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We propose a model of direction-sensitive units in human vision. It isamodified and elaborated version of a model
by Reichardt [Z. Naturforsch. Teil B 12, 447 (1957)]. The model is applied to threshold experiments in which
subjects view adjacent vertical bars with independently (typically sinusoidally), temporally modulated luminances.
The subject must report whether the patterns moved to the left or to the right. According to the model, a basic mo-

tion-detecting unit consists of two subunits tuned to opposite directions. Each performs a spatial and temporal _

linear filtering of its input; outputs of the filters are multiplied, and the multiplied output is integrated (for a time
that is long relative to the modulation period). The model’s output consists of the difference between the subunit
outputs. Direction of movement is indicated by the sign of the model output. Mathematical analysis of the model
yielded several predictions that were confirmed experimentally. Specifically, we found that (1) performance with
complex patterns can be predicted by spatiotemporal Fourier analysis that results in the segregation and linear ad-
dition in the output for different temporal frequencies; (2) under special conditions, performance depends on the
product of adjacent bar amplitudes, offering strong support for the multiplication principle; (3) performance is un-
affected by addition of stationary patterns; and (4) addition of homogeneous flicker normally produces no effect
but under special conditions reverses perceived direction. These and other results confirm our model and reject
several other models, including Reichardt’s original model.
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INTRODUCTION

Moving objects form a complex, spatiotemporal stimulation
pattern. In a large variety of situations, the human visual
system manages to infer both direction and amount of
movement from this pattern. What are the algorithms by
which our visual system accomplishes this task?

There is a good chance that this question does not have a
general answer. That is, there is widespread agreement that
the human visual system contains at least two motion analysis
systems.1"* The first system, the short-range process! is as-
sumed to operate primarily under conditions of temporally
and spatially continuous stimulation. The second system
operates in classical apparent-motion situations, in which wide
spatial and temporal intervals separate successive stimula-
tions. The typical assumption is that the first system consists
of simple mechanisms early in the visual system and that the
second system involves higher-level processes. We are con-
cerned here with the first system.

Campbell and Robson,5 Wilson and Bergen, and many
others have proposed that the human visual system contains
channels that have spatiotemporal frequency selectivity.
Moreover, these channels appear to perform a Fourier analysis
in the sense that one can predict psychophysical responses
quite well on the basis of a three-dimensional (two spatial and
one temporal dimension) Fourier analysis of displays and by
considering the dominant component.”® So far, the work on
frequency-selective channels has not led to the development
of models describing mechanisms that perform the Fourier
analysis of moving stimuli. In this paper, we propose such a
model. It is a modified and elaborated version of a model
developed in the context of experiments on insects by Rei-
chardt and his collaborators.10

Outline
We discuss the following in order: (1) our stimuli; (2) Rei-

chardt’s original model; (3) our modifications and elaborations
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of it; (4) several alternative models (developed mostly in ar-
tificial intelligence research); (5) Experiments 1-3, which serve
primarily as demonstrations of the original and the elaborated
Reichardt models; (6) Experiment 4, which shows the neces-
sity of our modifications and elaborations; and (7) Experi-
ments 5-7, which test the original and the elaborated Rei-
chardt model against the other models.

1. MOTION ANALYSIS MODELS

A. Basic Motion Display

We give here a brief description of our displays, which are
patterns of white light produced on a computer controlled
cathode-ray tube (CRT) that is viewed binocularly in a dimly -
lighted room. Let the time-varying two-dimensional display
be L(x,y,t), where L is the luminance (gray level) at a location
with spatial coordinates x and y [in degrees of visual angle (in
degrees)] at time ¢ (in seconds). Our displays have the fol-
lowing properties.

First, they are unidimensional and move in the horizontal
direction. That is, L(x, ¥, t) is a function only of x and ¢
within the viewing window and zero otherwise. For short, we
will write L(x, t).

Second, L(x, t) is periodic with time, with period T sec. An
important implication is that for fixed x, L (x, ¢) has a Fourier
series decomposition in the time dimension, Z;., (.
sin(2rnwt — 1,). Here, w =1/T, and {,, and 5, are the usual
Fourier series coefficients. Taking into account that, in
general, {, and 7, depend on the spatial coordinate x, we can
write L(x,t) = 259 L,(x, t), where

Lyn(x,t) = {(x)sin[27nwt — 9, (x)]. (1)

‘We will refer to each L, (x, t) as a temporal-frequency com-
ponent of L(x, t) with temporal frequency nw Hz.

Third, displays in our experiments consist of identically
shaped parallel vertical bars, By, . . . , B,,, each having its own
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Fig. 1. Representation of a five-field display. A, luminance mod-
ulations in each of five fields, L;(t) = Lo; + m;h(t — ¢;), is here rep-
resented as L;(t)/Lyes, where Lyer = 51 cd/m? for most displays. The
modulation function h(¢) is an 8-point approximation to a sinusoid,
which is indicated by a continuous curve for the leftmost field. Be-
tween-field asynchrony in this example is 128 msec (Y4 cycle, 7/2 rad).
The temporal phase line (dashed line) interconnects the peak lumi-
nances of the dominant Fourier component in each bar. B, the
five-field display. Overall height and width are 0.44 and 0.22 deg,
respectively.

luminance modulation function L;(t). More formally, let
[bj-1, b;] be the x interval occupied by bar B;. Then L(x, t)
=L;(t)ifx € [bj—1, b;]. Inaddition, the functions L;(t) are
always of the form

L;(t) = Loj + mjh(t — 9;). 2)

In other words, the same time-periodic modulation function
h(t) occurs in each bar, but with different mean luminance
Ly;, amplitude mj, and phase ¢;.

Figure 1 represents a display in which Lo; = 100 luminance
units, m; = 10 units, and £ (¢) is the sine function with a period
T of 512 msec (hence temporal frequency w of 1.95 Hz) and
a between-bar asynchrony 9;., — ¢¥; of 128 msec (T/4).
When the between-bar asynchrony is the same for all pairs of
adjacent bars, it will be called the phase difference of a display,
denoted ¢ in radians; in the figure, ¢ = 7/2.

The time periodicity of h(t) implies that it has the Fourier
series expansion

h(t) = i en Sin(2wnwt — k). (3)

n=0

When h is dominated by only one Fourier component (with
temporal frequency wng), there is a simple heuristic for in-
ferring direction of motion from stimulus representations of
the type depicted in Fig. 1. Consider the dashed line in Fig.
1 that interconnects the nearest peak luminances of the
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dominant Fourier component in each bar (indicated by a
continuous curve for the first bar). We call this line the
temporal phase line. The sign and (inverse) magnitude of its
slope are indices of direction and velocity of motion: right-
ward motion leads to a temporal phase line that descends
(from left to right), and fast motion leads to a shallow line.
Below, we shall see that the directional response of a simplified
version of the Reichardt model can be predicted on the basis
of the temporal phase line.

