaces (i.e., 

probability spaces whose probability measure is not yet specified) to model possible perceptions 

and possible states of the world. And it seems necessary to require that probabilities of 
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perceptual events can be systematically related to probabilities of events in the world, i.e., that 

the mapping from the world to perceptions is a so-called measurable mapping. (This is simply a 

generalization of the familiar notion of a random variable. For precise definitions of events, 

measurable spaces, measurable maps and probability measures, see Appendix 1.) 

These considerations lead us to define a perceptual strategy as follows. We represent the 

possible perceptual experiences of an organism by a measurable space    ( X ,X ) , where  X  is a 

set of possible experiences and  X  is a collection of subsets of  X  called events; in this case the 

events are mental events, i.e., perceptual events. We represent the world by a measurable space 

   (W ,W ) , where W is a set (of world states) and  W 	
  is	
  again	
  a	
  collection	
  of	
  subsets	
  of	
  W	
  called	
  

events;	
  in	
  this	
  case	
  the	
  events	
  are	
  in	
  the	
  world. Then the definition of a perceptual strategy is 

straightforward if there is no dispersion (such as noise), i.e., if each state  w∈W  causes at most 

one perceptual experience  x ∈X . 

 

Definition 1. A (dispersion-free) perceptual strategy, P, is an onto measurable function 

  P :W → X , where  denotes a measurable space of states of the world and  

denotes a measurable space of perceptual experiences.  

 

If there is dispersion, i.e., if there are states  w∈W that can cause more than one perceptual 

experience  x ∈X , then the definition of a perceptual strategy requires a mapping that gives, for 

each state  w∈W  of the world, the probabilities of the various perceptual experiences that the 

state  w  might cause. In the case where  W  and  X  are finite, this mapping can be written as a 

stochastic matrix, i.e., a matrix in which the values in each row sum to 1. In the more general 

case, this mapping can be written as a Markovian kernel  P , which assigns to each  w∈W  a 

   (W ,W )    ( X ,X )
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probability measure,   P(w,⋅) , on  X  (Revuz 1984). In information theory, such Markovian 

kernels are communication channels (Cover and Thomas 2006). With this background the 

definition of a perceptual strategy when there is dispersion is as follows. 

 

Definition 2. A perceptual strategy with dispersion is a Markovian kernel 

   P :W ×X → [0,1] , where  W  denotes a measurable space of states of the world and  X  denotes 

the events for a measurable space  X  of perceptual experiences. 

 

In this paper we focus on dispersion-free strategies; the pattern of results we find also holds 

when there is dispersion. We begin with the strongest kind of veridical strategy. 

In philosophy, naïve realism is roughly the view that what you see is really there even when 

no one looks, that “objects of awareness are actually the mind independent objects that inhabit 

the world” (Fish 2011).  Versions of naïve realism have long been debated, and some are 

defended to this day (Brewer 2011; Fish 2009; Travis 2013). As we use the term here, a naïve 

realist accurately sees all aspects of the objective world and its structures.  Thus we define a 

naïve realist, as a term of art, as follows. 

 

Definition 3. A naïve realist is a perceptual strategy for which  X =W  and  P  is an 

isomorphism, i.e., a one-to-one and onto map that preserves all structures on  W .  

 

Few scientists or philosophers are naïve realists in the strong sense defined here (in 

particular, Fish (2011) is not a naïve realist in the strong sense defined here). In the case of 

vision, for instance, it’s widely agreed that we see just a small fraction of the electromagnetic 
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spectrum, and only the front surfaces of opaque solid objects. Thus we see, at best, a small part 

of the objective world, which contradicts the condition  X =W  of naïve realism. However, in 

order to study a comprehensive collection of strategies, we include this strong version of naïve 

realism. 

Strong critical realist strategies are a weaker version of veridical perception in which the 

perceiver accurately sees all aspects and structures of a subset of the objective world. Thus we 

define a strong critical realist strategy as follows. 

 

Definition 4. A strong critical realist is a perceptual strategy for which  X ⊂W  and  P  is 

an isomorphism on this subset that preserves all structures.  

 

Once again, few scientists or philosophers are strong critical realists. But there are 

important exceptions. Gibson (1986), for instance, says “The environment consists of the earth 

and the sky with objects on the earth and in the sky, of mountains and clouds, fires and sunsets, 

pebbles and stars. Not all of these are segregated objects, and some of them are nested within 

one another, and some move, and some are animate. But the environment is all these various 

things—places, surfaces, layouts, motions, events, animals, people, and artifacts that structure 

the light at points of observation.” According to Gibson’s ecological theory of vision, we 

directly and truly see those aspects of the world that are affordances, i.e., those aspects relevant 

to “what it offers the animal, what it provides or furnishes, either for good or ill.” (Emphasis 

his) Gibson’s theory of vision, like the interface theory we propose, is motivated by evolution 

but, as we will see, his conclusions about how evolution shapes perception differ dramatically 

from ours. 
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One argument against strong critical realism cites the phenomenon of metamers, in which 

illuminants with different spectra look the same color, or surfaces with different reflectances 

look the same color.  This is sometimes taken to show that color is not part of the objective 

world. Hardin (2008), for instance, says “Perceived colors are therefore two removes from the 

occurrent bases of the dispositions to see them. Many different mechanisms can produce the 

same SPD [spectral power distribution], and many different SPDs can cause us to see the same 

color. It is also important to note that animals with different receptoral sensitivities are unlikely 

to experience the same colors that we do under the same circumstances. It is little wonder that 

color categories have been described as “gerrymandered” and “anthropocentric.”” 

Hardin goes on to note that “a color realist’s appeal to “normal” or “standard” conditions to 

determine the “true” or “actual” colors of objects is mere hand-waving unless there is some 

clear reason for preferring one set of illumination or background conditions to another. So far, 

nobody who has held a realist position has been prepared to propose and defend such a set of 

conditions. What is to be said about the other half of the equation, the “normal” observer to 

whom philosophers so casually refer?” 

Some philosophers, however, disagree with Hardin and claim that color is part of the 

objective world (e.g., Byrne and Hilbert 2003). 

Examples such as metamers suggest the need to consider weak critical realist strategies, in 

which the perceptions need not be a subset of the objective world, but still do represent true 

structures in the objective world. Thus we define a weak critical realist strategy as follows. 

 

Definition 5. A weak critical realist is a perceptual strategy for which  X  need not be a 

subset of  W , but  P  is nevertheless a homomorphism that preserves all structures. 
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Many scientists and philosophers today are weak critical realists, but of a special type that 

we will call hybrid realists. They claim that some of our perceptions, such as color and taste, are 

not part of the objective world, but that other perceptions, such as object shapes and motions, 

are part of the objective world (e.g., Pizlo 2010; Pizlo et al. 2014). Among philosophers this 

view is sometimes expressed as a variant of Locke’s distinction between primary and secondary 

qualities (Locke 1690).  

Hybrid realism dates back to the early years of science. Galileo, for instance, said “I think 

that tastes, odors, colors, and so on are no more than mere names so far as the object in which 

we locate them are concerned, and that they reside in consciousness. Hence if the living creature 

were removed, all these qualities would be wiped away and annihilated” (1623/1957, p. 274).  

Descartes similarly argued “it must certainly be concluded regarding those things which, in 

external objects, we call by the names of light, color, odor, taste, sound, heat, cold, and of other 

tactile qualities … ; that we are not aware of their being anything other than various 

arrangements of the size, figure, and motions of the parts of these objects which make it 

possible for our nerves to move in various ways, and to excite in our soul all the various feelings 

which they produce there” (1644/1647/1984, p. 282).  

Hybrid realism even dates back to Democritus (460 to 370 BC), who claimed that “by 

convention sweet and by convention bitter, by convention hot, by convention cold, by 

convention color; but in reality atoms and void” (Taylor 1999). 

We define hybrid realism as follows. 

 

Definition 6. A hybrid realist is a weak critical realist perceptual strategy that requires that 
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there exists a subset   X̂ ⊂ X  that satisfies   X̂ ⊂W , and requires that  P  is an isomorphism on 

this subset that preserves all structures. 

 

Most vision researchers who study Bayesian models of perception assume hybrid realism 

(see, e.g., Knill and Richards 1996). They assume, for instance, that our perceptions of object 

shapes are normally veridical, and that Bayesian techniques illuminate how we estimate true 

shapes from images. They typically assume, however, that color is not an objective property of 

the world, but that Bayesian methods can model the relationship between perceived colors and, 

say, equivalence classes of surface reflectances. 

However, even hybrid realism is too strong a claim for some scientists and philosophers. 

Leibniz, for instance, said “it is even possible to demonstrate that the ideas of size, figure and 

motion are not so distinctive as is imagined, and that they stand for something imaginary 

relative to our perceptions as do, although to a greater extent, the ideas of color, heat, and the 

other similar qualities in regard to which we may doubt whether they are actually to be found in 

the nature of the things outside of us” (1686/1902).  

In the Republic, Plato famously argued in his “allegory of the cave” that the relationship 

between reality and our perceptual experiences (and, moreover, all of our conventional beliefs) 

is like the relationship between objects and their shadows cast on the wall of a cave by a fire 

(Bloom 1991). Plato says, “Now the cave or den is the world of sight, the fire is the sun, the 

way upwards is the way to knowledge...”   

Kant (1783) also argued against hybrid realism: “Long before Locke's time, but assuredly 

since him, it has been generally assumed and granted without detriment to the actual existence 

of external things, that many of their predicates may be said to belong not to the things in 
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themselves, but to their appearances, and to have no proper existence outside our representation. 

Heat, color, and taste, for instance, are of this kind. Now, if I go farther, and for weighty reasons 

rank as mere appearances the remaining qualities of bodies also, which are called primary, such 

as extension, place, and in general space, with all that which belongs to it (impenetrability or 

materiality, space, etc.)—no one in the least can adduce the reason of its being inadmissible.”  

As these quotes suggest, there is a class of perceptual strategies even more general than 

weak critical realist and hybrid realist. This class of strategies, which we call interface 

strategies, does not require any perceptions to be veridical or to reflect any structures of 

objective reality such as orders or metrics. Therefore we define interface strategies as follows. 

 

Definition 7. An interface perceptual strategy is a perceptual strategy that does not require 

 X  to be a subset of  W  and for which the mapping  P  has no restrictions other than being 

measurable (so that the probabilities of perceptions are systematically related to probabilities of 

events in  W ).  

 

Thus an interface strategy is simply a dispersion-free perceptual strategy, with no additional 

constraints. However the new name is useful for understanding these strategies. Consider a 

strict interface strategy, i.e., an interface strategy that is not a weak critical realist strategy. For 

such a strategy, no perceptions are veridical ( X /⊂W ) and no structure of  W  is preserved other 

than measurable structure ( P  is not a homomorphism). It is natural to ask for such a strategy 

how it could possibly be useful to an organism. If none of its perceptions are veridical, and none 

of its perceptions reflect the structure of the world, then aren’t its perceptions completely 

useless? 
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It turns out that they can, in fact, still be quite useful, and a familiar metaphor helps to see 

this. Consider the desktop of the windows interface on your laptop computer. Suppose that there 

is a blue rectangular icon in the upper right corner of the desktop for a text file that you are 

editing. Does this mean that the text file itself is blue, rectangular or in the upper right corner of 

the laptop? Of course not. Anyone who thinks so misunderstands the purpose of the desktop 

interface. Its icons are not meant to resemble anything in the computer; they are not veridical 

representations. But they are intended to guide useful behaviors. If, for instance, you drag the 

blue icon to the trash you can delete the text file; if you drag it to the icon for an external drive, 

you can copy the file. 

So if our perceptions are in fact strict interface perceptions, then none of our perceptions 

are veridical and none of our perceptions reflect the structure of the world. This would mean 

that our perceptions of physical objects and even of space-time itself are not veridical. Instead, 

space-time would be our desktop and physical objects would be the icons on the desktop. If 

natural selection has appropriately shaped our perceptions of space-time and physical objects, 

then they could still be useful guides to behavior even though they are not veridical. It is for this 

reason that the most general perceptual strategies are called interface strategies. 

The interface metaphor is offered merely as an aid to intuition. Like most metaphors, it 

suffers weaknesses. One might for instance argue that—contrary to the “simplify and hide” 

hallmark of interfaces that we have touted—folder icons on a desktop do faithfully depict the 

details of real folder hierarchies in the computer. This critique is well taken. However, it is the 

interface strategy as precisely defined, not as metaphor, which lives or dies by the sword in our 

evolutionary games. Moreover, the strength of the metaphor is what it highlights: The simplicity 

of a desktop, which hides the complexity of the computer and is thus “non-veridical,” is in fact a 
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huge advantage that promotes efficient interactions with the computer.   

The relationships among strategies are shown in Figure 1. One sees from the diagram, for 

instance, that all hybrid realists and strong critical realists are weak critical realists, but that no 

hybrid realist is a strong critical realist; some weak critical realists are neither hybrid realists nor 

strong critical realists. 

 

 

 

Fig 1. A Venn diagram of the relationships among the different perceptual strategies. 

 

 

 

Evolutionary games 
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Does natural selection favor veridical perceptions? The five classes of perceptual strategies 

defined in the previous section allow us to ask this question with greater precision: Which of the 

five perceptual strategies are favored by natural selection, and under what conditions are they 

favored? 

Fortunately, we need not speculate about the answer. We can devise evolutionary games 

and genetic algorithms to obtain precise answers in precise contexts, and from these we can 

extrapolate general principles. 

Using evolutionary games, we compel perceptual strategies to compete in a variety of 

environments and under a variety of selection pressures, and discover which will coexist, 

disappear and dominate.  

Evolutionary games have the power to model frequency-dependent selection, in which the 

fitness of strategies is not fixed, but instead varies with the proportion of individuals in the 

population that employ each strategy (Allen and Clarke 1984; Hofbauer and Sigmund 1998; 

Nowak 2006; Samuelson 1997; Sandholm 2007). 

For instance, frequency-dependent selection governs the strategies of hunter-gatherers who 

share their daily haul. Some are “producers” and work hard to hunt and gather, while others are 

lazy “scroungers” and simply eat what others provide (Barnard and Sibly 1981). If most are 

producers, then scroungers do well; but as the proportion of scroungers increases, the fitness of 

their strategy declines until, in the limit where everyone scrounges, everyone starves. 

A perceptual example is Batesian mimicry, in which a benign species avoids predation by 

resembling a dangerous species. In regions where the dangerous species is frequent, even poor 

mimics avoid predation; but where the dangerous species is infrequent, only good mimics enjoy 

this benefit (Harper and Pfennig 2007). 
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Evolutionary games assume infinite populations of players, each having a fixed strategy. 

Players are chosen at random to interact in games—a situation called complete mixing, since all 

interactions are equally likely. Each player receives a payoff from each of its interactions and, 

critically, this payoff is interpreted as fitness, and thus as reproductive success. This leads to 

natural selection: strategies that excel in games reproduce more quickly and thus outcompete 

other strategies. 

Formally, natural selection is modeled by a differential equation called the replicator 

equation. If  n  strategies interact, we let  
aij  denote the payoff to strategy  i  when interacting 

with strategy  j ; we let   
[aij ]  denote the  n× n  “payoff matrix” for all such interactions; and we 

let  xi  denote the frequency of strategy  i . Then the expected payoff for strategy  i  is 

  
fi = x j

j=1

n

∑ aij  and the average payoff is 
  
φ = xi

i=1

n

∑ fi . The replicator equation follows by equating 

payoff with fitness:    !xi = xi( fi −φ) , where   i = 1,…,n  and   !xi  denotes the time derivative of the 

frequency of strategy  i .  

In the case of two strategies one finds the following: Strategy 1 dominates if   a11 > a21  and 

  a12 > a22 ; Strategy 2 dominates if   a11 < a21  and   a12 < a22 ; Strategies 1 and 2 are bistable if 

  a11 > a21  and   a12 < a22 ; Strategies 1 and 2 coexist if   a11 < a21  and   a12 > a22 ; Strategies 1 and 2 

are neutral if   a11 = a21  and   a12 = a22  (Nowak 2006).  

In the case of three strategies there can also be cyclic domination among the strategies, 

much as in the children’s game of Rock-Paper-Scissors. In the case of four or more strategies, 

there can be limit cycles and chaotic attractors (Nowak 2006). 
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The evolution of perceptual strategies has been studied in games that force players to 

compete for resources that are distributed over a set of territories (Marion 2013; Mark et al. 

2010; Mark 2013). On each trial, quantities of resources are distributed at random (uniformly) 

to each territory. For each quantity of resources in a territory there is an associated payoff 

specified by a fixed payoff function. In each interaction, each player looks at each territory and 

decides which territory to seize. Each player receives the payoff for the resources in the territory 

it nabs. 

These games have many variations, including the number of territories, the number and 

distributions of resources per territory, the payoff function, the order in which players choose, 

the perceptual strategies of the players, the number of distinct perceptions each player can have, 

and the costs for computation and storage of information. 

To see how an interface strategy differs from a weak critical realist strategy, consider the 

case where each territory has one resource that varies in quantity from 0 to 100, and where the 

perceptions of each player are limited to just four colors—say, red, yellow, green and blue. Let 

the order on colors be the “energy order”: red < yellow < green < blue. Let the payoff function 

be a (roughly) Gaussian function of the resource quantity: the greatest payoffs are associated 

with quantities near 50, and fall off for quantities greater or smaller than 50. Such a nonlinear 

payoff function is quite common: Not enough water and one dies of thirst; too much and one 

drowns; somewhere in between is just right. Similarly for salt and a variety of other resources. 

Indeed, for organisms that must maintain homeostasis of a wide variety of variables, one can 

expect many nonlinear payoff functions. 

In this case, a weak critical realist that is tuned to truth is illustrated in Figure 2. On the 

horizontal axis is the resource quantity, varying from 0 to 100. The translucent Gaussian depicts 
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the payoff function (which is equated with fitness), having a maximum around 50. The colored 

rectangles indicate how resource quantities map to perceived colors. For instance, resource 

quantities between 0 and 25 map to red. This perceptual strategy is a weak critical realist 

because (1) the perceived colors are not a subset of the resources and (2) the mapping from 

resources to colors is an order-preserving homorphism, i.e., every resource quantity that maps to 

red is less than every resource quantity that maps to yellow, and so on.  

 

Fig 2. A weak critical realist. The payoff function is approximately Gaussian. Any resource 

quantity between 75 and 100 maps to blue. 

 

If the resources are uniformly distributed then this weak critical realist, given its perceived 

color, can optimally estimate the true quantity of resources. If, for instance, it sees green, then it 

knows that the resource quantity lies between 50 and 75 with an expected value around 62.5. 

However, it cannot optimally estimate the payoffs. If it sees green, then the payoff could range 

from nearly 100 to less than 25; if it sees yellow, it’s exactly the same—green and yellow are 

redundant. Thus this strategy is an ideal communication channel for information about truth, but 
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a poor channel for payoffs. 

An interface strategy tuned to payoffs is illustrated in Figure 3. It’s a strict interface 

strategy because the mapping from resource quantities to colors is not a homomorphism. For 

instance, some resource quantities that map to green are smaller than all resource quantities that 

map to blue (green bar on the left), but other resource quantities that map to green are greater 

than all resource quantities that map to blue (green bar on the right).  

However, although this strategy is not a homomorphism for truth, it is for payoffs: All 

resource quantities that map to blue have higher payoffs than all resource quantities that map to 

green, and so on. This strategy is an ideal communication channel for information about 

payoffs, but a poor channel for truth. 

In evolution by natural selection, whenever payoffs and truth differ it is payoffs, not truth, 

that confer  (indeed, are identified with) fitness and reproductive success.  

 

 

Fig 3. An interface strategy. The resource quantities with the highest payoffs map to blue, 

and those with the lowest payoffs to red. 
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From Monte Carlo simulations of many versions of this game the pattern is clear: strict 

interface strategies that are tuned to fitness routinely drive naïve realist and weak critical 

realist strategies to extinction (Marion 2013; Mark et al. 2010; Mark 2013). Adding more 

complexity to the environment, either by greatly increasing the number of territories or the 

number of resources per territory, doesn’t help the realist strategies. Increasing costs for 

information and computation, or adding dispersion to the perceptual maps, generally makes 

matters worse for the realists.  The only situation in which realists have a chance against 

interface strategies is when payoff varies monotonically with resource quantity, i.e., when truth 

and payoff is roughly the same thing.  

The key insight from these evolutionary games is this: Natural selection tunes perception to 

payoffs, not to truth. Payoffs and truth are different, unless payoff functions happen to vary 

monotonically with truth. But we cannot expect, in general, that payoff functions vary 

monotonically with truth because (1) monotonic functions are a (unbiased) measure zero subset 

of the possible payoff functions and (2) even if they weren’t, the ubiquitous biological need for 

homeostasis militates against them. Thus we cannot expect, in general, that natural selection has 

tuned our perceptions to truth, i.e., we cannot expect that our perceptions are veridical. This is 

perhaps shocking news to perceptual scientists who assume that “much of human perception is 

veridical under natural conditions” and that “veridicality is an essential characteristic of 

perception and cognition.” 

Is it possible that this result—viz., that natural selection generically drives veridical 

perceptions to extinction—is an artifact of unrealistic assumptions in evolutionary game theory 

itself? In particular, is it an artifact of the assumptions of infinite populations and complete 
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mixing?  

Possibly, but unlikely, because the core reason that interface strategies dominate realist 

strategies is that, when payoffs are not monotonic with truth, interface strategies can be tuned 

entirely to the right information whereas realist strategies are necessarily tuned to the wrong 

information. Such mistuning will continue to cripple realist strategies even if the populations are 

finite and even if complete mixing is replaced with plausible networks of interactions. This 

claim should of course be checked using, e.g., simulations based on evolutionary graph theory.  

What might prove interesting are spatial games, in which players interact with only nearest 

neighbors on a 2D grid. In this case it might be possible for groups of individuals having realist 

strategies to survive together in small enclaves. 

Perhaps this result can be dismissed as an artifact of the overly simplistic and high-level 

example of perception that was studied? And perhaps more realistic examples, say of shape 

perception or color perception, would favor realist strategies? Again, it’s possible, but unlikely. 

Monte Carlo simulations indicate that greater complexity does not, in general, favor realist 

strategies. Instead the mistuning of realists exacts a greater toll as the complexity of the 

situation increases. Indeed, with increasing complexity the need for simplification and 

abstraction is only accentuated. 

 

Genetic algorithms 

With evolutionary games we find that veridical perceptions fare poorly against interface 

perceptions when both are on the same playing field. But there is a prior question to be asked: 

Will veridical perceptions even get on the playing field? Or are they so unfit that evolution is 

likely to pass them over completely? 
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To study this question we turn to genetic algorithms, which are search heuristics based on 

features of natural evolution in sexually reproducing species, features such as mutation, 

inheritance, selection and crossover (Hoffman et al 2013; Mark 2013; Mitchell 1998; Poli et al 

2008).  

The genetic algorithms we explore are variants of one introduced by Mitchell (1998) that 

evolves, over many generations, a robot named Robby who can efficiently gather soda cans that 

are randomly distributed on a 10 x 10 grid of squares. Surrounding the grid is a wall, which we 

can model as a perimeter of squares. Thus the world, call it  W , that Robby inhabits can be 

represented as a 12 x 12 grid of squares. We denote the state of square   (i, j)  by   W (i, j)  and 

stipulate that its value is 0 if the square has no cans, 1 if it has one can, and 2 if it is a wall. 

Since the wall is fixed, and the state of each square of the inner 10 x 10 grid is either 0 or 1, the 

possible states of  W  are  210×10 = 2100 .  

Robby can only see the state of the square he occupies and of the four immediately adjacent 

states. For instance, if Robby is at location   (i, j)  then he sees the world states 

  (W (i, j),W (i, j +1),W (i, j −1),W (i +1, j),W (i −1, j)) . Since there are at most 3 states at each of 

these 5 locations, the space of Robby’s possible perceptions, call it  X , is no larger than 

 35 = 243; in fact it’s a little smaller because, for instance, if the square to Robby’s right is a 

wall, then the square to his left is not. Robby does not know which square   (i, j)  he is in, or even 

that he is in a 12 x 12 grid; he only sees the states of the squares, but not the locations or 

structure of the squares. 

The goal of the genetic algorithm is to evolve a version of Robby that efficiently gathers 

soda cans, despite his ignorance of the structure of the grid. To this end, Robby has a set, call it 

 G , of 7 primitive actions he can take: stay where he is, pick up a can, step north, step south, 
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step east, step west, or step randomly. What must be learned phylogenetically (i.e., over many 

generations of the genetic algorithm) is a foraging strategy that specifies which of the 7 actions 

in  G  to take for each possible perception of the roughly 240 in  X  that Robby can have. The set 

of possible foraging strategies is thus approximately of cardinality  7
243 ≈ 2.3×10205 , a large 

search space in which to evolve good strategies. 

The payoff function that provides the selection pressures for Robby’s evolution is as 

follows: Robby gets 10 points for each can he picks up, but loses 1 point each time he tries to 

pick up a can where there is none, and loses 5 points each time he tries to walk into a wall. 

There are roughly 240 “genes” that the genetic algorithm evolves, each having 7 possible 

values, corresponding to the 7 actions that can be taken in response to each potential perceptual 

state. Mitchell starts the genetic algorithm with an initial generation of 200 robots, each having 

randomly chosen values for each gene. Each robot is forced to forage through 100 randomly 

chosen worlds, taking 200 actions in each world. The fitness of a robot is the average number of 

points it collects over its 100 foraging runs. The fitter robots are preferentially chosen to be 

parents for the next generation. The genes for two parents are randomly split into two parts, and 

the parts swapped to create two new genomes. A small amount of mutation is applied. In this 

way a new generation of 200 robots is created, and their fitness again measured by their success 

at foraging. This process is repeated for 1000 generations. 

The first generation is comically stupid, bumping into walls, grabbing for cans in empty 

squares, perseverating in obvious mistakes. But the last generation sports expert foragers, 

racking up impressive point totals with surprising cleverness and methodical efficiency. 

In this genetic algorithm, only the foraging strategies evolve, while the perceptual strategy 

remains fixed. All robots are strong critical realists, seeing the true state of the world in their 
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immediate vicinity. To take the next step, to study the coevolution of foraging and perceptual 

strategies, Mark (2013) modifies Mitchell’s genetic algorithm in several ways. He allows each 

square to have up to 10 cans, and stipulates the following payoff function: 

 (0,1, 3, 6, 9,10, 9, 6, 3,1, 0) . For instance, a robot gets 6 points for grabbing the cans in a square 

having 3 or 7 cans, and 0 points for a square having 0 or 10 cans. However, each robot cannot 

see the exact number of cans in each square, but instead sees just two colors, red and green. 

Each robot thus has a perceptual strategy, namely a mapping that assigns the percept red or 

green to each of the 11 possible numbers of cans. Perhaps, for instance, it sees red if a square 

has 0 cans and green otherwise. There are  211 = 2048  possible perceptual strategies. To allow 

for perceptual strategies to coevolve with foraging strategies, each robot has 11 more genes in 

its genome, which code the color that the robot sees for each quantity of cans. In the first 

generation the assignment of colors to the 11 genes is random.  

In Mark’s genetic algorithm, the first generation is again comically stupid. But after 500 

generations there are again many skilled foragers, and all wield one of two perceptual strategies. 

In the first, squares are seen as red if they contain 0, 1, 9, or 10 cans, and as green otherwise. In 

the second, it is the reverse, with squares seen as green if they contain 0, 1, 9, or 10 cans, and as 

red otherwise.  

These robots have evolved a strict interface strategy, tuned to payoffs rather than truth. A 

strategy tuned to truth would see squares having between 0 and 5 cans as, say, red and squares 

having between 6 and 10 cans as green, so that the perceived color would be as informative as 

possible about the true number of cans. But such a realist strategy would provide no information 

about payoffs (since red squares would have the same expected payoff as green squares) and 

would thus fail to guide effective foraging.  
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Instead, the robots wield a strategy that sees high payoff squares as green, and low payoff 

squares as red, or vice versa.  This perceptual strategy provides the information required for 

effective foraging, and is favored by the genetic algorithm. Given that Mark’s simulation 

explored a space containing only 2048 perceptual strategies, it’s likely that realist strategies 

were randomly tried and discarded during the 500 generations of evolution. But in a slightly 

more complex case, say where there are 30 genes and 10 possible colors, then the search space 

has  1030  possible perceptual strategies, and it’s likely that a realist strategy, with no selection 

pressures in its favor, would never appear in any generation because it could only appear by 

chance. Thus it’s likely that veridical strategies never enter the playing field. They’re so unfit 

that they’re not worth trying. 