B. Reichardt’s Model

The original Reichardt modell® contains temporal filters that
are irrelevant to the predictions tested in this paper.
Therefore we consider a slightly simplified version of Rei-
chardt’s model.

According to Reichardt, a motion detector consists of two
subunits that are mirror images of each other (Fig. 2A). The
input to these subunits consists of L(x, t) sampled at locations
Lleft a0 X right, i.€., L(X1eft, t) and L(xright, £). In other words,
the model assumes that input channels have point receptive
fields that are shared by the two subunits.

The subunits are tuned to motion in opposite directions.
Output from the right subunit, which is tuned to rightward
motion, reflects how well L (x e, t), after passing through a
linear temporal filter, matches L (xright, t). The left subunit
does the corresponding operation.

The final output of the detector is given by the difference
between the subunit outputs. The sign of this difference in-
dicates direction of motion. For now we leave it open whether
this subtraction operation reflects a conscious process of
comparing the subunit outputs or a preconscious inhibitory
process in which only the final result is accessible to con-
sciousness.

Before we give a detailed description of the original Rei-
chardt model, we would like to point out three potential ob-
stacles that the reader might have in developing an intuition
for it. The first is that one usually thinks of motion as in-
volving a spatial object that occupies different locations at
different points in time. In the model, one has to do the re-
verse—think of motion as involving a temporal object (lumi-
nance modulation pattern) that occurs at different points in
time in different locations. The second is that a linear tem-
poral filter does more than perform a simple delay operation.
It delays different temporal modulation functions by different
amounts and, in general, alters their shapes. The third is that
the output of the detector does not simply reflect how well
L(x1ef1, t) after filtering matches L (xight, t), or vice versa.
Rather, because of the subtraction operation, detector output
reflects the between-subunit difference in well-matched-
ness.

We now give a detailed description of the original Reichardt
model. We denote the signal at various levels of processing
in the unit with yy ;. The H (think of Hand) takes the values
left and right, whereas j refers to the level of processing.

The signal in the left (right) input channel y o(t) is simply
L(x,t) sampled at the point xy. This can be written as Z -
L,(xy,t), where L, (x, t) is defined in Eq. (1). It is easy to
show that L, (xy, t) is of the form ay , sin(2rnwt — ya ).
Hence

yHo(t) =L{xy,t) = 3 apy,sin@rnowt — ya,).

n=0

If we adopt the convention that g o = 7/2, an o is the mean
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L (xgft,t) L(xrighi 1)
Yieft,0 Yright,0
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TF TF
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Yieft,3 Yright,3
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+
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Fig.2. A, the Reichardt model. Input consists of the stimulus L (x,
t) sampled at locations xjeq and xright; i represents the signal at the
various stages i for the left and right subunits (H = left, right). TF
indicates a linear, time-invariant filter with attenuation 8, and phase
shift d,; X indicates a multiplication unit; TA indicates a time aver-
aging unit, and + indicates a unit that adds its (negative and positive)
inputs. B, proposed modification of the Reichardt model in which

the point input assumption is generalized to the input of the entire -

stimulus L(x, t) through a linear spatial filter, denoted SF.
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luminance of L(xg, t) and

Yiett,0(t) = amo + ):1 aHp SIn@rnwt = yaa).  (4)
n=

Two operations are performed on the input. The first is
linear time-invariant filtering (marked TF in Fig. 2A). This
type of filtering has the following well-known properties.
First, the response of a linear filter to the sum of two inputs
is equal to the sum of the responses to the separate inputs.
Second, the response of a linear filter to oy, sin(2rnwt —
YH ) I8 0 Bre Sin(2rnwt — yg , — Ope). In other words,
a linear time-invariant filter affects only amplitude and phase
of a sine wave and does not alter the waveform. Sensitivity
Bn. and phase shift 6, of a linear filter depend only on tem-
poral frequency (nw). When we let n = 0, we see that a con-
stant input app corresponds to a constant output time
function Boap. It follows from these considerations that
the output yg,; of the linear filter is Boar o + gr(t), where

gu(t) = Zl aH,nﬂnw sin(2rnwt — YH,n =~ Onw)- (5)
=
The other operation on the input (marked X in Fig. 2A) is
multiplication of yiert,0(t) with yjeft,1(¢) in the left subunit.
After application of some basic trigonometric rules, we see that
the result is

Viett,2(t) = Bottlett,00right,0

+ Qeft,0 2 aright,mﬁmw sin(2rmwt — Yright,n — Ome)
m=1

+ right,080 X est,n SIN2TRWE — Viest,n)
m=1

® = 1

+3¥ X - aleft,naright,mﬂmw
n=1m=12

X {COS[27"(n - m)wt — Yieft,m + Yright,m + amw]

— cos[2m(n + m)wt = Yieftm — Yrightyn — Oma]} (6)

For the right subunit we interchange left and right everywhere
in Eq. (6).

The next operation is time averaging (marked TA in Fig.
2A). Here, we define the time average yp 3(t) of the function’
yuoas JP. 1/(t + K) [tk ymao(r) dr. Note that we have
defined the time average as the average from the (infinite) past
up to the present. In principle, the time average is a function
of t (the present time); however, for periodic input, the time
average does not vary. Time averaging has three properties.
First, the time average of a sine or cosine is zero. Second, the
time average of a constant function equals its constant value.
Third, time averaging is a linear operator. Time averaging
eliminates all time-dependent components in Eq. (6) because
these components ultimately are expressible as sums of simple
sines and cosines, each one of which vanishes. The only
components that are not time dependent are the first term and
some terms in the double sum that arise whenn = m. Hence
Eq. (6) reduces to

> 1
Viefe,3(t) = BoCtiest,00right,0 + Zl 3 Clettn Cright,nBne
n=
X COS[an - ('Yleft,n. - 'Yright,n)]- (7
Again, for the right subunit, left and right must be inter-
changed. Note that yjes 3 is time independent. Equation (7)
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is the output from the left subunit. Its value is maximal when
Yiefto — Vrightw (the right-left temporal phase difference)
matches 6, (the subunit’s temporal phase delay). )

The final subtraction operation results in cancellation of
the term Boctright,0®est,0, Which arises from the mean lumi-
nance. Using elementary trigonometry, we can now write the
(time-independent) response to input L(x, t) as

w0
y4(L) = Zl aright,naleft,nﬁnm sindy, Sin('Yright,n - 'Yleft,n)-
n=

(8a)

The response to L, (x, t) is

ya(Ly) = aright,naleft,nﬂnw sindp,, Sin('Yright,n. - 'Yleft,n)-

(8b)

Note that we include L (or L,,) as an argument of y4. Strictly

speaking, we should have done the same for the a,’s and v,,’s,

since they also depend on L (i.e., on L,).

Because of its multiplication component, the model is
highly nonlinear. Remarkably, Eqgs. (8) imply that the re-
sponse of a detector to L(x, t) is the sum over n of the re-
sponses to the temporal-frequency components L, (x, t). We
designate this as the property of segregation of temporal
frequencies. This property can be considered a weak version
of linearity; it is weak because it asserts linearity only for
temporal-frequency components of L, whereas true linearity
would require the sum rule to apply to any decomposition of
L (including, for example, spatial-frequency components). A
further implication of segregation of temporal frequencies is
that detector output is not affected by changes in the time-
independent component of L(x, t), Lo(x, t). This follows
from the fact that Eq. (8a) does not contain cef;,0 OF Qiright,0,
thus implying that the response to Lo(x, t) is zero.

Our equation for detector output [Eq. (8a)] is different in
two respects from Reichardt’s. First, we deal with any
time-periodic function L (x, t), whereas Reichardt deals only
with rigid motion under uniform illumination. In the latter
case, displays can be represented by functions of the type L(x,
t) that have the property L{xyight, £) = L(x1eg, t — At), where
At is the time it takes for the object to move from % t0 % right.
As we will demonstrate in this paper, applicability to nonrigid
motion is critical for rigorous empirical tests of the model.
Second, although Reichardt reported results from an empir-
ical test of an implication of the property of segregation of
temporal frequencies, namely, relative phase invariance,
Reichardt’s formulation did not highlight this property itself.
Relative phase invariance refers to the property that for a shift
of each L,, backward or forward in time by arbitrary amounts,
y4(L) does not change. This property follows directly from
the segregation property, together with the obvious fact that,
for any n, y4(L,) is unaffected by changes in the onset of
L,.

C. Modifications of the Reichardt Model

As it now stands, the original Reichardt model has severe
difficulties in accounting for human motion perception, be-
cause the model is vulnerable to a form of aliasing that is ex-
hibited little, if at all, by intact humans or isolated neurons.
The problem is, briefly, that as one changes the temporal or
spatial frequency, but not the direction, of a moving sine wave,
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the sign of the detector response (y,) reverses. Here, we de-
fine a moving sine wave as

S(m,d, f,w) = Lo+ msin(2wdfx + 27wt + @), (9)

where m is the modulation depth, d (= —1, 0, 1) is the direc-
tion of movement, f is the spatial frequency, w is the temporal
frequency, and @ is the initial phase at x = 0,¢ = 0. By sub-
stituting S for L in Eq. (8a), it can easily be shown that
yalS(m, d,f, w)] = m2dB, sind,, sin[27f (X right — *1est)]. Sus-
ceptibility to aliasing follows from that fact that nothing in
the original Reichardt model prevents the terms sin(d,,) and
sin[27f (% right,1 — X1eft,1)] from being negative. When the
former term is negative, we speak of temporal aliasing, and
when the latter term is negative, of spatial aliasing. Either
form of aliasing means that detector output can be completely
wrong: negative for sine waves that move to the right and
positive for sine waves that move to the left. It will turn out,
however, that aliasing problems can be prevented by adding
a few simple assumptions to the original Reichardt model.

1. Temporal Aliasing

What we need to prevent temporal aliasing is 8, sin(d,,) = 0.
This can be accomplished either if the phase delay d,, is always
between 0 and = or if, at those temporal frequencies at which

.the phase shift 6, exceeds , the sensitivity 8, is zero. The

first option is implemented by assuming, as Reichardt sug-
gested in a special case of his model, that TF is a first-order
low-pass filter with weighting function e—t/7. Absence of
temporal aliasing is guaranteed for all w, because in this case
0, = tan~(wr), which is always between 0 and 7 /2.

2. Spatial Aliasing
The original Reichardt model gives the wrong response when
sin[27f(% right,1 = X1est,1)] < 0. This situation occurs when, for
example, the spatial period is somewhat smaller than twice
the distance between the input channels, because then
27f (X right — X1ere) > . Since the point input channels have
flat spatial-frequency spectra, we cannot deal with spatial
aliasing in the same manner as we dealt with temporal aliasing,
namely, by assuming that sensitivity to sine waves, the spatial
periods of which are less than xignt — Xjeft, is zero. We pro-
pose to make an obvious but important generalization of the
original Reichardt model, namely, addition of linear spatial
input filters (SF’s in Fig. 2B). In the face of what is known
about the spatial properties of direction-sensitive mechanisms
in mammalian vision, the notion that input channels have
extended receptive fields rather than point inputs is, of course,
quite reasonable. We now spell out the details of how ex-
tended receptive fields can prevent spatial aliasing.

Spatially linear input channels. Our first assumption
about the spatial properties of the input channels is that each
input is given by

Yo = f ra(x)L(x,t)dx,  H = left, right.  (10)

Here, ry is the receptive field!! for input channel H. Note
that the original Reichardt model uses a special case of Eq.
(10), where ry(x) is the delta function 6(x — xg).

Preventing spatial aliasing. Under the assumption of
receptive-field linearity [Eq. (10)], the response of a detector
with spatially linear input channels to a moving sine wave is
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an immediate generalization of the response of the original
Reichardt model. It can be shown that the response is given
by

y4[S(m, d, f, w)] = m2df,, sind,Piest(f) Prignt()D(f). (11)

Here, Py (f) is the spatial frequency response of rg(x) defined
as | f2. rg(x)eif* dx|; and D(f) is a spatial-frequency de-
pendent factor that depends on the spatial relation between
the two receptive fields. For the original Reichardt model,
Piegi and Pyigni have constant values that do not depend on f,
whereas D(f) = sin[27f (%right — X1err)]. What receptive-field
pairs have the property that the factor Piegt(f) Prignt (f)D(f) is
nonnegative for all f?

Symmetric/antisymmetric receptive-field pairs. Figure
3A shows a left and right receptive field that has the general
shape

riee(x) = W(x — xc)cos[folx — xc)],
rright(x) = W(x — xc)sin[fo(x — x.)}. (12)

Here, x. represents the location of the detector and f deter-
mines the spatial period of the receptive field. W(x) is sym-
metric around zero, nonnegative, and decreases as x departs
from zero. In Fig. 3A, W(x) is exp(—x2/402), where 0 = 1.41,
x. =0,and fo = 1. These receptive fields are not arbitrarily
~ chosen. First, Gabor!? showed that these functions, like sine

waves in Fourier analysis, can be used to describe any func-
tion. Second, Marcelja!® noted that receptive-field profiles
of cells in the mammalian visual cortex fit these functions
quite well. This should come as no surprise, since others4
have shown that symmetric receptive fields can be fitted well
by a difference of two Gaussian curves, which for the typical
ratio of ¢’s used can be approximated quite closely by func-
tions given by rier in Eq. (12) (Fig. 4). Third, Pollen and
Ronner!® have found, in cats, pairs of adjacent simple cells,
the receptive fields of which are described by Eq. (12). It can
be shown that when W has a nonincreasing power spectrum
(Gaussian spectra have this property), the detector response
is given by

m2d B, sin 0,Prett(f) Prignt(f)- (13)

Note that D(f) = 1. Since, by definition, Py (f) = 0, the ar-
rangement given by Eq. (12) prevents aliasing for all spatial
frequencies. From an optimality point of view, this consti-
tutes a strong argument in favor of this receptive-field ar-
rangement.