 

The interface theory of perception 

Studies of perceptual evolution using evolutionary games and genetic algorithms render a clear 

verdict: Natural selection discards veridical perceptions and promotes interface strategies tuned 

to fitness. This motivates the interface theory of perception, which we now discuss (Fields 

2014; Hoffman 1998; 2009; 2011; 2012; 2013; Hoffman and Prakash 2014; Hoffman and Singh 

2012; Hoffman et al. 2013; Koenderink 2011; 2013; Mark et al. 2009; Mausfeld 2002; Singh 

and Hoffman 2013; see also von Uexküll (1909; 1926; 1934) for his related idea of an Umwelt). 

Informally, the interface theory of perception says that the relationship between our 

perceptions and reality is analogous to the relationship between a desktop interface and a 

computer.  

A desktop interface makes it easy to use the computer.  To delete or copy files, for 

instance, one simply needs to drag icons around on the desktop.  
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But a desktop interface does not make it easy to know the true structure of a computer—

its transistors, circuits, voltages, magnetic fields, firmware and software. Indeed, it’s in part by 

hiding this complex structure that the desktop makes it easier to use the computer. 

In similar fashion, says the interface theory of perception, our perceptions have been 

shaped by natural selection to make it easier for us to act effectively in the world, so that we can 

survive and reproduce (or, more accurately, so that our genes can survive and reproduce). Our 

perceptions have not been shaped to make it easy to know the true structure of the world, but 

instead to hide its complexity. 

Our perception of space-time is analogous to the desktop, and our perception of objects 

and their properties is analogous to the icons on the desktop. Just as the language of desktops 

and icons is the wrong language for describing the true structure of the computer, so also the 

language of space-time and physical objects is the wrong language for describing the true 

structure of the objective world.  

A blue and rectangular icon on a desktop does not represent that something in the 

computer is blue and rectangular. Not because the icon is false or misleading or illusory, but 

because the icon is there to help you use the computer, not to distract you with irrelevant details 

about its innards. 

Similarly, when one sees a long brown rattlesnake, this perception does not represent 

that something in the objective world is long and brown. Not because the perception is false or 

misleading or illusory, but because the snake perception is there to adaptively guide your 

behavior, not to distract you with irrelevant details about the true structure of the world. 



Interface	
  theory	
  of	
  perception	
   30	
  

There is an obvious rejoinder: “If you think that snake is just an icon, why don’t you 

pick it up? You’ll soon learn that the snake is not just an icon, it’s part of objective reality, and 

reality bites.” 

Of course I won’t pick up the snake. For the same reason I wouldn’t carelessly drag a 

blue rectangular icon to the trash. Not because I take the file icon literally—the file isn’t blue 

and rectangular. But I do take the icon seriously. If I drag the icon to the trash I could lose many 

hours of work. 

And that is the point. Natural selection has shaped our perceptions in ways that help us 

survive. We had better take our perceptions seriously. If you see a snake, don’t grab it. If you 

see a cliff, avoid it. But taking our perceptions seriously doesn’t entail that we must take them 

literally. To think otherwise, to think that “I must take my snake perception seriously” entails “I 

must take my snake perception to be literally true of the objective world”, is an elementary error 

of logic, but one that seems to enjoy a strong grip on the human mind, even the brightest of 

minds. Samuel Johnson, for instance, famously claimed to refute the idealism of George 

Berkeley by kicking a stone and exclaiming, “I refute it thus” (Boswell 1791). Kicking a stone 

can hurt; one must take the stone seriously, or risk injury. From this Johnson concludes, against 

Berkeley, that one must take the stone literally. Berkeleyian idealism may be false, but 

Johnson’s argument against it is based on a logical fallacy. 

We must take our perceptions seriously not because they reveal the true structure of the 

world, but because they are tuned, by natural selection, to fitness. The distinction between 

fitness and truth is elementary, and central to evolutionary theory. Fitness is a function of the 

objective world. However, a fitness function depends not just on the objective world, but also 
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on the organism, its state, and an action. For a hungry fly, a pile of dung conveys substantial 

fitness. For a hungry human, the same pile conveys no fitness.  

Fitness is, in general, a complicated function of the objective world that depends on an 

organism, its state, and its action. There’s no simple relation between fitness and truth, although 

many perceptual researchers assume otherwise. Geisler and Diehl (2002), for instance, assert 

“In general, (perceptual) estimates that are nearer the truth have greater utility than those that 

are wide of the mark.” This would be convenient, but unfortunately it’s not true. Fitness 

functions are more complex and versatile than that, and rarely track truth. 

Formally, the interface theory of perception proposes that the perceptual strategies of H. 

sapiens and, indeed, of all organisms are, generically, strict interface strategies. Recall that this 

means, in the dispersion-free case, that the perceptual function,   P :W → X , that maps states of 

the external world  W  onto perceptual experiences  X , is not veridical in the following two 

senses. First,  X  is not a subset of  W , so that none of our perceptual experiences are literally 

true of the world. Second,  P  is not a homomorphism of any structures intrinsic to  W , other 

than the event structure required for probability, so that no structural relationships among our 

perceptions are literally true of the world. 

The interface theory of perception certainly runs counter to our normal intuitions about 

the relationship between our perceptions and reality. It runs counter, for instance, to what 

Bertrand Russell (1912) took to be obvious: “If, as science and common sense assume, there is 

one public all-embracing physical space in which physical objects are, the relative positions of 

physical objects in physical space must more or less correspond to the relative positions of 

sense-data in our private spaces. There is no difficulty in supposing this to be the case.” 
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The interface theory of perception is counterintuitive, but it can be seen as a natural next 

step along an interesting path of the intellectual history of H. sapiens.  

The pre-Socratic Greeks, and other ancient cultures, believed that the world is flat, in 

large part because it looks that way. Aristotle, and soon many others, came to believe that our 

perceptions are misleading here, and that the earth is in fact round. But they still believed that 

the earth is the center of the universe, because it certainly looks like the earth doesn’t move and 

that the sun, moon, stars and planets orbit around it. Kepler and Copernicus discovered that, 

once again, our perceptions have misled us, and the geocentric theory is false. This was difficult 

to accept. Galileo was forced to recant, and Giordano Bruno was burned at the stake. But 

eventually we accepted the counterintuitive fact that, in this specific case, reality differs from 

our perceptions and the earth is not the center of the universe. 

The interface theory of perception takes the next step. It says that reality differs from our 

perceptions not just in this or that specific case, but in a far more fundamental way: our 

perception of physical objects in space-time no more reflects reality than does our perception of 

a flat and stationary earth. The space-time and physical objects of our perceptions are a species-

specific adaptation, shaped by natural selection, which allow H. sapiens to survive long enough 

to reproduce. They are not an insight into the nature of objective reality. Quite simply, 

perception is about having kids, not seeing truth.  

The argument for the interface theory is not epistemological—that we can only be sure 

of our perceptions and so, for all we know, the world differs dramatically from our perceptions. 

Nor is it an argument for idealism—that to be is to be perceived, and that something not 

perceived by my mind exists only if perceived by another (Berkeley 1710/2012; 1713/1979). 
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Instead, the argument is that evolution by natural selection, one of the best-confirmed 

theories of contemporary science, applies not just to bodily traits but also to perceptual and 

cognitive traits. This entails that, for a perceptual strategy, the ticket to the next generation, 

indeed the only ticket other than dumb luck, is reproductive success. Reproductive success and 

veridicality are entirely distinct concepts. Whenever they diverge, reproductive success trumps 

veridicality. They diverge if the relevant payoff functions are non-monotonic; indeed they 

diverge with unbiased probability one. Thus it is almost certain that our perceptions have not 

been shaped to be veridical.  

It is no surprise, then, that evolution has shaped beetles that are fooled by bottles, 

dragonflies that mistake gravestones for water, gull chicks that prefer red disks on cardboard to 

their real mothers, frogs that die of starvation when surrounded by mounds of unmoving edible 

flies, birds that prefer brightly speckled rocks or the eggs of cowbirds to their own eggs. These 

are not shocking outliers, but exactly what one expects from a careful understanding of 

evolutionary theory. The reason it seems counterintuitive that our own perceptions of space-

time and objects are not veridical is that we are blind to our own blindness—we cannot easily 

step outside our perceptions and look back to make the shocking discovery that they are just a 

satisficing interface, not an insight into truth. For that discovery, for the realization that once 

again there is no fundamental divide between us and other animals, we need the aid of the 

mirror view provided by the theory of evolution. In retrospect we should have expected all 

along what that mirror reveals.  

Steven Pinker (1997) portrays well the view from the mirror: “We are organisms, not 

angels, and our minds are organs, not pipelines to the truth. Our minds evolved by natural 



Interface	
  theory	
  of	
  perception	
   34	
  

selection to solve problems that were life-and-death matters to our ancestors, not to commune 

with correctness.”  

Robert Trivers (1976; also 2011) has peered into the mirror and seen the same view: “If 

deceit is fundamental to animal communication, then there must be strong selection to spot 

deception and this ought, in turn, to select for a degree of self-deception, rendering some facts 

and motives unconscious so as not to betray—by the subtle signs of self-knowledge—the 

deception being practiced. Thus, the conventional view that natural selection favors nervous 

systems which produce ever more accurate images of the world must be a very naïve view of 

mental evolution." (emphasis ours) 

 

The standard Bayesian framework for vision 

The standard contemporary framework for vision research takes vision to be 

fundamentally an inductive problem of inferring true properties of the objective world: 

any image on the retina is consistent with many different scene interpretations; that is to 

say, the same image could in principle have been generated by many (usually infinitely 

many) distinct 3D scenes. This raises the natural question of how the visual system 

converges upon a single interpretation, or small number of interpretations. The 

fundamental ambiguity inherent in perception can be resolved only by bringing to bear 

additional biases or constraints, e.g., concerning how probable different scene 

interpretations are a priori. The environment in which our species evolved is a highly 

structured place, containing many regularities.  Light tends to come from overhead, there 

is a prevalence of symmetric structures, objects tend to be compact and composed of 

parts that are largely convex, and so on. Over the course of evolution, such regularities 
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have been internalized by the visual system (e.g. Feldman, 2013; Geisler, 2008; Shepard, 

1994). They thus help define probabilistic biases that make some interpretations of an 

image much more probable than others.  

Formally, given an image input y0, the visual system must compute and compare 

the posterior probabilities p(x|y0) for candidate scene interpretations x.  By Bayes’ 

Theorem, this posterior probability is proportional to the product of the likelihood of the 

scene x, p(y0|x), and its prior probability, p(x): 

 p x | y0( )∝ p y0 | x( ) p x( )   

The likelihood of the scene x corresponds to the probability of obtaining the image y0 

from scene x; it is therefore a measure of the extent to which scene x is consistent with—

or “can explain”— image y0.  In vision applications, the likelihood p(y0|x) is often defined 

in terms of a projective or rendering map from 3D scenes to projected images (possibly 

with noise). The prior probability captures the visual system’s implicit knowledge, based 

on phylogenetic and ontogenetic experience, that certain scene interpretations are more 

probable a priori than others. This knowledge is “prior” in the sense that it exists in the 

system prior to obtaining the current image input. Given the fundamental ambiguity of 

perception noted above, the likelihood is often equally high for many different scene 

interpretations (i.e., many different 3D interpretations can in principle explain the given 

image). However, these scenes are not equally probable a priori. The product of the 

likelihood and prior—the posterior distribution over scenes, given the image y0—thus 

strongly favors some scene interpretations over others (e.g. Kersten, Mamassian & 

Yuille, 2004; Knill & Richards, 1996; Mamsassian, Landy & Maloney, 2003). 
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The scene interpretation with the highest posterior probability is often taken to be 

the “best” scene interpretation, given the image. More generally, however, the selection 

of a single “best” interpretation based on the posterior distribution requires the 

application of a loss function. A loss function defines the consequences of making errors, 

i.e., of making interpretations that deviate from the “true,” though unknown, value of the 

relevant variable to different extents. Technically, the maximum-a-posteriori (or MAP) 

decision rule noted above follows if the loss is equally “bad” for all non-zero errors, and 

0 when the error is effectively 0. A quadratic loss function—where loss increases as the 

square of error magnitude—leads to a decision rule that picks the mean of the posterior 

distribution as the single best interpretation (e.g., Mamassian, Landy & Maloney, 2003). 

Other decision rules used in models of vision include using maximum-local-mass loss 

(Brainard & Freeman, 1997) and sampling from the posterior (or probability matching; 

e.g., Wozny, Beierholm, & Shams, 2010). 

 

Fig 4. (a) The standard Bayesian framework for vision. (b) Our CEP framework. In this 

framework, the interpretation space X in probabilistic inference is not assumed to be identical to 
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the objective world W. Importantly, there is a fitness function f on W. The perceptual channels 

from W to the perceptual representational spaces X and Y are “tuned” to increase expected-

fitness payout to the organism. 

 
Figure 4(a) summarizes pictorially the standard Bayesian approach to vision. In 

this framework, space X corresponds to states of the world (generally taken to be “3D 

scenes”), and Y to the set of projected images. The likelihood map L corresponds to the 

projective, or rendering, map from 3D scenes to 2D images—possibly with noise. 1 Given 

a particular image y0 in Y, the Bayesian posterior B defines a probability distribution on 

scene interpretations in X. The choice of a loss function then allows one to pick a single 

best interpretation based on this full posterior distribution on X.  

 

Limitations of the standard Bayesian framework 

Given the two probabilistic sources of information embodied in the likelihood and the 

prior, Bayes’ Theorem provides a provably optimal way to combine them (Cox 1961; 

Jaynes, 2003). Hence, once a likelihood map and a prior distribution have been specified 

on a given space of possible interpretations (or scene hypotheses), there is principled 

justification for using Bayes to make perceptual inferences. However, as we clarify 

below, the standard Bayesian framework for vision makes certain key assumptions that 

make it much too limiting—especially if one’s goal is to model the evolution of 

perception. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  In	
  other	
  words,	
  in	
  the	
  general	
  case,	
  given	
  a	
  scene	
  x	
  in	
  X,	
  L(x)	
  defines	
  a	
  probability	
  distribution	
  on	
  Y,	
  
i.e.,	
  	
  L(x|y)	
  =	
  p(y|x).	
  Note	
  that	
  L	
  is	
  in	
  fact	
  a	
  function	
  of	
  two	
  variables,	
  x	
  and	
  y;	
  but	
  in	
  different	
  contexts	
  
one	
  or	
  the	
  other	
  of	
  these	
  is	
  assumed	
  fixed.	
  In	
  the	
  current	
  discussion	
  (the	
  “forward	
  mapping”),	
  we	
  are	
  
considering	
  a	
  situation	
  where	
  x	
  is	
  fixed	
  and	
  we	
  compute	
  L	
  for	
  different	
  values	
  of	
  y.	
  Whereas,	
  in	
  the	
  
discussion	
  above	
  (the	
  “inverse	
  map”),	
  we	
  considered	
  the	
  situation	
  where	
  y0	
  was	
  fixed	
  and	
  we	
  were	
  
comparing	
  the	
  likelihood	
  for	
  different	
  scenes,	
  x.	
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Note, in particular, that in the standard Bayesian framework summarized above, 

space X plays two distinct roles. First, X corresponds to the set of objective world states. 

Second, X corresponds to the space of interpretations (or hypotheses) from among which 

the visual system must select. In other words, in the standard Bayesian framework for 

vision, the observer’s hypothesis space is implicitly assumed to be identical with the 

objective world. This dual role played by X is consistent with the conceptualization of 

vision as inverse optics, according to which the goal of vision is essentially to “undo” the 

effects of optical projection (Adelson & Pentland, 1996; Pizlo, 2001). It is also consistent 

with the historical roots of Bayesian methods as providing ways of estimating “inverse 

probability.” Laplace (1774), for instance, considered the problem of estimating 

underlying causes C from an observed event E: What one would like is to estimate is the 

probability p(C|E) of a particular underlying cause C given observation E, but what one 

actually knows is the probability p(E|C) of observing any particular event E given cause 

C. Bayes’ Theorem, of course, provides a means of inverting these conditional 

probabilities. 

The dual rule played by space X clarifies the way in which the standard Bayesian 

framework for vision embodies the assumption that the human visual system (and 

perception more generally) has evolved to perceive veridically. Clearly, it is not the case 

that a Bayesian observer always makes veridical inferences. Given the inherently 

inductive nature of the problem, that would be impossible. Specifically, because a 

Bayesian observer must rely on assumptions of statistical regularities in the world (e.g., 

light tends to come from overhead), it will necessarily make the wrong scene 

interpretation whenever it is placed in a context where its assumptions happen to be 
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violated (say in a scene where light happens to come from below; e.g., Kleffner & 

Ramachandran, 1992). 

There is a more fundamental sense, however, in which the standard Bayesian 

framework assumes veridicality: it assumes that the hypothesis space X—the observer’s 

representational space, which contains the possible scene interpretations from which it 

must select—corresponds to objective (i.e., observer-independent) reality. In other words, 

it assumes that the observer’s representational language of scene interpretations X is the 

correct language for describing objective reality. Even if the observer’s estimate might 

happen to miss the “correct” interpretation in any given instance, the assumption is 

nevertheless that the representation space X contains somewhere within it a true 

description of the world. It is in this more fundamental sense that the standard Bayesian 

framework embodies the assumption that vision has evolved to perceive veridically. 

When viewed in light of our earlier discussion on possible relationships between 

X and W (recall the section on Perceptual Strategies), it becomes clear that the standard 

Bayesian framework for vision essentially assumes that X = W (or that X is isomorphic to 

W). This is a strong assumption—essentially a form of naïve realism—that makes it 

impossible to truly investigate the relation that holds between perception and the 

objective world. A genuine investigation must begin with minimal assumptions about the 

form of this relation. This is especially true if one’s goal is to have a mathematical model 

of the evolution of perceptual systems. Clearly, as perceptual systems evolve, their 

representational spaces can change, as can the mapping from the world W to a given 

representational space X. Thus a framework that simply assumes that X = W, or X is 

isomorphic to W, will (by definition) be unable to capture this evolution. 
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Consideration of perceptual systems in simpler organisms makes the simplistic 

nature of this assumption especially clear. As we mentioned in the Introduction, in 

discussing simpler visual systems such as those of the fly and the frog, Marr (1982) noted 

that they “...serve adequately and with speed and precision the needs of their owners, but 

they are not very complicated; very little objective information about the world is 

obtained. The information is all very subjective...”. He clarified what he meant by 

subjective by adding that “...it is extremely unlikely that the fly has any explicit 

representation of the visual world around him—no true conception of a surface, for 

example, but just a few triggers and some specifically fly-centered parameters...” (p. 34). 

Marr was thus acknowledging that visual systems that do not compute objective 

properties of the world can nevertheless serve their owners well enough for them to 

survive. This should not be surprising. Clearly, what matters in evolution is fitness, not 

objective truth; and even perceptual systems that compute only simple, “subjective” 

properties can confer sufficient fitness for an organism to survive—even thrive.  

As we also noted in the Introduction, when it comes to human vision, Marr held a 

different position (as do most modern vision scientists). He believed that the properties 

computed by human vision are, or correspond to, observer-independent properties of the 

objective world. Such a sharp dichotomy between the visual systems of “simpler” 

organisms on the one hand, and human vision on the other, seems implausible. After all, 

the evolution of Homo sapiens was governed by the same laws that govern the evolution 

of other species. Nor is it viable to assume that evolution is a “ladder of progress” that 

leads perceptual systems to incrementally compute more and more objective properties of 
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the world. So what justification do we have to believe that the representational spaces 

employed by human perceptual systems correspond to objective reality?  

As always, what matters in evolution is fitness, not objective truth. So one must 

examine the role that fitness plays. As we noted in the Interface Theory of Perception 

section, the first thing to note about fitness is that it depends not only on the objective 

state of the world, but also on the organism in question (e.g., frog vs. tiger), the state of 

the organism (e.g., starving vs. satiated), and the type of action in question (e.g., mating 

vs. eating).2 Thus one’s formal framework must be broad enough to include the 

possibility that the representations computed by human vision also do not capture 

objective truth (in the more fundamental sense noted above—namely, that the 

interpretation space X does not contain anywhere within it a true description of the 

objective world). Moreover, if such a framework is to be sufficiently general to model the 

evolution of perceptual systems, it must clearly allow for different possible relations 

between X and W. 

 

Computational Evolutionary Perception 

We generalize the standard Bayesian approach to a new framework we call 

Computational Evolutionary Perception, or CEP (Hoffman & Singh, 2012; Singh & 

Hoffman, 2013).  Given the intrinsically inductive nature of perception, CEP incorporates 

probabilistic inference in a fundamental way. But, importantly, it places the objective 

world W outside of the Bayesian inferential apparatus (see Figure 4(b)). In CEP, X and Y 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  For	
  this	
  reason,	
  evolutionary	
  fitness	
  cannot	
  be	
  incorporated	
  into	
  the	
  standard	
  Bayesian	
  framework	
  
for	
  vision	
  simply	
  by	
  identifying	
  it	
  with	
  the	
  loss	
  function	
  of	
  Bayesian	
  Decision	
  Theory.	
  
3	
  If	
  X	
  bears	
  no	
  simple	
  relation	
  to	
  W,	
  it	
  is	
  natural	
  to	
  ask:	
  How	
  is	
  perception	
  (and	
  cognition)	
  then	
  
grounded	
  in	
  the	
  objective	
  world?	
  We	
  address	
  this	
  question	
  in	
  the	
  next	
  section	
  where	
  we	
  introduce	
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are simply two representational spaces—neither is assumed to correspond (or be 

isomorphic) to W. In any given context, Y may be a lower-level visual representational 

space (say a representation of some 2D image structure), and X may be a higher-level 

representation (say one that involves some 3D structure). The more complex 

representation X may, for example, have evolved subsequently to the simpler 

representation Y; however there is no assumption in our framework that X = W, i.e., that 

X  contains somewhere within it a true description of the state of the objective world. Nor 

do we assume that X is in any objective sense “closer” to W than is Y.  X is simply a 

representational space that has evolved, presumably because it has some adaptive value 

for the organism within its ecological niche. So we cannot assume that the properties of X 

correspond to properties of the objective world W. In other words, if we find some 

structure on X, it does not follow from this that W necessarily has that structure as well.3 

(For a proof of this, see the Measured World section, where we state and prove an 

Invention of Symmetry Theorem). 

For each representational space, say X, there is a perceptual channel from W to 

that representational space, i.e. PX :W → X . We previously used the term perceptual 

strategy to refer to such channels (see Definitions 1 and 2).  These channels define the 

correspondence between the objective world W and the representational spaces (X and Y). 

Recall that, in the general case (i.e., with dispersion), these perceptual channels are 

Markovian kernels (see Definition 2). That is, for each w in W, PX specifies a probability 

measure on X, and PY specifies a probability measure on Y. Recall also, that we make no 

assumptions of any structure on W, except for probability structure—namely, that it is 
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  If	
  X	
  bears	
  no	
  simple	
  relation	
  to	
  W,	
  it	
  is	
  natural	
  to	
  ask:	
  How	
  is	
  perception	
  (and	
  cognition)	
  then	
  
grounded	
  in	
  the	
  objective	
  world?	
  We	
  address	
  this	
  question	
  in	
  the	
  next	
  section	
  where	
  we	
  introduce	
  
the	
  Perception-­‐Decision-­‐Action	
  (or	
  PDA)	
  loop.	
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meaningful to talk of probabilities on W. Specifically, we assume there is a space of 

events  W  on W, and a probability measure µ on this space. This probability measure µ on 

W induces, via the channel PX , a so-called “pushdown” measure µX on X, and similarly 

it induces, via PY, a probability measure µY on Y. One implication of this is that the prior 

probability distribution on X, used in making Bayesian inferences from Y to X, is not the 

“world prior” in our framework, but rather its pushdown probability measure—via the 

perceptual channel PX—onto the representational space X.  

Fitness of course plays a fundamental role in CEP, with the high-level idea being 

that evolution “tunes” the perceptual channel PX (and the representational space X itself) 

so as to increase the expected-fitness payout to the organism. In other words, fitness is 

the key signal that the perceptual channels are “tuned” to communicate. In order to bring 

fitness into the framework, we view organisms as gathering “fitness points” as they 

interact with the world. As noted earlier, fitness depends not only on the objective state of 

the world, but also on the organism in question, its state, and the type of action under 

consideration. We thus define a global fitness function    f :W ×O × S × A→ !+ 	
  where O 

is the set of organisms, S their possible states, and A their possible action classes. Once 

we fix a particular organism o in O, its state s in S, and action class a in A, we have a 

specific fitness function	
  
   
fo, s, a :W → !+ 	
  that assigns fitness points (nonnegative real 

numbers) to each w in W (e.g., to a starving lion eating a gazelle).  

The CEP framework thus differs from the standard Bayesian framework for 

vision in three key respects: (1) it separates the objective world W from the interpretation 

space X (used in the Bayesian inference from Y to X); (2) it introduces perceptual 
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channels PX and PY from W to the spaces X and Y, respectively; and (3) it introduces a 

fitness function on W (see Figure 4(b)). Fitness is in fact the key signal that the perceptual 

channels are tuned to communicate. Given a specific fitness function fo,s,a, evolution 

shapes a source message about fitness, and a channel to communicate that message, in 

such a way so as to hill-climb toward greater expected-fitness payout for the organism. 

Thus the perceptual channel PX :W → X can be expressed as the composition of two 

Markovian kernels: (i) a message construction kernel PCX
:W → M , where M is the set 

of messages, and (ii) a message transfer kernel PTX :M → X that transmits the messages. 

The construction kernel is needed because the message to be transmitted depends not 

only on W and X, but also on the specific fitness function fo,s,a. Thus if we consider a 

different specific fitness function on W, the set of messages to be transmitted may be very 

different.  

 

 

Fig 5. (a) A non-monotonic fitness function on a range of world states. (b) Constructing 

an efficient message for a representational space with four elements. World state values 

are mapped onto these four elements based on a clustering of their fitness values (“very 

high,” “somewhat high,” “somewhat low,” and “very low”). The resulting channel is 
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highly informative about expected-fitness payout, but uninformative about objective 

world states. 

 
Consider again an interface game on a simple example of a “world” W involving a 

single variable that ranges from 0 to 100 (so that each value in this range is a particular 

“world state”; a similar example is discussed in the section on Evolutionary Games). 

Now consider a non-monotonic fitness function on W with two peaks—a slight 

complication of the fitness function in Figures 2 and 3—as shown in Figure 5(a).  As is 

clear from this plot, world state values near 25 and 75 are associated with the most 

fitness, whereas values near 0, 50, and 100 are associated with the least fitness. Let’s 

assume that we’re given a representational space X, containing exactly 4 elements, say 

X = A,B,C,D{ } . If we want to construct an efficient perceptual channel for the above 

fitness function to this representational space, a natural way to proceed is to construct a 

message set   M = B,G,Y , R{ } , and map values of W into M by clustering their fitness 

values into four classes. Specifically, world states in W with very high fitness values are 

mapped onto B (“blue”); those with somewhat high fitness values onto G (“green”), those 

with somewhat low values into Y (“yellow”), and those with very low values into R 

(“red”); see Figure 5(b). In this case, the representation activated in X (based on the 

received message) will be highly informative about fitness. So if an organism has to 

choose between two world states based on the knowledge that one was B and the other Y, 

it would always be able to pick the world state with the higher fitness value.  Note, by 

contrast, that this perceptual channel is poor at conveying the actual state of the world W. 

A message of R, for instance, could be indicative of a world state near 0, 50, or 100; there 

is no way to tell. And similarly for the other possible received messages. For the same 
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reason, this perceptual channel will also be poor at conveying information about a 

(different) fitness function that increased monotonically with world-state values.  

The above example clarifies that the notion of “tuning” a perceptual channel 

depends critically on the specific fitness function. We propose the following general 

definitions: 

 

Definition 8. Given a specific fitness function fo,s,a, a Darwinian ideal observer consists 

of a representational space X, and a perceptual channel PX :W → X that maximizes the 

expected-fitness payout to the organism. 

 

We term such an observer ideal because natural selection does not, in general, 

produce perceptual channels that maximize expected-fitness payout. It produces 

satisficing solutions, rather than optimizing solutions. This more typical satisficing-type 

of solution defines a Darwinian observer: 

 

Definition 9. Given a specific fitness function fo,s,a, a Darwinian observer consists of a 

representational space X, and a perceptual channel PX :W → X that has been shaped by 

natural selection as a satisficing solution to the problem of increasing expected-fitness 

payout to the organism.4 

 

The evolution of perceptual channels and representations 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4	
  Of	
  course,	
  what	
  counts	
  as	
  a	
  satisficing	
  solution,	
  or	
  “sufficient”	
  increase	
  in	
  expected-­‐fitness	
  payout,	
  
depends	
  on	
  a	
  number	
  of	
  factors,	
  including	
  the	
  characteristics	
  of	
  the	
  ecological	
  niche	
  of	
  the	
  organism,	
  
and	
  of	
  its	
  competitors.	
  