SENSITIVITY IN ARBITRARY UNITS
5}
|
T

. L L L )
3w 2w T o m 2w 3r -3r 2w -7 o L 2w 3

LOCATION IN RADIANS

Fig. 3. Candidates for spatial input filters (SF’s) in elaborated
Reichardt model. A, symmetric-antisymmetric receptive-field ar-
rangement [Eq. (12)]. B, completely symmetric receptive-field ar-
rangement [Eq. (14)].
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Fig. 4. Comparison of difference of Gaussian curves (dashed curve)
and best-fitting (in terms of maximal squared deviation) curves of
the type W(x)cos(fx) (solid curve). Here, W(x) = Aexp(—x2%/d3?),
where ¢ = 2.83, A = 1.05, and f = 1.76.

Displaced, symmetric receptive-field pairs. Figure 3B
contains a pair of receptive fields that have the general
shape

H = left, right.
(14)

Here, W and f; are as in Eq. (12). In Fig. 3B, x5 = —7/2,
Xright = /2, W(x) isasin Fig. 3A, and fo = 1. Because of the
symmetry of this receptive-field arrangement it could be
considered as being the most direct extension of the original
model. Detector response is given by!6

md B, sindu,P1es(f) Prignt(f)sin[27f (X right = X1ert)].  (15)

Here, D(f) = sin[27f (xright — ¥1ert)]. Hence the arrangement
in Eq. (14) prevents aliasing only if Piest(f) Pright(f) = 0 for all
f = [2(2yight — *1es)] 1. This property is only approximately
satisfied when W is Gaussian, because its spatial-frequency
response is never quite zero.

Implications of spatial linearity of input channels.
Input channel linearity [Eq. (10)] allows us to derive several
results that are independent of the precise shape of the re-
ceptive fields.

rg(x) = W(x — xg)cos[folx = xg)],

(1) The property of segregation of temporal frequencies
is undisturbed. The most important result is that the as-
sumption of spatial linearity of input channels does not affect
the property of segregation of temporal frequencies. To prove
this, it can be shown that f rg(x)L,(x, t)dx yields input of
the same general form as L, (xg, t), i.e., an,, sin(2rnwt —
YH.n), where the ¢’s and y’s now depend in complicated ways
on the receptive-field arrangement. This also implies that
detector output is independent of Lo(x, t).

(2) Derivation of model output for bar input stimuli. For
bar input stimuli, we need a few new terms. Let ay; be the
area under rg(x) in the interval [b;_1, b;] occupied by bar B;:
agj = S rp(x)dx. Let

Aji; = Qleft,jOright,j+k — Qleft,j+kOright,j- (16) .

Loosely speaking, Aj;, indicates how well the left and right
receptive fields of a detector are differentially aimed at bars
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B; and Bj.p, respectively. To illustrate, consider the original
Reichardt model. Here, since ry(x) = 0(x — xp), Ajp = 1if
Xleft € Bj and Xright € Bj+r, and Aj, = 0 otherwise (note that
since X1ef; < Xright We never have xjesr € Bjy, and xyignt € Bj).
Hence Ajp, is 1 for those detectors that look at bars B; and Bj4x
and zero for all other detectors. The meaning of A;;, becomes
somewhat more difficult to grasp when we deal with more-
complicated receptive fields.

Let L(x, t) be a time-periodic function of the form described
in Eq. (2). By going through steps similar to those that led
to Eq. (8a), it can be shown that detector response y4 is

F-1

ya(L) = kzl Z mimjpp(Djrr — )Ajk (17
=t

Here, p(dj+r — 9j) = Z7=1 £1.2Bne siNdp, sin[2rnw(djer —
9Y;)], where B, and 6, are as in Eq. (5), the modulation depth
of the nth harmonic ¢, is as in Eq. (3), and the initial temporal
phases ¥; and ¥, are as in Eq. (2).

(3) Displays with ¢ = w/2. Except for the display used
in Experiment 1, our displays fall into two classes. In the first
class, ¥;+r — ¥j = const. = T/4, so that ¢ = /2. It follows
that L;(t) and Lj4; are identical for i = £0, £1, +2,. .. and
J=1,2,3,.... Inaddition, it follows that Lj and L;4;+2 have
the property that corresponding Fourier components have
phase differences that are multiples of w: These pairs of bars
are in counterphase. Hence bars that are an even number of
bars apart do not contain directional information because they
are either in phase or in counterphase. The elaborated Rei-
chardt model behaves in accordance with this analysis, be-
cause it can be shown that Eq. (17) reduces to

F-1 F-k
yale=m/2)= ¥ ¥ mimjpSjsr —
k=135,.. j=1

9))Ajr. . (18)

Equation (18) is of particular importance for displays in which
the odd-numbered bars have amplitude moqq and the even-
numbered bars have amplitude meven. Because & in Eq. (18)
is always odd, j + k is even when j is odd, and vice versa; it
thus follows'that the equation can be written as

F-1

ModdMeven 2 Z P(191+k
k=1,35,.. j=1

yalo = 7/2) = 3;)Ajp.

(19)

This is a powerful equation, since it asserts that, for any dis-
play composed of even bars with amplitude meyven and odd bars
with amplitude mqqq and with an adjacent-bar phase differ-
ence ¢ = /2, detector output is proportional to the product
of modq and Meyen, regardless of the shape of the receptive
fields. It can be shown that our linking assumption (see
Section 1.A.3 below) implies that the probability of a correct
direction response is a monotonic function of the product of
Modd and Meyen. Experiments 2 and 3 test this multiplicative
law.

(4) Discrete approximations to moving sine waves. A
second class of displays consists of F-bar approximations to
moving sine waves, where F' = 5 in most of our experiments
(=9 in Experiments 3 and 6). Hence

Lj(t) = Loj + msin(2rwt — ;). (20)

In this case, Eq. (17) becomes
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B, sind,m? Z Z sin(dj4p —

¥;)Aj.  (21)
k=1 j=1

ya(sin) =
When, in addition, the between-bar asynchrony ¢+; — 9; =
¢ (const.), Eq. (21) can be further simplified to

y4(sin) = B, sind,m? Z Z sm(/w)A;k (22)

k=1 j=
As we shall see in Experiment 4, this equation can be used to
estimate the Aj,’s and allows us to make inferences about the
shape of the input receptive fields on the basis of these esti-
mates (Experiment 4).