Interface	
  theory	
  of	
  perception	
   47	
  

While incorporating the role of probabilistic inference in a fundamental way, CEP 

generalizes the standard Bayesian framework for vision by: (i) allowing for different 

possible relationships between the world W and perceptual representations X (e.g., in 

evolving perceptual systems); (ii) introducing fitness into the framework in a way that 

does not simply reduce it to the loss function; and (iii) modeling the evolution of 

perceptual systems as hill-climbing towards greater expected-fitness payout for the 

organism.  

Below we consider different ways in which such hill-climbing can occur. 

 

 

 

Evolution of perceptual channels 

An obvious way to increase the expected-fitness payout is to “tweak” a perceptual 

channel PX appropriately while keeping the representational space X fixed. A key 

component of such tweaking is the crafting of a set of messages M, and a message 

construction kernel PCX
:W → M  that is highly informative about the fitness function on 

W. As we saw in the example in Figure 2 above, it is possible to have a perceptual 

channel (a composition of a message construction kernel and a transfer kernel) that is 

good at communicating information about fitness but bad at communicating information 

about truth, and vice versa. 

 

Evolution of representational spaces 
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In the situation considered above, the representational space X remained fixed, only the 

channel PX evolved. However, in biological evolution, it is clear that perceptual 

representations themselves evolve. If a representational space X has so little relevant 

structure (say) that, even with the perceptual channel PX tuned optimally (i.e., to 

maximize expected-fitness payout), the amount of information carried about expected 

fitness may still be quite limited. In such cases, there would be evolutionary pressure to 

evolve the representational space X itself, rather than just the perceptual channel to the 

fixed representational space X. At one point in the course of its evolution, for example, an 

organism’s visual system might represent only some rudimentary 2D image structure, 

whereas much later in its evolution, it may acquire representations that segment the 

perceptual world into objects, and represent some 3D structure. Note that this is a more 

dramatic change—one that alters the qualitative format of a representation—when 

compared, say, with a situation where a parameter value within a fixed representational 

space (such as the peak of a spectral sensitivity function) is tweaked by evolutionary 

pressures. 

In the CEP diagram above (Figure 4(b)), we considered representational spaces X 

and Y. But these are of course just two of many such possible representations. In studying 

the evolution of representations, one must consider evolutionary sequences of perceptual 

representations, X1,PX1 → X2,PX2 → X3,PX3 → ...  .5  It is then natural to consider 

whether, and under what conditions, such a sequence might converge to the objective 

world structure. Given our arguments so far, and our review of results with evolutionary 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5	
  We	
  do	
  not	
  imply,	
  of	
  course,	
  that	
  there	
  is	
  single,	
  linear	
  evolutionary	
  sequence	
  of	
  perceptual	
  
representations.	
  Such	
  sequences	
  can	
  branch	
  out,	
  with	
  possibly	
  multiple	
  representations	
  evolving	
  
more	
  or	
  less	
  in	
  parallel	
  while	
  emphasizing	
  different	
  aspects	
  of	
  the	
  original	
  representation	
  (e.g.,	
  color,	
  
motion,	
  and	
  shape	
  in	
  the	
  context	
  of	
  vision).	
  We	
  can	
  nevertheless	
  meaningfully	
  consider	
  ascending	
  
sequences	
  within	
  this	
  larger	
  lattice	
  of	
  evolving	
  representations.	
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games (see the sections on Evolutionary Games and Genetic Algorithms), it seems 

unlikely that a sequence of perceptual representations resulting in monotonically 

increasing expected-fitness payout would generically result in monotonically increasing 

capacity to transmit the “truth” signal (i.e., information about objective world structure). 

The advantage of our formal framework is that it permits one to pose and address such 

questions in a mathematically precise manner. 

 

Dedicated vs. general-purpose representations 

Both possibilities considered above—evolving the perceptual channel PX for a fixed X 

versus evolving X itself—assume a context where a specific fitness function is given, and 

the perceptual channel and/or representational space is tuned to increase the fitness-

payout for that specific fitness function. Recall that a specific fitness function fo,s,a 

presupposes not only a particular organism o, but also a particular state s, and particular 

action class a. Since organisms engage, of course, in a wide variety of action classes, and 

each action class is associated with its own specific fitness function 
   
fo, s, a :W → !+ , one 

must consider not just one but many such specific fitness functions. However—

importantly—optimizing (in the ideal case) a perceptual representation and channel to 

maximize the expected-fitness payout for one specific fitness function does not guarantee 

that this representation and channel will be optimized for other fitness functions 

(associated with other action classes). This raises the problem of how best to tune the 

perceptions of an organism to a variety of different fitness functions. 

There are, broadly speaking, two ways in which the above problem can be 

addressed—both of which evolution seems to have employed. The first is to evolve 
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distinct perceptual representations that are dedicated to different types of tasks or actions. 

In this case, each dedicated representation/channel allows for high expected-fitness 

payout for the specific fitness function, associated with a particular action class. When 

considering a different action class, a different representation/channel would be dedicated 

to communicating information about its expected-fitness signal. Although there is some 

evidence of such dedicated representations in the evolution of vision (e.g., dorsal versus 

ventral pathways in the primate cortex), adopting this strategy indiscriminately can lead 

to quickly proliferating representational spaces—which would quickly become untenable. 

At the other end of the spectrum, one can imagine a single general-purpose 

representation/channel being “tuned” to simultaneously increase expected-fitness payout 

for a large number of specific fitness functions (associated with different action classes). 

In this case, it is unlikely that the perceptual channel can be tuned optimally for all of 

those specific fitness functions. However, if the specific fitness functions are sufficiently 

similar, it is certainly possible that the general-purpose channel can increase expected-

fitness payout sufficiently to make this strategy feasible—especially because doing so 

avoids the “costs” associated with producing multiple representational spaces. 

Although neither strategy is feasible in its extreme form (i.e., using a single strategy 

throughout), a compromise based on a mixture of the two strategies seems reasonable. 

Given a large number of specific fitness functions, group them into clusters based on 

their similarity. Now dedicate a different representational space and channel to each 

cluster. So all specific functions within a cluster are subserved by a single 

representation/channel. This mixed-strategy allows the different representational spaces 

and channels to do a reasonable job of increasing expected-fitness payout for all specific 
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fitness functions in a particular cluster, while keeping the total number of distinct 

representations relatively low. 

 

Perception-Decision-Action (PDA) loop 

The basic claim of Interface Theory is that our representational spaces need not be 

isomorphic or homomorphic to the objective world W (or to a subset of W). Hence when 

we observe some structure in a representational space X (e.g., three dimensionality), we 

cannot simply infer from this observation that W must also have that same structure. 

Successful interaction with the world requires, at least, that an organism be able to 

predict how its perceptions will change when it acts. When we perceive the 3D shape of 

an object, we can predict—based on its various forms of perceived symmetries, for 

instance—what the object might look like if we were to pick it up and rotate it through a 

certain angle. Similarly, when we toss an object in a certain way, we can predict the 

behavior we are likely to observe. Our success in interacting with the world in many 

different ways might suggest that our representations of the objective world W are 

veridical. In other words, it might suggest that our representations must include an 

accurate model of the objective world. How else could we account for such successful 

interactions? 

Thus a natural question that the Interface Theory must address is: If we can 

assume no simple (e.g., isomorphic or homomorphic) correspondence between our 

representations and the objective world, how can we explain our successful interactions 

with the world? We will flesh out an answer to this question in formal terms below, but in 

short the answer is that this is possible because we do not simply passively view the 
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world, but also act on it, and moreover we perceive the consequences of those actions.6 In 

other words, it is possible to interact with a fundamentally unknown world if (i) there are 

perceptual channels; (ii) there is a regularity in the consequences of our actions in the 

objective world; and (iii) these perceptions and actions are coherently linked.  

To return to the metaphor of the desktop interface on a PC, even though visible 

characteristics of the file icons (their shape, color, etc.) do not reflect their objective 

properties (the computer files themselves are not inherently shaped or colored), the 

interface nevertheless allows us to interact successfully with the computer because of the 

coherence between the “perceptual” and “action” mappings. By its very design, the 

desktop interface allows us to interact successfully with the computer even if we are 

fundamentally ignorant of its objective nature. Similarly, the claim of Interface Theory is 

that perceptual properties of space-time and objects simply reflect characteristics of our 

perceptual interface; they do not correspond to objective truth. They are simply 

perceptual representations that have been shaped by natural selection to guide adaptive 

behavior. 

Action plays a crucial role in the evolution of perceptual representations because 

fitness, to which perceptual representations are channels are tuned, depends on the 

actions of an organism. Recall that specific fitness functions depend not just on the 

organism and its state, but also on the action class under consideration. Thus different 

action classes correspond to different expected fitnesses. Since perceptual channels are 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6	
  It	
  should	
  be	
  noted	
  that	
  we	
  are	
  referring	
  here	
  not	
  just	
  to	
  ontogenetic	
  learning	
  (e.g.,	
  of	
  “perception-­‐
action	
  coupling”)	
  but—importantly—phylogenetic	
  as	
  well.	
  Indeed,	
  a	
  basic	
  claim	
  of	
  our	
  framework	
  is	
  
that	
  such	
  perceptual-­‐motor	
  interactions	
  play	
  an	
  important	
  role	
  in	
  the	
  evolution	
  of	
  perceptual	
  
representations	
  and	
  channels.	
  Note	
  also	
  that	
  observations	
  of	
  the	
  actions	
  of	
  other	
  organisms	
  and	
  
objects	
  can	
  also	
  play	
  an	
  important	
  role	
  in	
  the	
  evolution	
  of	
  perceptual	
  representations	
  and	
  channels,	
  
although	
  this	
  will	
  not	
  be	
  a	
  focus	
  of	
  the	
  present	
  paper.	
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tuned to efficiently communicate information about expected fitness, one can expect a 

coupling between the evolution of perceptual channels/representations and the actions 

they inform. 

 

Fig. 6. The Perception-Decision-Action, or PDA, loop. Note that we have added a 

space of possible actions G to the CEP framework. This now yields three Markovian 

kernels: the perception channel P from W to X, the decision kernel D from X to G, and the 

action kernel A from G back to W. 

 

Recall that, in the CEP framework, we have representational spaces (X, Y) and 

perceptual channels (PX, PY) from the world W to these representational spaces. Let us 

focus on one of these representational spaces, say X. (We can therefore drop the subscript 

X from the perceptual channel for the remainder of this section.) To introduce action into 

the framework, we add a space G of possible actions, as shown in Figure 6. (G may have, 

as a subset, a group that acts on the world W, but even so, the action of this group on the 

world may not technically be a group action. See Appendix.)   

Given a perception x in X, the perceptual system must decide which action g to 

take (including the possibility of taking no action). Once an action g has been selected, 
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the observer must then act on the world W: if the action g is deterministic (as in, e.g., a 

group action), then the previous state w of the world is moved to a new state  w′  denoted 

g.w. However, in general we want to allow the possibility that the action on the world is 

stochastic, so we think of g acting via a Markovian kernel A, called the action kernel, as 

follows. For each g ∈G and w∈W ,  A(g).w defines a probability distribution on states of W.   

As a result, we have three Markovian kernels—for perception, decision, and 

action respectively. P is a kernel from W to X, D is a kernel from X to G, and, given the 

previous state w of the world, A is a kernel from G back to W (strictly speaking, A is a 

kernel from  G ×W to	
  W). These three kernels therefore form a loop that we call the PDA 

loop. Because, in our framework, the observer does not know W, it cannot know the 

perceptual channel P (from W to X), nor the action kernel A (from G to W). In other 

words, just as the observer does not know the true source of its perceptions in the 

objective world, similarly it does not know the true effects that its actions are having in 

the objective world. Importantly, however, the observer does know the perceptual 

consequences of those effects, i.e., the results those effects have, via perceptual channel 

P, back in its perceptual representation X.  

In other words, even though the observer cannot know kernels P and A 

individually, it can know the composition kernel AP from actions in G to perceptual 

representations in X. Similarly, it can know the composition kernel DAP from perceptual 

representations X back to X. This is what allows the observer to interact with W, even 

though it is in a fundamental sense ignorant of it. By trying various actions g, and 

observing their perceptual consequences, it can tweak its decision kernel (the one that 

picks actions) so that the resulting perceptual consequences of its actions more 
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consistently enhance fitness; note that this logic applies both phylogenetically and 

ontogenetically. 

We should note that the PDA formalism just described applies not just to humans, 

but also to all organisms. Moreover, a given organism can have many PDA loops, and its 

PDA loops can be nested and networked in an endless variety of ways. Thus the PDA 

formalism provides a powerful abstract framework for cognitive modeling (Hoffman and 

Prakash 2014; Singh and Hoffman 2013). 

 

The measured world 

Despite the evidence from evolutionary games and genetic algorithms that militates against 

veridical perceptions, a hard-nosed critique might still be unfazed: “Look, it’s still the case that 

what you see is what you get. If it looks to me that a rock is round and 5 feet away, I can verify 

this with rulers, laser rangefinders and a host of other instruments, and then confirm it with 

other observers endowed with similar instruments. So my perceptions are in fact veridical.” 

This argument is prima facie plausible and has two key parts. The first part, the 

measured world argument, claims that our perceptions of the world are veridical because they 

agree with our careful measurements of the world. The second part, the consensus argument, 

claims that our perceptions are veridical because human observers normally agree with each 

other about their perceptions and the results of their measurements. 

Both arguments fail. One problem with the measured world argument is that there are 

obvious cases where our perceptions radically disagree with our careful measurements. The sun, 

moon and stars, for instance, all look far away, but they all look about equally far away. 

Nothing in our perceptions prepares us to expect that the sun is almost 400 times further away 
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than the moon, or that the nearest star, Proxima Centauri, is more than 250,000 times further 

away than the sun. 

Even at close distances our perceptions differ from our careful measurements.  

Experiments by Jan Koenderink and his collaborators have found that “observers prefer a 

template view of a cube over a veridical rendering, independent of picture size and viewing 

distance. If the rendering shows greater or lesser foreshortening than the template, the box 

appears like a long corridor or a shallow slab, that is, like a ‘deformed’ cube. Thus observers 

ignore ‘veridicality’” (Pont et al 2012).  

In another study Koenderink reports “we measure the attitudes of pictorial objects that 

appear to be situated in mutually parallel attitudes in pictorial space. Our finding is that such 

objects appear parallel if they are similarly oriented with respect to the local visual rays. This 

leads to `errors' in the judgment of mutual orientations of up to 100 deg.” (Koenderink et al 

2010).  

Mismatches between our perceptions and our careful measurements are not restricted to 

vision. In the case of haptic perceptions, for instance, our perceptual judgments of what feels 

parallel differ systematically from what is parallel in the measured world (Kappers 1999; see 

also Cuijpers et al 2003). Such empirical mismatches between our perceptions and our 

measurements have led Koenderink (2014) to conclude “The very notion of veridicality itself, 

so often invoked in vision studies, is void” and “It is a major obstacle on the road to the 

understanding of perception.” 

A second problem with the measurement argument arises even if the results of 

measurements agree with our perceptions. Measurements are couched in the same language as 

our perceptions. A measurement of depth, for instance, like our perception of depth, is described 
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using spatial predicates (e.g., using centimeters or relative distances). It is these very predicates 

themselves that, according to the results of the evolutionary games, are not veridical. Natural 

selection does not favor true predicates, it favors predicates tuned to fitness functions. 

The consensus argument fares no better, for the simple reason that agreement among 

observers does not entail the veridicality of their perceptions or measurements. Agreement can 

occur if, for instance, the perceptions and measurements of observers are all nonveridical in the 

same way.  Indeed, if the interface theory of perception is correct, and natural selection has 

shaped H. sapiens to share a nonveridical interface, then that is precisely why we agree. But that 

entails nothing about reality. All flies agree: dung tastes great. We might beg to differ. 

Another argument that our perceptions match the measured world is given by Bertrand 

Russell (1912): “if a regiment of men are marching along a road, the shape of the regiment will 

look different from different points of view, but the men will appear arranged in the same order 

from all points of view. Hence we regard the order as true also in physical space, whereas the 

shape is only supposed to correspond to the physical space so far as is required for the 

preservation of the order.” The idea is that certain aspects of our perceptions are invariant under 

changes in viewpoint, and this entails the veridicality of these aspects. 

This argument also fails, but the reason is deeper. Our perceptions of space and time can 

be systematically extended using symmetry groups, e.g., Euclidean, Galilean, Lorentz, Poincare 

and supersymmetry groups (e.g., Cornwell 1997). The measured worlds that result share the 

same predicates of space and time as our perceptions, but don’t suffer the same myopia: the 

Euclidean extension, for instance, easily handles the huge difference in distance between the 

moon and the stars. Changes in an observer’s viewpoint or frame of reference can then be 

modeled by actions of these groups (e.g., translations and rotations) on the appropriately 
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extended spacetime. Russell claims that if a feature of our perceptions is invariant under these 

group actions, then it can be taken as veridical. 

This claim is false. The following theorem shows that the world itself may not share 

any of the symmetries that the observer observes. 

 

Invention of Symmetry Theorem. Let an observer have at its disposal a group G of 

actions on the world W, such that its own perceptual space X is a G-set (i.e., G acts on 

X via the kernel AP by a transitive group action, so that G is a symmetry group of X - see 

appendix). Moreover, let G act on W in such a way that the observer’s perceptual strategy 

mediates this action:   P(g .w) = g .P(w) , where the dot signifies the action of G on each 

set.  Then the measured world of this observer will have the structure of G as its group of 

symmetries. 

 

Proof: Let  Sx  be the fiber of P over   x ∈X . (The points   w,w′ ∈W , are in the same fiber 

if the probability measure   P(w, ⋅)  on    ( X ,X )  is the same as the probability measure 

  P(w′, ⋅) .) Then we may view  W =∪x∈X Sx  and think of each element of W as a pair   (x,s)  

with   s ∈Sx .  Since the function P is onto X, we can view P as a projection:   P(x,s) = x.   

When G acts on W, it will take each element   (x,s),  where   s ∈Sx ,  to an element  

  (g .x, ′s )  with  ′s    
∈Sg .x .  This preserves the fibers of P. Also, we see that when G acts on 

W via the group element g, it automatically acts on X by the same element, since  

  g .x = g .P(w) = P(g .w) .	
   ! 	
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Meaning: Note that the action of G on the world need not be a group action: the 

coordinate s in the fibre could go to any ′s  at all in   
Sg .x . Also, there is no requirement on 

the nature of the different   Sx :  they could be anything at all. So G need not be a symmetry 

group of the world: the world need not have the structure the observer sees. All that is 

required is that the observer’s action on the world faithfully flows back to a group action 

on itself via its own perceptions: the observer’s actions and its own perceived symmetries 

are compatible. That this is mediated in the world does not imply that the world shares 

the symmetry: that the world has this symmetry could be merely a conceit of the observer 

(see also Terekhov and O’Regan (2013) for how Euclidean perceptions could be learned 

by interacting with a non-Euclidean world). An important special case of the Invention of 

Symmetry Theorem arises when the symmetry group is the Lorentz or Poincare group (or 

super-symmetries which include these). In this case we have the corollary that an 

observer can successfully invent space-time even if the objective world has no space-

time. We call this corollary the Invention of Space-Time Theorem. 

Perhaps this theorem seems artificial: Why in the world would an observer’s perceptions 

carve up  W  into such strange subsets  Sx ? Well, one good reason would be a fitness function on 

 W  that happened to be constant, or roughly constant, within each subset  Sx  but differed 

between subsets. Then selection pressures would tend to shape precisely this strange carving of 

the world. In this case, we see the world as Euclidean not because this perception is veridical, 

but because it suitably represents what matters in evolution: fitness. For example, our perception 

of space might simply be a representation of the fitness costs that we would incur for 

locomoting and similar actions. 
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Taking this a speculative step further, since the observer itself is part of the world  W 	
  

which	
  is	
  the	
  domain	
  of	
  the	
  fitness	
  function, it follows that, as the structure of the observer 

evolves, the fitness function itself is likely to change. In this sense, the observer and its fitness 

functions coevolve. If, as seems plausible, observers that are less costly in their requirements of 

information and computation are, ceteris paribus, fitter, then we might find it to be a theorem 

that the coevolution of observer and fitness function leads inexorably to group structures and 

actions. If so, this result would show how the groups that appear in physical theories might in 

fact arise from evolutionary constraints.  

 

Illusion and hallucination 

Perceptual illusions have been subjects of interest for millennia (see Wade 2014, for a review). 

The modern textbook account of perceptual illusions treats them as rare cases in which 

perception fails to be veridical. The textbook Vision Science, for instance, says “... veridical 

perception of the environment often requires heuristic processes based on assumptions that are 

usually, but not always, true. When they are true, all is well, and we see more or less what is 

actually there. When these assumptions are false, however, we perceive a situation that differs 

systematically from reality: that is, an illusion” (Palmer 1999, p 313).  

Gregory (1997) agrees with the textbook account, but admits “It is extraordinarily hard 

to give a satisfactory definition of an ‘illusion’. It may be the departure from reality, or from 

truth; but how are these to be defined? As science’s accounts of reality get ever more different 

from appearances, to say that this separation is ‘illusion’ would have the absurd consequence of 

implying that almost all perceptions are illusory. It seems better to limit ‘illusion’ to systematic 
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visual and other sensed discrepancies from simple measurements with rulers, photometers, 

clocks and so on.”  

The interface theory of perception claims, on evolutionary grounds, that we should 

expect none of our perceptions to be veridical. This entails that the textbook theory of illusions 

as departures from truth can’t be right, and can’t be rescued by half-measures, such as 

restricting illusions to conflicts with rulers. If we concede that there is a vital divide between 

perceptions deemed normal and illusory (which, e.g., Rogers 2014 does not), then we must find 

new grounds for that divide and construct a new theory of illusions.  

The obvious place to seek new grounds is the theory of evolution. The basic mistake of 

the textbook theory is its claim that selection shapes perceptions to be true. This forces illusions 

to be departures from truth. The correct claim is that selection shapes perceptions to guide 

adaptive behavior.  This forces the interface theory of illusions to identify illusions as 

perceptions that fail to guide adaptive behavior (Hoffman 2011). 

  Is this plausible? Let’s check a couple cases. Consider the Necker cube in Figure 7. The 

textbook theory says that what we see is illusory because it’s untrue: we see a 3D cube when in 

truth it’s flat, and we see it flip in depth when in truth nothing changes. The interface theory 

says that what we see is illusory because it fails to guide adaptive behavior: we see a 3D shape 

that we normally could grasp (or avoid, etc.) but here cannot, and we see flips in depth that 

normally require a change in grasp but here do not. In other words, our perception is illusory 

because it invites us to initiate behaviors or make categorizations that don’t work. 
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Fig 7. The Necker cube. 

 

Of course we’re not fooled by the figure or tempted to grab in vain at thin air. The 

textbook theory explains this by claiming that some of our perceptions of this figure are 

veridical: Stereovision reports the truth that the page is flat, and our hands confirm this. The 

interface theory explains that stereovision invites behaviors at odds with those appropriate for a 

cube. This mismatch in behavioral advice, and our confidence in, e.g., the advice of 

stereovision, keeps us from being fooled.  

But doesn’t the textbook theory also say that normal perceptions guide adaptive 

behavior whereas illusory perceptions do not? So what’s the difference, and what’s new about 

the interface theory? Indeed the textbook theory does say this, and even points to evolution as 

the reason. The difference is that the textbook theory, but not the interface theory, claims that 

perceptions guide adaptive behaviors because, and only if, they are veridical. This claim is 

stronger than that of the interface theory, and is in fact false. It gets evolution wrong. 

Changing modalities from vision to taste, a striking gustatory illusion can be induced by 

miraculin, a protein found in the red berries of Richadella dulcifica (Koizumi et al 2011). For 

more than an hour after eating these berries, sour substances taste sweet. The textbook theory of 

illusions says that the sweet taste is illusory because it’s not veridical. But this sounds odd. 

What can we possibly mean by the veridical taste of a molecule? What objective standard tells 

us its true taste? Couldn’t taste vary across species? One might hope, for instance that dung 
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tastes different to coprophagic creatures such as pigs, rodents and rabbits than it does to us 

(Hübner et al 2013). 

The interface theory of illusions does not require implausible claims about the true taste 

of a molecule.  It simply says that the sweet taste induced by miraculin is illusory because it 

does not guide adaptive behaviors. An animal with low blood sugar, for instance, that needed 

quick carbs, would eat the wrong foods. 

The textbook account of hallucinations claims that they are nonveridical perceptions. 

They differ from illusions in a key respect: whereas most normal people report seeing an 

illusion if placed in the right context, hallucinations are idiosyncratic perceptions seen by just 

one, or perhaps a few, individuals, and need not depend on the context. The interface theory of 

hallucinations simply modifies the textbook account in one respect: it replaces the claim that 

hallucinations are nonveridical perceptions with the claim that hallucinations are perceptions 

that do not guide adaptive behavior. The interface theory still says that hallucinations differ 

from illusions in that an illusion is seen by most normal people if placed in the right context, but 

an hallucination is an idiosyncratic perception seen by just one, or perhaps a few, individuals, 

and need not depend on the context. 

Para on weak illusions (disagreement between X and measured world) and also define 

weak veridicality (agreement between X and measured world) tip hat to Gregory here. 

 

 

Conclusion: objections and replies 

Numerous objections have been raised against the interface theory of perception. We conclude 

by canvassing some objections and offering replies. 
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Objection 1. What’s new here? Of course perception is adaptive. We can go back to 

Gibson and see the same point. But how could it be anything else?  

Reply:  Indeed Gibson and others recognized that perception is adaptive. But Gibson’s 

theory differs from the interface theory on three key points. First, Gibson got evolution wrong: 

He claimed that evolution shapes veridical perceptions of those aspects of the world that have 

adaptive significance for us. Thus Gibson proposed strong critical realism, not the interface 

theory. Koenderink (2014) takes Gibson to task for this, noting that he “... holds that a stone of 

the right size has the affordance of being throwable, even in the absence of any observer. His 

affordance is like a property of the stone, much like its weight, or shape. This is quite unlike von 

Uexküll, who holds that a stone can indeed appear throwable—namely, to a person looking for 

something to throw. Here, the affordance is not a property of the stone, but of an observer in a 

certain state. Gibson’s notion derives from his reliance on the All Seeing Eye delusion ...”  

Second, Gibson denied that perception involves information processing. The interface 

theory does not. Evidence for information processing is now overwhelming. 

Third, in place of information processing Gibson proposed direct perception: We 

directly perceive, for instance, that something is edible; we do not use information processing to 

infer from visual and tactile cues that it is edible. But this raises a problem for Gibson: Are 

illusions direct misperceptions? What could one possibly mean by direct misperception? How 

could a theory of direct perception explain illusions? Gibson never solved this problem (Fodor 

and Pylyshyn 1981). Instead, as Gregory (1997) notes: “To maintain that perception is direct, 

without need of inference or knowledge, Gibson generally denied the phenomena of illusion.” 

The interface theory does not deny the phenomena of illusion. Instead, one of its strengths is 

that it offers a new theory of illusions that seems far more plausible than the textbook account.  
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Objection 2. The interface theory of perception makes science impossible. If our 

perceptions are not veridical, then we can never have reliable data to build our theories.  

Reply. The interface theory poses no problem for science. It claims that our perceptions 

are not veridical reports of reality. If this claim is correct, then we can discard a particularly 

simple theory of perception. But that is not to discard the methodology of science. We can 

continue in the normal fashion to propose scientific theories and make falsifiable predictions 

about what we will observe. If our theory attributes some structure to the world  W , and posits 

some functional relation   P :W → X  between the world and our perceptions that is not veridical, 

we can still deduce from  W  and  P  what measurement results we should expect to find in  X . 

The methodology of science is not so fragile that it fails entirely if  P  happens not to be some 

simple function, such as veridicality. 

Objection 3. You use the theory of evolution to show that our cognitive faculties are not 

reliable guides to the true nature of objective reality. But if our faculties are not reliable, then 

the theories we create are not reliable, including the theory of evolution. Thus you are caught in 

a paradox. 

Reply. We use evolutionary games to show that natural selection does not favor veridical 

perceptions. This does not entail that all cognitive faculties are not reliable. Each faculty must 

be examined on its own to determine how it might be shaped by natural selection.  