3. Linking Hypothesis

Our experiments are psychophysical (the subject has to de-
termine the direction of motion) and hence are assumed to
involve a process by which responses from a large group of
detectors are combined. We need a voting rule that specifies
how a left-right decision is reached on the basis of discordant
detector responses.

We assume that the probability of judging a display L as
moving to the right, P(right [L) = 1 — P(left | L), is a nonde-
creasing function of the detector outputs. More specifically,
let outputs from detectors Dy, . . ., Dps be denoted by y41,. . .,
Ya,m,and let V be a function that is nondecreasing in all of its
M arguments. Then, Prob(right |L) = V[ys1(L), ...,
Yam(L)]. If L and L’ are two displays such that y4;(L) =
¥a,;(L’) for all {, then Prob(right |L) = Prob(right |[L’). In
addition, we assume that V is antisymmetric in the following
sense: V(zy,...,2p) =1.0—V(—2zy,...,—2zy). Thatis, the
probability of responding left to a display L is equal to the
probability of responding right to a display L’ that causes all
detector outputs to reverse in sign but stay equal in absolute
magnitude. This assumption implies that a display that leads
to zero output for all detectors causes chance performance
(50% correct).

Our linking assumption is quite general and includes both
the additive case, in which the response depends on the sum
of the detector outputs, and the maximum case, in which the
response depends on the maximum of all detector outputs (as
is the case in threshold models).

The general voting rule was adequate to generate predic-
tions for all experiments, except Experiment 3, for which a
more specific voting rule was necessary (the rule, however, was
still sufficiently general to mclude both the additive and the
maximum case).1?

4. The Original Reichardt Model and the Temporal
Phase Line

As we anticipated in Section 1.A there is a direct link between
a simplified version of the original Reichardt model and the
temporal phase line. We explain why here. We have to make
the simplifying assumption that detector inputs are derived
only from adjacent bars, i.e., 4jr = 1 if k = 1 and zero other-
wise. In this case, Eq. (17) becomes

-1
ya(L) = Zl mim;j1p(9j41 = 9;). (17)
j=

Let wng be the temporal frequency and Ty = 1/(wn) the pe-
riod of the dominant Fourier component of £, i.e., of the
Fourier component that has the largest coefficient ¢, [Eq. (3)].
The temporal phase of the dominant F in bar B; is 2rwngd;.
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The temporal phase line, which connects a luminance peak
of the dominant Fourier component in bar B; with the nearest
luminance peak of the dominant Fourier component in bar
Bj1 has the property that, in terms of Fig. 1, it descends from
left to right if 9,41 — 9} is between zero and To/2 and ascends
from left to right if ¥;j+1 — ¥; is between —T/2 and zero.
Equation (17’) implies that detector output is positive in the
first case and negative in the second case. It follows that the
sign of the detector output is the same as the sign of the slope
of the temporal phase line. Hence we can predict the direc-
tion signaled by this simplified version of the original Rei-
chardt model by looking at the slope of the temporal phase
line. We included the temporal phase line in the represen-
tation of the displays for each experiment because this line
gives the reader some intuition for the various predictions of
the original and elaborated Reichardt models.

5. Terminology

We refer to the model as described originally by Reichardt,10
and as described by us in Sections 1.A and 1.B, as the original
" Reichardt model. The model with our modifications to pre-
vent aliasing and with an explicit linking hypothesis is called
the elahorated Reichardt model. Note that the original
Reichardt model describes only a single detector, whereas the
elaborated Reichardt model describes an entire system of
elaborated Reichardt detectors. When in some context both
models are equivalent, we speak of the Reichardt model.

D. Alternative Models

We now turn to a discussion of alternative models for calcu-
lating motion. Several of these models were developed in
artificial intelligence and machine perception and were orig-
inally not proposed as serious models of human motion per-
ception. We include these models to illustrate different so-
lutions to the problem of motion detection and, ultimately,
to show how, by experiments, it is possible to discover which
of these is tenable as a model of human perception.

All models discussed in this section use the familiar notion
of frame, where frame i is defined as L(x, t;). It is useful to
distinguish between global and local models. Global models
analyze the entire frame or a significant fraction of a frame.
Local models make use of a large number of units that each
calculate the direction of motion within a small area. Outputs
from these units have to be combined to infer the direction of
motion of larger areas. The Reichardt model is a local
model.

1. Global Matches

Spatial correlation analysis. One of the simplest ways to
make use of frames is to find, for each pair of successive
frames, the amount dx by which the second frame has to be
shifted in order to maximize the product-moment correlation
coefficient between the two frames. This analysis has been
used for cloud tracking from satellite photographs.1819 A
convenient graphic representation of this analysis is the cu-
mulative plot of dx as a function of i, where i refers to the
frame number. For a moving, rigid pattern, the cumulative
plot graphs the location of a fixed point of the pattern as a
function of time. We call this graph the motion path gener-
ated by the model. Some minor variations are possible.
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First, if velocity is constant, one can calculate the straight
motion path that has the highest mean correlation rather than
the (not necessarily straight) motion path that has the highest
correlation for each successive pair of frames. This might be
advantageous in the presence of noise. Second, one can use
other similarity measures than correlation. For example, one
can use covariance or, as in the shift-and-subtract technique
suggested by Anstis,2 the sum of the absolute brightness dif-
ferences.

Spatial phase analysis. Each frame can be decomposed
into spatial Fourier components. The motion path consists
of a graph of the spatial phase of the most prominent com-
ponent as a function of time. This method has been used by
Lo and his collaborators.20 Also, Anstis and Rogers?! suggest
a spatial phase analysis model.

2. Local Models ‘

Local brightness matching. Braddick,! who studied the
perceived motion of random-dot patterns, discussed mecha-
nisms that for a given location in frame i look within a small
radius for the location in frame ; + 1 that has the same
brightness. Thus, for each location, the mechanism calculates
the smallest displacement dx in which the equal-brightness
location is found. These displacements would subsequently
be combined by higher-level processes. In the case of moving
random-dot patterns the task faced by these higher-level
processes seems formidable, because it requires determining
which dots in successive frames go together (i.e., solution of
the correspondence problem?22). However, when the be-
tween-frame displacement is smaller than the distance sep-
arating pairs of locations having equal brightness within a

‘frame, no such ambiguity exists. To illustrate, when L(x, ;)

is sinusoidal and is displaced by less than 7 in successive
frames and if the radius within which the mechanisms look
is less than =, the dx’s are the same for all locations.
Spatiotemporal gradient matching. When a pattern
moves in direction dx, the luminance change over time at lo-
cation xq is the same as the luminance change when one moves
within frame i from x¢ to xo —dx. Conversely, by matching
up luminance changes across frames at one location with
changes between different locations within one frame, one can
obtain information about dx. Of course, for a given location
x¢ there typically is more than one choice of dx that has
matching change values. However, this problem vanishes as
one approaches infinitesimal values of dx. In fact, it can be
shown that the velocity is given directly by —P; (xo, to)/Px (x0,
to), where P; and P, are the partial derivatives of L(x, t) with
respect to x and ¢ evaluated at location xo and time to. A
two-dimensional, and substantially more complicated, version
of this procedure was originally proposed by Limb and Mur-
phy?23 and later refined by Fennema and Thompson.24
Spatial edge detection combined with temporal lumi-
nance change. Consider a frame L(x, t;) depicting a right
edge, i.e., a frame in which luminance increases with x. The
luminance at a given location increases when this edge moves
to the left and decreases when it moves to the right. For a left
edge the opposite holds. By combining knowledge about what
type of edge is present with the local time course of the lumi-
nance of the image, one can infer the direction of motion.
This idea, which is similar to gradient matching, was imple-
mented in a quantized fashion by Marr and Ullman,?® who
proposed a system consisting of (local) detectors that work as
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follows. Each detector consists of three subunits. The first
subunit is a particular type of edge detector proposed earlier
by Marr and Hildreth,28 namely, a zero-crossing detector with
binary (0 or 1) output. In our one-dimensional case, a zero
crossing of frame L (x, t;) is defined as a point where the sec-
ond derivative with respect to x crosses zero. This subunit
comes in two versions, which are tuned to right and left edges.
The second subunit consists of a linear temporal filter followed
by a threshold device; it calculates the time derivative of the
luminance in approximately the same patch of the visual field
as processed by the edge-detecting subunit. This subunit also
comes in two versions. Version T+ has 1 as output when the
time derivative is positive and 0 otherwise; vice versa for 7.
The third subunit of the detector performs an AND operation
on the outputs of the first two subunits. Thus there are four
types of detector, depending on the type of edge detector
(right versus left) and the type of T unit. Two of these (left
AND T, right AND T) are tuned to rightward motion; the
other two (left AND T, right AND T') are tuned to leftward
motion.

E. Current Psychophysical Evidence for the Original
Reichardt Model

Applications of the original Reichardt model to human motion
perception have been limited in number. Moreover, as we
demonstrate below, these studies provided only weak evidence
favoring the model over its competitors.

Schouten?’ studied apparent reversals in the perceived
direction of a rotating, high-contrast grating at temporal
frequencies ranging from 15 to 90 Hz. Schouten attributed
this reversal to (in our terminology) spatial aliasing in the
original Reichardt model. To explain why the reversal oc-
curred at higher temporal frequencies only, Schouten would
have to assume that, in the detector population, the distance
Xright—Xleft increases with sensitivity to higher temporal
frequencies (which may not be unreasonable; see Experiment
4, below). Another possibility is that the voting rule V in-
volves thresholds, while, at the same time, at high temporal
frequencies increasingly more detectors have temporal aliasing
problems. That is, detectors with negative sin §,, have suffi-
ciently low 3, to stay below threshold at low or medium con-
trasts but not at high contrasts.

Schouten’s reversal can also be explained by some of the
alternative models. For example, the T detectors in the Marr
and Ullman model?5 fail to function properly when the tem-
poral period of the signal becomes too short. The same type
of explanation could be given in terms of a neural imple-
mentation of the model by Fennema and Thompson,? be-
cause this model also requires calculation of a time deriva-
tive. '

Foster?® also used rotating radial gratings as displays, but
only a small segment of the grating was visible through a
window. Of primary relevance for the original Reichardt
model is Foster’s stationary strohoscopic effect, which is the
perception of wavering motion when the window through
which the rotating grating is viewed is larger than the width
of a single white or black bar or, equivalently, larger than half
of a spatial period. Foster explained this effect by positing
that the spatial periods of his displays were sufficiently short
so that they would cause spatial aliasing for most detectors.
By making the window less than half of a spatial period wide,
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detectors that otherwise would give erroneous responses are
silenced, since at least one of their input channels is outside
the window.

However, this explanation leaves open the question of why
Schouten obtained well-defined motion without a window
over a range of temporal frequencies including the frequencies
used by Foster. An additional theoretical problem is that
alternative explanations are possible. For example, we can
analyze Foster’s experiments in terms of the zero-crossing
model of Marr and Ullman.25 Opening up a window beyond
half of a spatial period creates additional zero crossings that
may affect perception.

There are also empirical problems with Foster’s stationary
stroboscopic effect. First, the task was a subjective judgment
of well-defined motion, which, in fact, is difficult to define.
Second, the upper bound on temporal frequency beyond
which no well-defined motion could be seen was quite low
(about 5 Hz), almost an order of magnitude below the tem-
poral frequency at which direction can be discriminated.
Third, we have been unable to replicate the phenomenon in
our laboratory.

2. GENERAL METHODS

Except where noted, all seven experiments reported used the
following methods.

A. Displays

Displays were produced on a computer-driven 0.30-m by
0.40-m Hewlett-Packard 1310A oscilloscope with a fast, white
P4 phosphor; the displays were viewed binocularly with a
natural pupil in a dimly lighted room. Displays consisted of
adjacent, parallel vertical bars, each measuring 0.044 deg
horizontally and 0.44 deg vertically. Except where noted, we
used five bars without spacing. Thus the typical display
measured 0.22 deg horizontally and 0.44 deg vertically.

We used a small display to minimize the effects of spatial
inhomogeneity of the detector population. Preliminary ex-
periments showed that as the distance between bars increased
from zero to 0.22 deg, the strength of perceived motion fell to
zero. Therefore 0.22 deg is the largest display width needed
to study a detector of interest. The usage of five bars in most
experiments was d‘ict’ated by a compromise between two fac-
tors. Sperling? suglested that two bars would be the theo-
retically optimuim Hisplay, but, in the present study, it proved
much easier to callect data with 'multiple—bar displays (be-
cause they induced much stronger and less ambiguous per-
ceived motion for reasons that are not yet entirely clear). The
increased accuraey of performance with multiple-bar displays
is much in excess of what can be predicted from probability
summation of pairwise bar combinations. On the other hand,
when the number of bars is substantially larger than five, the
theoretical requirement of a particular phase between adja-
cent bars (7/2 in Experiments 2 and 3), in conjunction with
the requirement that overall display size should be 0.22 deg
or less, would produce extremely high spatial frequencies that
are not suitable for these experiments. The most important
reason for using five-bar displays is that certain tests in Ex-
periment 4 (that compare ¢ = w/4 with ¢ = 3/4m) can be an-
alyzed mathematically only for five-bar displays. Thus, al-
though the apparatus was capable of producing many bar
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gratings that closely approximated spatial sine waves, the
experiments required the spatial bar patterns illustrated in
Fig. 1.