Perhaps, for instance, selection pressures favor accurate math; one who accurately 

predicts that the payoff for eating an apple today when hungry, combined with the payoff for 

eating an apple yesterday when equally hungry, is roughly twice the payoff obtained on either 

day, might have a selective advantage over his math challenged neighbor. Perhaps selection 

favors accurate logic; one who combines estimates of payoff in accord with probabilistic logic 
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might avoid having nature and competitors make fitness Dutch books against him.7 This is not 

to predict that natural selection should make us all math whizzes for whom statistical inference 

is quick and intuitive. To the contrary, there is ample evidence that we have systematic 

weaknesses and rely on fallible heuristics and biases (Kahneman 2011). But whereas in 

perception the selection pressures are almost uniformly away from veridicality, perhaps in math 

and logic the pressures are not so univocal, and partial accuracy is allowed. The point is that we 

don’t know until we study the implications of natural selection for these specific mental 

faculties.  

Objection 4. You say in the abstract, and elsewhere, that our perceptions have been 

shaped to hide the truth. This is a fallacy. Adaptation doesn’t work that way. Our perceptions 

have been shaped to improve fitness wherever possible—where “fitness” could be non-veridical 

or veridical—so there is no “hiding” which implies an intentionality that evolution can’t and 

doesn’t have.  

Reply. Yes, of course. Which is why, in the introduction, when we say that selection 

shapes perceptions to hide the truth, we add the caveat “without malice aforethought.” We use 

“hide” because it powerfully and succinctly makes an important point, and we’re not terribly 

worried that readers might be taken in by any connotations of intentionality. 

Objection 5. Isn’t the interface theory of perception just the utilitarian theory of 

perception proposed earlier by Braunstein (1983) and Ramachandran (1985; 1990)? 

Reply. Not at all. The utilitarian theory of perception claims that evolution has shaped 

perception to employ a set of heuristics or “bag of tricks”, rather than sophisticated general 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7	
  Recall	
  that	
  a	
  Dutch	
  book	
  in	
  gambling	
  is	
  a	
  set	
  of	
  odds	
  and	
  bets	
  that	
  guarantee	
  one	
  
person	
  a	
  profit	
  regardless	
  of	
  the	
  outcome	
  of	
  the	
  gamble.	
  One	
  can	
  show	
  that	
  if	
  one’s	
  
degrees	
  of	
  belief	
  don’t	
  satisfy	
  the	
  axioms	
  of	
  probability	
  and	
  Bayes	
  rule,	
  then	
  one	
  can	
  
be	
  the	
  victim	
  of	
  a	
  Dutch	
  book	
  (see,	
  e.g.,	
  Jeffrey	
  2004).	
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principles. It claims that that these tricks are employed to recover useful information about an 

objective physical world (which the interface explicitly denies exists). Accordingly, when these 

tricks are sufficiently successful (which sometimes they’re not), our perceptions are thus 

veridical about useful aspects of reality. The utilitarian theory is a strong critical realist theory, 

not an interface theory. 

Objection 6. The interface theory says that our perceptions of objects in spacetime are 

not veridical, but are just species-specific icons. Doesn’t it follow that (1) no object has a 

position, or any other physical property, when it is not perceived, and (2) no object has any 

causal powers? If so, isn’t this a reductio of the interface theory? It entails, for instance, that 

neurons, which are objects in spacetime, have no causal powers and thus cause none of our 

behaviors. 

Reply. The interface theory indeed makes both predictions. If either proves false, then 

the interface theory is false. No one can claim that the interface theory makes no falsifiable 

predictions. 

But neither prediction has yet proven false. Moreover, both predictions are made by the 

standard “Copenhagen” interpretation of quantum theory and by more recent interpretations 

such as quantum Bayesianism (Allday 2009; Fuchs 2010). According to these interpretations an 

electron, for instance, has no position when it is not observed and the state of the electron does 

not, in general, allow one to predict the specific position one will find when making a position 

measurement, i.e., no causal account can be given for the precise measurement obtained. Thus 

both predictions of the interface theory are compatible with current physical theory and 

experimental data.  
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Both predictions are, of course, deeply counterintuitive. Our intuitions here are 

programmed into us early in life. Belief in “object permanence,” the belief, e.g., that a doll still 

exists and has a position even when it’s hidden behind a pillow, begins as early as 3 months 

postpartum and is well-ensconced by age 18 months (Bower 1974; Baillargeon and DeVos 

1991; Piaget 1954). Rich causal interpretations of physical objects are evident in children by age 

6 months (Carey 2009; Keil 2011). We have been shaped by evolution to believe early on that 

objects exist unperceived and have causal powers. 

The interface theory predicts that these beliefs are adaptive fictions.  

Objection 7. The interface theory is nothing but the old sense-datum theory of 

perception—which claims that we see curious objects called sense data and do not see the world 

itself—that philosophers rightly discarded long ago. 

Reply. The short reply is: No, the interface theory is not a sense-datum theory and does 

not entail the existence of the sense data, or sensibilia, posited by such theories. 

The longer reply is: “Sense-datum theory” covers a diverse set of philosophical ideas 

about perception. Precursors to these ideas can be found in the notion of sensory impressions or 

ideas proposed by the British empiricists, Locke, Berkeley and Hume. The origin of the modern 

conceptions of sense data can be traced to the writings of Moore (1903) and Russell (1912; 

1918).  

According to the act-object theory of sense data originated by Moore, each sense datum 

is a real concrete object with which an observer has a primitive relation in an act of perceptual 

awareness, but which nevertheless is distinct from that act of awareness. The act of perceptual 

awareness is a kind of knowing, and the sense datum thus known has exactly the properties it 

appears to have. Moreover, some philosophers propose that sense data have exact and 
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discernible properties (if a sense datum is speckled, the sense datum has a precise number of 

speckles), and that they are objects that are private to each subject and distinct from physical 

objects.  

The sense datum theory has been criticized by philosophers for, inter alia, conflating 

phenomenal consciousness with conceptual consciousness (Coates 2007; Sellars 1956), for 

getting wrong the phenomenology of ordinary perceptual experience (Austin 1962; Firth 1949; 

Merleau-Ponty 1945), for requiring determinate phenomenal properties (Barnes 1944), and for 

breeding epistemological issues such as skepticism or idealism. Logical positivists and logical 

empiricists conscripted sense data into service as the incorrigible foundation for a verificationist 

program of knowledge, and when this program was discredited, e.g., by Quine’s (1951) attack 

on the analytic/synthetic division and Hanson’s (1958) attack on the theory neutrality of 

observation data, the theory of sense data suffered similar decline. 

Sense data also run afoul of current theory and empirical data in vision science. The 

shapes, lightness, colors and textures of sense data were claimed to be seen directly and without 

intervening inferences. It is now clear that these visual properties are the end products of 

computations of such sophistication that they are still not fully understood (e.g., Frisby and 

Stone 2010; Knill and Richards 1996; Marr 1982; Palmer 1999; Pizlo et al. 2014). 

The interface theory does not entail that perception is an act whose objects are sense 

data, or that sense data are an incorrigible foundation for an edifice of verified knowledge. The 

interface theory is metaphysically neutral, in that it does not posit anything about the world  W  

other than measurability. In particular, in addition to not entailing the existence of sense data, 

the interface theory does not entail idealism. However, it can be embedded in a mathematically 

rigorous theory of idealism (Hoffman 2008; Hoffman and Prakash 2014).  
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The interface theory is a general, but mathematically precise, theory of perception and 

action. It says that in a world represented by the probability space    (W ,W ,µ) , a perceiving 

agent,  A , is a six-tuple    A = ( X ,G, P, D, A, N ) , where  X  and  G  are measurable spaces, 

   P :W ×X → [0,1] ,    D : X ×G → [0,1]  and    A :G ×W → [0,1]  are Markovian kernels, and  N  is 

an integer.  X  denotes the agent’s possible perceptions,  G  its possible actions,  P  its perceptual 

mapping,  D  its decision process,  A  its action on the world, and  N  its counter of perceptions 

(as described more fully in the section on the PDA Loop). Perceiving agents can be combined, 

in several mathematically precise ways, to create new perceiving agents that are not reducible to 

the original agents (Hoffman and Prakash 2014). 

When the evolution of a perceiving agent is shaped by a (suitably normalized) fitness 

function    f :W → !+ , then that agent is shaped towards an X  and  P  that maximize the mutual 

information   I(µ f ;µ f P)  and not the mutual information   I(µ;µP) ; this is the formal way to 

state that perception is tuned to fitness rather than to veridicality.  

This, in a nutshell, is the mathematical structure of the interface theory. The proper 

philosophical interpretation of this structure is a separate and interesting question. In response to 

this question we, as the authors of the theory, can opine but are not final authorities. When 

Schrodinger, for instance, first proposed his famous equation, he mistakenly interpreted its 

wavefunctions as waves of matter; Born later corrected that interpretation to waves of 

probability amplitudes. 

With this proviso, we interpret  X  as the possible phenomenal states of the observer, and 

we interpret a specific  x ∈X  not in terms of an act-object relation as proposed by the sense-

datum theory, but as a specific phenomenal aspect or constituent of the observer’s mind; ours is 

a one-place account rather than the two-place account of the sense datum theory. In this regard, 



Interface	
  theory	
  of	
  perception	
   71	
  

our interpretation is much like the critical realist interpretation of Coates (2007). Also like 

Coates, we take phenomenal qualities to carry information about the environment that normally 

triggers them. However, whereas Coates takes this information to be about mind-independent 

physical objects, we take it to be information about fitness and the fitness consequences of 

possible actions; there are no mind-independent physical objects to be targets of intentional 

content as proposed by Coates. 

Objection 8. The interface theory entails that there are no public physical objects. But 

this is absurd. Even our legal system knows this is absurd. My car is a public object, and if you 

steal it you break the law. 

Reply. The interface theory denies that there are public physical objects, but it does not 

deny that there is an objective reality that exists even if not perceived by a specific observer. 

When you and I both look at your car, the car I experience is not numerically identical to the car 

you experience. We both interact with the same objective reality, and we both represent our 

interaction with a species-specific set of experiences that we refer to as a car. But the objective 

reality is not a car and doesn’t remotely resemble a car; moreover, the car of your experience is 

distinct from the car of my experience. 

This might seem puzzling or logic chopping, but it’s quite straightforward. Consider, for 

instance, the Necker cube of Figure 4. Sometimes you see a cube with corner A pointing 

forward (call it “cube A”), and other times a cube with corner B pointing forward (“cube B”). 

Your cube A experience is not numerically identical to your cube B experience. If you and a 

friend are both looking at Figure 4, and she experiences cube A while you experience cube B, 

then clearly your cube experiences are not numerically identical. Even if you both see cube A at 

the same time, your cube A experiences are not numerically identical. And yet we have no 
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problem talking about “the cube,” because we both assume that the experience of the other, 

although numerically distinct from our own experience, is nevertheless similar enough to permit 

real communication. In the same way, we can discuss our migraine headaches, even though 

there are no public headaches; we assume that the headaches of others are similar enough to our 

own to make communication possible. 

When I see your car, I interact with an objective reality, but my experience of that reality 

as a car is not an insight into that reality, but is merely a species-specific description shaped by 

natural selection to guide adaptive behaviors. The adaptive behaviors here might include 

complimenting you on your car or offering to wash it, but not stealing it.  If I do steal it, I’ve 

changed objective reality in a way that injures you and rightly puts the law on your side, but the 

reality that I’ve changed doesn’t resemble a car.  

Similarly, if I’m in California and you’re in New York and we’re competing in an online 

video game trying to steal cars, I might find “the Porsche” before you do and steal it. But “the 

Porsche” on my screen is not numerically identical to “the Porsche” on your screen. Nor, alas, is 

there a real Porsche anywhere behind our screens. What is behind my screen that triggers it to 

display a Porsche is a complex tangle of code and transistors that does not resemble a Porsche. I 

assume that “the Porsche” on my screen is similar to “the Porsche” on yours, so that we are can 

genuinely discuss and compete for “the Porsche”. But there is no public Porsche. 

We understand that our denial of public physical objects—our claim that physical 

objects are simply icons of one’s perceptual interface—appears, to almost everyone, as not just 

counterintuitive but prima facie false. To many it’s not worth dignifying with a response. That’s 

how deeply H. sapiens assumes the existence of public physical objects. But this assumption is 

an adaptive fiction shaped by natural selection because it’s helpful in the practical endeavors 
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required to survive and reproduce. This fiction becomes an impediment when we turn to 

scientific endeavors such as solving the mind-body problem. Here the assumption that neurons 

are public physical objects, that they exist unperceived and have causal powers, is the starting 

point for almost all theories, and is, we propose, the reason for the (widely acknowledged) 

failure of all such theories.  

Objection 9. You say that evolution drives veridicality to extinction only when it 

conflicts with fitness. But, in general, truth is useful and indeed optimal within the everyday 

human scheme: e.g., my chances of rendezvousing with you are better if I know the truth about 

where you are.  

Reply. Yes, my chances of rendezvousing with you are better if I know the truth about 

where you are, just as my chances of deleting a text file are better if I know the truth about 

where the icon of the text file is on my desktop interface. However, a truth about the state of the 

interface is not ipso facto a truth about objective reality. Knowing that the icon is in the center 

of the desktop does not entail that the file itself is in the center of the computer. Similarly, 

knowing where in space-time to rendezvous with you does not entail any knowledge of 

objective reality; indeed it does not even entail that space-time itself is an aspect of objective 

reality (as we proved above in the Invention of Space-Time Theorem). An interface can be an 

accurate guide to behavior without being an accurate guide to the nature of objective reality. 

 

Appendix 1: Measure Theory and Group Actions 

Measure Theory 

The minimal commonly accepted structure for probability spaces and their appropriate 

mappings is as follows. A measurable space is a set X together with a distinguished collection 
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of subsets (the collection of events)   X . In order to be able to assign probabilities to events, this 

collection needs to satisfy the following three properties: (1) , (2)  is closed under 

countable union, and (3)  is closed under complement. We say that  is a -algebra on X, 

and then any function µ  assigning values between 0 and 1 to the events in  is a probability 

measure if it satisfies: (1)  µ(φ) = 0,  where φ  is the empty set, (2) µ  is -additive on   X :  If 

  {Ei}i=1
N  is a disjoint collection of events in (i.e.,   

Ei ∩ E j = φ,i ≠ j ), then 

  
µ(∪i=1

N {Ei}) = µ
i=1

N

∑ (Ei ), for N either finite or  ∞. Once this is done, all the usual rules of 

probability obtain. 