The general mathematical form of the displays is given in
Eq. (2). We refer to h(t) as the modulation function of the
display. In most cases, the Lo;’s and m;’s are the same; we
denote their common values of Ly and m, respectively. To
simplify the exposition, we give luminances in terms of a ref-

erence luminance, L, of 51 cd/m2. Actual luminance is Lo;,

X Lyet. By this convention, Lo = 1 for most experiments.
The surrounding blank part of the CRT surface had a lu-
minance of 0.7 ¢cd/m2 produced by two incandescent lamps.
We put a black fixation mark (diameter: 2.5 min of visual
angle) on the CRT surface in the center of the display.

B. Accuracy of Discrete Approximation to Temporal
Sinusoidal Luminance Modulation

Displays with sinusoidal modulation functions consisted
of 8-, 12-, or 24-point approximations (Fig. 1 contains 8-point
approximations). These approximations were not always
optimal, because only a small number of discrete luminance
values could be used. However, Fourier analysis of the lu-
minances revealed that, except at the smallest possible
modulation amplitude (which was used only in one condition
in Experiment 4), the fundamental frequency carried at least
90.5% of the total power. No individual harmonics carried
more than 4%. For all modulation functions used, including
sine approximations, we report the modulation of the com-
puted Fourier components as a fraction of L (not the differ-
ence between the maximum and minimum luminances of the
luminance modulation function actually presented).

C. Trials :

Except for the first trial of a block, in which the subject pushed
a button to initiate the block, new displays were presented
automatically at a (constant) time interval after termination
of the preceding trial. The time interval varied across ex-
periments from 0.9 to 1.2 sec. Each display lasted 1.32 sec.
Leftward- and rightward-moving patterns occurred with equal
frequency. The subject’s task was to judge direction of
movement. The judgment was made by pushing one of two
buttons. We tabulated the percentage of correct (as a priori
defined in each experiment) judgments of direction of motion.
Because in several experiments the datum of interest was
which, if any, direction the subject would perceive, no feed-
back could be given in these experiments. To make experi-
ments consistent with each other, no feedback was used in the
remaining experiments either. Pilot experiments showed
that, after an initial training session without feedback, feed-
back does not further improve performance. We believe that
this is partly a result of the fact that, except for Experiment
7, blocks contain several modulation depth levels mixed to-
gether, including suprathreshold levels. This enhances the
subjects’ capability to stay focused on relevant stimulus as-
pects.

Except for temporal frequency, experimental conditions
were mixed within blocks. The reason that trials were
blocked by temporal frequency is that pilot studies indicated
that mixing temporal frequencies within blocks had a negative
effect on performance. Sessions lasted approximately 1 h and
always consisted of a practice block of 48 trials (45 in Exper-
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iment 8) followed by 6 groups of 4 test blocks of the same
length as the practice block. Intermissions between blocks
were about 15 sec, intermissions between groups about 60 sec.
Subjects were not given a dark-adaptation period. Occasional
comparison of the first test blocks with the last test blocks
revealed no systematic differences.

D. Subjects

Three subjects (two naive subjects, JP and NB, and the first
author) served in the experiments. All subjects had at least
20:20 vision, one without correction, the others with correcting
spectacles.

3. EXPERIMENTS

A. Experiment1. Reichardt versus Korte

This experiment was performed early in our work in order to
determine whether it was worthwhile to pursue Reichardt-
type models. One of the most remarkable properties of the
original Reichardt model is that the optimal between-bar
asynchrony for motion detectors, ;41 — 9;, depends on the
temporal frequency composition of A (¢) [see Egs. (4)-(8)]. To
illustrate, suppose that detectors only look at adjacent bars
(i.e., Aj, = 1if k = 1, and 0 otherwise) and that h(¢) has only
one prominent Fourier component (with temporal period T).
Then the optimal asynchrony is simply 7'/4, regardless of what
the value of T'is. This follows from the term “Yrightn — Vieft,n
in Eq. (8a). Hence the optimal between-bar asynchrony
varies with the temporal frequency of the most prominent
component of k(¢). Obviously, this argument can be ex-
tended to any receptive-field arrangement. However, the
precise form of the relation of optimal asynchrony to temporal
frequency is determined by the receptive-field arrangement.
For example, if detectors only look at bars that are two bars
apart (i.e., Aj, = 1if k = 2, and 0 otherwise), then the optimal
asynchrony would be 7/8.

In the classical studies of apparent motion, optimal asyn-
chrony between bars in successive displays has been found to
be determined primarily by interbar distance.3? To the ex-
tent that our displays can be considered as direct generaliza-
tions of these two-bar two-view situations to an F-bar multi-
ple-view situation, we would expect optimal asynchrony to be
determined by the between-bar spacing. From Korte's sec-
ond law, it follows that if we keep the spacing constant, opti-
mal asynchrony would remain constant independently of the
temporal frequency of the waveform. ,

We tested Korte’s prediction that, for a fixed spatial con-
figuration, the optimal asynchrony is independent of tem-
poral-frequency content by comparing the effects of asynch-
rony for two modulation functions i (t) and A’(t). Function
h(t) is an ordinary 8-point approximation to a sinusoid (Figs.
1, 5A, and 5B) with period T. Function h’(t) is a permutation
of the same set of eight luminance values used to construct
h(t) (Figs. 5C and 5D). Fourier analysis of h’(t) reveals that
it consists primarily of a component having four times the
temporal frequency of the fundamental of h(t) and hence
period T’ = T/4. Because we constructed h’(t) by permuta-
tion of h(t), differences in performance between the two
functions cannot be attributed tothe set of luminance values
used and hence not to differences in average luminance or
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Fig. 5. Displays used in Experiment 1. Only modulations in the first
two (of five) fields are depicted. A, same sinusoidal modulation
function as in Fig. 1, 1.95 Hz, with asynchrony ;41 — ¥; of 128 msec
(hence phase difference ¢ of w/2 rad). B, same sinusoidal modulation
function as in Fig. 1, but with asynchrony of 32 msec (¢ = #/8 rad).
C, modulation function that is a permutation of the function used in
A and B. Between-field asynchrony is 128 msec, but the dominant
fourth harmonics are in phase and hence convey no directional in-
formation. D, same modulation function as in C, but asynchrony is
32 msec (w/2 rad in terms of the dominant fourth harmonic).

contrast or any other statistic defined on this set. Of course,
the Reichardt model states that the order in which the lumi-
nance values are presented is critical because it determines
the temporal-frequency content.