Finally, the collection of “appropriate” mappings   f : X → Y  between measurable spaces 

   ( X ,X )   and    (Y ,Y)  are called, again, the measurable mappings: f is measurable if all its values 

in an event F in   Y  came precisely from an event E in  X . Technically, the measurability of the 

function f can be written as:    ∀F ∈Y , f −1(F )∈X  (Revuz 1984). In statistics, measurable 

mappings on X are the familiar random variables on X, taking values in Y. 

	
  
 

Group Actions 

Definition: A group G acts on a set X if there is a mapping  which we will 

denote by  such that, if e is the identity element in G,  and 

  

The group action is transitive if, given any pair of points  there is an 

element  with  A set X acted on transitively by the group G is said to be a 

G-set.  

  X ∈X  X

 X  X σ

 X

σ

 X

 G × X → X

  (g,x)→ g.x   e.x = x,∀x ∈X

  ∀g,h∈G,g.(h.x) = (gh).x,∀x ∈X .

  x, y ∈X

 g ∈G   g.x = y.
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In terms of geometry, X is a differentiable manifold and G is, in addition, a Lie 

group with a smooth action on X.  In this instance we say that G is the symmetry group of 

the geometry on the homogeneous space X. We do not address this situation in this paper. 

 

Examples: The action of G in the PDA loop on W, relevant to the IOS Theorem 

Example 1: Suppose that all fibres  Sx  (see the proof of the Invention of Symmetry 

Theorem) are the same set,  S  say. Then   W = X × S :  the world is a Cartesian product. If 

X is a G-set, let the action of  g ∈G  on   (x,s)  be given by   g .(x,s) = (g .x,s).  This is a 

group action on W, but it is trivial on the fibers and is certainly not transitive on the 

whole of W, which is thus not a G-set.  !   

Example 2: Here is a toy example of an agent’s G acting on W in such a way that 

there is a bona-fide group action of G on X and we always have   
g .s ∈Sg .x  whenever 

  s ∈Sx , yet there is no group action on W as a whole: W is not a G-set.  

Let   X ={x,x′}  be a set with two elements and let   G ={e,a},  with   a
2 = e.  Let  

  S ={y, y′}  and   W = X × S.  Let G act on W as follows:   e.w = w,∀w∈W  and 

  a.(x, y) = ( ′x , ′y ) ;   a.(x, ′y ) = ( ′x , ′y ) ;   a.( ′x , y) = (x, y) ;   a.( ′x , ′y ) = (x, ′y ). Then G acts 

transitively on X, but its effect on W as a whole is not a group action. We have   a2 = e  but  

  a .(a .(x, y))    = a .(x′, y′)    = (x, y′) and this does not equal   (x, y),  as it should.  !  

The reader can see how easy it is to generate further examples of this behavior, 

since we have adduced no structure on the action mappings A other than that they are 

functions. The world is much richer than the agent, so it is clear that no A can be onto the 



Interface	
  theory	
  of	
  perception	
   76	
  

world. In this example, A is not 1:1, but it is not at all hard to generate examples where A 

is 1:1, as the next example shows.  

Example 3: Let X = {x, ′x }  and  S = ! , the natural numbers. Again, let the group  

be  !2 , the 2-group {e,a} . Let   a .(x,s) = (x′,s+ 3) 	
  and	
    a .(x′,s) = (x,s) .	
  Then	
  

  a .a .(x,s) = (x,s+ 3) ≠ e.(x,s) = (x,s) . 

 

 

 

 

References 

Adelson, E. H., & Pentland A. (1996). The perception of shading and reflectance. In 

Perception as Bayesian Inference, Eds D.C. Knill, W. Richards. Cambridge: 

Cambridge University Press, pp. 409–423. 

Allday, J. (2009). Quantum reality: theory and philosophy. Boca Raton, FL: CRC Press. 

Allen, J.A., & Clarke, B.C. (1984). Frequency-dependent selection—homage to Poulton, 

E.B. Biological Journal of the Linnean Society, 23, 15-18. 

Austin, J.L. (1962). How to do things with words. Oxford: Clarendon Press. 

Baillargeon, R., and DeVos, J. (1991). Object permanence in young infants: further 

evidence. Child Development, 62, 1227–1246. doi: 10.2307/1130803 

Barnard, C. J., & Sibly, R. M. (1981). Producers and scroungers: a general model and its 

application to captive flocks of house sparrows. Animal Behavior, 29, 543–550. 

Barnes, W. F., (1944). The myth of sense-data. Proceedings of the Aristotelian Society, 45. 



Interface	
  theory	
  of	
  perception	
   77	
  

Berkeley, G. (1710/2012). A treatise concerning the principles of human knowledge. New York: 

Dover. 

Berkeley, G. (1713/1979). Three dialogues between Hylas and Philonous. Indianapolis: 

Hackett. 

Bloom, A. (1991). The republic of Plato. New York: Basic Books. 

Bower, T. G. R. (1974). Development in infancy. San Francisco: Freeman Press. 

Brainard, D.H., Freeman, W.T. (1997). Bayesian color constancy. Journal of the Optical 

Society of America A, 14, 1393–1411. 

Byrne, A., & Hilbert, D. R. (2003). Color realism and color science. Behavioral and Brain 

Sciences, 26, 3–26. 

Braunstein, M.L. (1983). Contrasts between human and machine vision: should technology 

recapitulate phylogeny? In Human and machine vision, ed. J. Beck, B. Hope, and A 

Rosenfeld. New York: Academic Press. 

Brewer, W. (2011). Perception and its objects. New York: Oxford, UK: Oxford University 

Press.  

Coates, P. (2007). The metaphysics of perception. New York: Routledge. 

Cornwell, J.F. (1997). Group theory in physics. San Diego: Academic Press. 

Cover, T. M., & Thomas, J. A. (2006). Elements of information theory. New York: Wiley.  

Cox, R. T. (1961). The algebra of probable inference. London: Oxford University Press. 

Cuipers, R.H., Kappers, A.M.L., and Koenderink, J.J. (2003). The metrics of visual and haptic 

space based on parallelity judgements. Journal of Mathematical Psychology, 47, 278–

291. 



Interface	
  theory	
  of	
  perception	
   78	
  

Dawkins, R. (1983). Universal darwinism. In Evolution from molecules to man, ed. D. S. 

Bendall. New York: Cambridge University Press. 

Dennett, D. C. (2005). Darwin's dangerous idea. New York: Touchstone Press. 

Descartes, R. (1644/1647/1984). Principles of philosophy. (V.R. Miller & R.P. Miller 

translators), Dordrecht: Reidel Publishing. 

Fechner, G. (1860/1966). Elements of psychophysics. (H.E. Adler translator). New York: Holt, 

Rinehart and Winston. 

Feldman, J. (2013). Tuning your priors to the world. Topics in Cognitive Science, 5, 13–34. 

Fields, C. (2014). This boundary-less world. In Brain, mind, cosmos, ed. D. Chopra. La Costa, 

CA: Chopra. Chapter 13. 

Firth, R., (1949). Sense-data and the percept theory. Mind, 58 & 59.  

Fish, W. (2009). Perception, hallucination, and illusion. New York: Oxford University Press. 

Fish, W. (2010). Philosophy of perception: a contemporary introduction. New York: Routledge. 

Fodor, J.A, & Pylyshyn, Z.W. (1981). How direct is visual perception?: Some reflections on 

Gibson’s “Ecological Approach”. Cognition, 9, 139–196. 

Frisby, J.P., & Stone, J.V. (2010). Seeing: the computational approach to biological vision. 

Cambridge, MA: MIT Press. 

Fuchs, C. (2010). QBism, the Perimeter of Quantum Bayesianism. Available online at: 

arXiv:1003.5209v51. 

Galilei, G. (1623/1957). The assayer. In S. Drake (translator) Discoveries and opinions of 

Galileo. New York: Random House. 

Geisler, W.S. (2008). Visual perception and the statistical properties of natural scenes. 

Annual Review of Psychology, 59, 167–192. 



Interface	
  theory	
  of	
  perception	
   79	
  

Geisler, W.W., & Diehl, R.L. (2002). Bayesian natural selection and the evolution of perceptual 

systems. Philosophical Transactions of the Royal Society of London B, 357, 419–448. 

Geisler, W.S., & Diehl, R.L. (2003). A Bayesian approach to the evolution of perceptual and 

cognitive systems. Cognitive Science, 27, 379–402. 

Gibson, J.J. (1986). The ecological approach to visual perception. Hillsdale, New Jersey: 

Lawrence Erlbaum. 

Gregory, R.L. (1997). Knowledge in perception and illusion. Philosophical Transactions of the 

Royal Society of London B, 352, 1121–1128. 

Gwynne, D.T., & Rentz, D.C.F. (1983). Beetles on the bottle: male buprestids make stubbies for 

females. Journal of Australian Entomological Society, 22(79), 80. 

Hanson, N. R., (1958). Patterns of discovery. Cambridge: Cambridge University Press. 

Hardin, C.L. (2008). Color qualities and the physical world. In E. Wright (Ed.) The case for 

qualia. Cambridge, MA: MIT Press, pp. 373–404. 

Harper, G. R., & Pfennig, D. W. (2007). Mimicry on the edge: why do mimics vary in 

resemblance to their model in different parts of their geographical range? Proceedings of 

the Royal Society, B, 274, 1955–1961. 

Hofbauer J.,  & Sigmund K. (1998). Evolutionary games and population dynamics.  New York: 

Cambridge University Press. 

Hoffman, D. D. (1998). Visual intelligence: how we create what we see. New York: W. W. 

Norton. 

Hoffman, D.D. (2008). Conscious realism and the mind-body problem. Mind & Matter, 6, 87–

121. 

Hoffman, D. D. (2009). The interface theory of perception. In S. Dickinson, M. Tarr, A. 



Interface	
  theory	
  of	
  perception	
   80	
  

Leonardis, B. Schiele, (Eds.) Object categorization: computer and human vision 

perspectives, New York: Cambridge University Press, pp. 148–165. 

Hoffman, D. D. (2011). The construction of visual reality. In J. Blom & I. Sommer (Eds.) 

Hallucinations: theory and practice, New York: Springer, pp. 7–15. 

Hoffman, D. D. (2012). The sensory desktop. In J. Brockman (Ed.) This will make you smarter: 

new scientific concepts to improve your thinking. New York: Harper Perennial, pp. 135–

138. 

Hoffman, D. D. (2013). Public objects and private qualia: the scope and limits of 

psychophysics. In L. Albertazzi (Ed.) The Wiley-Blackwell handbook of experimental 

phenomenology. New York: Wiley-Blackwell, pp. 71–89. 

Hoffman, D.D., & Prakash, C. (2014). Objects of consciousness. Frontiers of Psychology, 

5:577. DOI: 10.3389/fpsyg.2014.00577. 

Hoffman, D. D., & Singh, M. (2012). Computational evolutionary perception. Perception, 41, 

1073–1091. 

Hoffman, D. D., Singh, M., & Mark, J. T. (2013). Does natural selection favor true perceptions? 

Proceedings of the SPIE 8651, Human Vision and Electronic Imaging XVIII, 865104. 

DOI: 10.1117/12.2011609. 

Horváth, G., Bernáth, B., & Molnár, G. (1998). Dragonflies find crude oil visually more 

attractive than water: Multiple-choice experiments on dragonfly polarotaxis. 

Naturwissenschaften, 85, 292–297. 

Horváth, G., Malik, P., Kriska, G., & Wildermuth, H. (2007). Ecological traps for dragonflies in 

a cemetery: the attraction of sympetrum species (odonata: Libellulidae) by horizontally 

polarizing black gravestones. Freshwater Biology, 52, 1700–1709. 



Interface	
  theory	
  of	
  perception	
   81	
  

Hübner, S., Töle, J. & Meyerhof, W. (2013). Taste and nutrition. Ernaehrungs Umschau 

international 60(12): 222– 227, DOI 10.4455/eu.2013.042. 

Jaynes, E.T. (2003). Probability theory: the logic of science. Cambridge: Cambridge 

University Press. 

Jeffrey, R. (2004). Subjective probability: the real thing. Princeton, NJ: Princeton 

University Press. 

Kant, I. (1783/2012). Prolegomena to any future metaphysics that will be able to present itself 

as a science. (J.W. Ellington translator), Indianapolis: Hackett Publishing. 

Kahneman, D. (2011). Thinking fast and slow. New York: Farrar, Strous and Giroux. 

Kappers, A.M.L. (1999). Large systematic deviations in the haptic perception of parallelity. 

Perception, 28, 1001–1012. 

Keil, F.C. (2011). Science starts early. Science, 33, 1022–1023.  

Kersten, D., Mamassian, P., & Yuille, A.L. (2004). Object perception as Bayesian 

inference. Annual Review of Psychology, 555, 271–304. 

Kleffner, D., & Ramachandran, V. (1992). On the perception of shape from shading. 

Perception and Psychophysics, 52, 18–36. 

Knill, D., & Richards, W. A. (Eds.). (1996). Perception as Bayesian inference. New York: 

Cambridge University Press. 

Koenderink, J.J. (2010). Color for the sciences. Cambridge, MA: MIT Press. 

Koenderink, J.J. (2011). Vision as a user interface. Human Vision and Electronic Imaging XVI, 

SPIE Vol. 7865. doi: 10.1117/12.881671. 

Koenderink, J.J. (2013). World, environment, umwelt, and inner-world: a biological perspective 

on visual awareness, Human Vision and Electronic Imaging XVIII, SPIE Vol. 8651. doi: 



Interface	
  theory	
  of	
  perception	
   82	
  

10.1117/12.2011874. 

Koenderink, J.J. (2014). The all seeing eye? Perception, 43, 1–6. 

Koenderink, J.J., van Doorn, A.J., de Ridder, H., & Oomes, S. (2010). Visual rays are parallel. 

Perception, 39, 1163–1171. 

Koizumi, A., Tsuchiya, A., Nakajima, K., Ito, K., Terada, T., Shimizu-Ibuka, A., Briand, L., 

Asakura, T., Misaka, T., & Abe, K. (2011). Human sweet taste receptor mediates acid-

induced sweetness of miraculin. Proceedings of the National Academy of Sciences, 108 

(40), 16819–16824. 

Laflaquiere, A., Terekhov, A.V., Gas, B., & O’Regan, K.O. (2013). Learning an internal 

representation of the end-effector configuration space. IEEE Conference on Intelligent 

Robots and Systems, Tokyo, Nov. 3-7, 1230–1235. 

Land, M.F., & Nilsson, D. (2012). Animal eyes. New York: Oxford University Press. 

Laplace P S, 1774 “Me ́moire sur la probabilite ́ des causes par les e ́vènemens (Memoir on 
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