We used two asynchronies. The first asynchrony was 7'/4
(Fig. bA). According to the original Reichardt model, with
the added assumption that detectors look at adjacent bars
only, the asynchrony of 7'/4 is optimal for discrimination of
the direction of h(t). This asynchrony causes the largest
Fourier component of h’(t), which has period T/4, to have zero
between-bar phase differences. In terms of Eq. (8a),
Sin(Yright,4 — Vief,a) = O regardless of whether detectors look
at adjacent or at nonadjacent bars. Hence the original Rei-
chardt model predicts that for h’(t), performance should be
at chance levels. The second asynchrony was one fourth the
duration of the first asynchrony. Now, the phase differences
are T/16 for h(t) (Fig. 5B) and 7"/4 for h’(¢) (Fig. 5D). Again
assuming that detectors look only at adjacent bars, the original
Reichardt model predicts that performance on h(t) should
decrease relative to the first asynchrony [because sin(7/8) is
much lessthan sin(7/2)], whereas performance on h’(t) should
increase [because sin(w/2) is much larger than sin(0) = 0].
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In order to make predictions for the elaborated Reichardt
model, we first have to find the primary spatiotemporal
sine-wave components of these displays. If each of the four
types of displays is dominated by one sine wave, we can, on the
basis of our assumption of absence of spatial and temporal
aliasing, predict the direction of perceived movement, which
will simply be the movement of the dominant sine wave. It
turns out that, ignoring stationary sine waves (which, as we
stated earlier, have no effect on detector response), the dis-
plays are indeed each dominated by one sine wave. At the
asynchronies of T/4 and T/16, these dominant components
are, for h(t), sin(2rnwt + 2%5.68x) and sin(2mnwt +
9m1.42x), respectively, and, for h’(t), sin(2rnwt) (homoge-
neous flicker) and sin(2rnwt + 275.68x), respectively.
Which asynchrony leads to better performance for h(t) cannot
be predicted, because this depends on the receptive-field
shape. Asfor h’(t), it can be predicted that performance on
sin(2mnwt) should be at chance, because detector response
to homogeneous flicker is zero no matter what the receptive-
field arrangement is [in Eq. (17), ;4% = 9;, making the factor
p(Sj4r — ;) zero].

1. Method

Modulation functions A (t) and h’(t) are as described above
and in Fig. 5. We used a temporal period T of 512 msec (1.95
Hz). Between-bar asynchronies were 32 and 128 msec.
Sine-wave modulation was 0.14 for i (¢), and the same lumi-
nances were used for h’(¢). Two subjects, NB and JvS, made
288 observations in each of the four (h versus h’, 32- versus
128-msec asynchrony) experimental conditions.

2. Results

For subjects NB and JvS, performance on modulation pattern
h was 77 and 88%, respectively, at 128-msec asynchrony and
56 and 54% correct at 32-msec asynchrony; performance on
modulation pattern b’ was 49 and 49% correct at 128-msec
asynchrony and 94 and 94% correct at 32-msec asynchrony.
These results indicate that optimal asynchrony depends on
temporal-frequency content of the modulation function.
Moreover, the results are precisely what one would predict on
the basis of the original Reichardt model with the added as-
sumption that detectors look only at adjacent bars. Ob-
viously, these results are completely inconsistent with Korte’s
idea of an optimal between-bar asynchrony that is indepen-
dent of temporal frequency.

B. Experiment 2. Pulse Reversal

The multiplicative law [Eq. (19)] states that when bars that
are an even number of bars apart are either in phase (zero
asynchrony) or in counterphase (7 asynchrony) with each
other and when odd-numbered bars have amplitude mqqq and
even-numbered bars have amplitude meven, then performance
depends on the product of myqq and Mmeven. In this experi-
ment, we test Eq. (19) by reversing the sign of meqq, i.e., we
invert the modulation of odd-numbered bars. Both the
original and the elaborated Reichardt models predict that this
should lead to perception of motion in the reverse direction,
regardless of what the shape of & is. Since neither 2 nor the
absolute magnitude of the product mdameven changes when
we reverse the sign of mgq, both models predict perfect re-
versal of perceived motion.
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Fig. 6. Display used in Experiment 2. A, modulation function
consists of pulses. Phase difference is 120 msec for 2.08-Hz display;
30 msec for 8.33-Hz display (both /2 rad). B, same asin A, except
that modulation functions in even fields are reversed in sign. Note
that in B, fields containing same-sign pulses are either in phase or in
counterphase and thus do not contain direction information.

In this experiment, we chose h to be a pulse function rather
than a sinusoid (Fig. 6). This means that we have to take into
account higher temporal harmonics of h. When my4q > 0, the
fundamental temporal frequency w has between-bar phase
differences of 7/2; the second harmonic (2w) is in counter-
phase across bars (), whereas the third harmonic (3w) has
a between-bar phase difference of —7/2 (or +3%/2). Ingen-
eral, the kth harmonic has a phase difference of kw/2. Of
course, when moqq < 0, the kth harmonic has a phase differ-
ence of —kw/2. Thus, regardless of the sign of m 44, the third,
seventh, etc. harmonics indicate a direction of movement
opposite that indicated by the fundamental, whereas the
even-numbered harmonics indicate no direction because their
between-bar phase differences are multiples of 7. It follows
from the property of segregation of temporal frequencies that
performance (defined as the proportion of direction responses
consistent with the direction of the fundamental) should de-
crease when the temporal period of the display becomes suf-
ficiently long to allow the harmonics to fall inside the range

of optimal temporal-frequency sensitivity. (Later, in Ex-

periment 4, we show this range to extend to approximately 15
Hz.)

The spatiotemporal sine-wave components of the display
indicate the same pattern of directions of higher harmonics.
That is, even harmonics consist of either counterphase grat-
ings or homogeneous flicker, whereas odd harmonics have
directions that are either opposite or the same as the direction
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of the fundamental sine wave. By the assumption of nonal-
iasing, the elaborated Reichardt model thus makes the same
prediction concerning the effects of harmonics as the original
model.

Tt should be noted that, in the context of pulse stimuli, the
prediction of perfect reversal of perceived motion is particu-
larly strong, because the temporal modulation patterns in
adjacent bars are much more similar to each other in the
standard display (Fig. 6A) than in the reversal display (Fig.
6B).

1. Method

We used as modulation function k(t) a periodic pulse function
having a value of 1 in the initial 1/8 of a period and zero else-
where. Fourier series analysis of h(t) revealed that the powers
of the harmonics relative to the power of the fundamental
slowly declined and reached 50% at the tenth harmonic.

We compared three conditions [(meyen, Modd) = (m, m), (m,
—m), (—m, —m)] corresponding to whether the m;’s were (1)
all positive (Fig. 6A), (2) positive and negative in adjacent bars
(Fig. 6B), or (3) all negative (not illustrated). We used two
temporal periods of h(t) [120 and 480 msec (8.33 and 2.08 Hz)]
and two modulation levels (0.062 and 0.099 for NB, 0.037 and
0.049 for JvS). In each of these 12 experimental conditions
(3 mj combinations, 2 temporal frequencies, and 2 modulation
levels), 192 observations were made.

2. Results

The data from the 2.08-Hz condition are not graphed since
neither subject was able to see a consistent direction of motion,
thus resulting in chance performance. This is astounding
because, in the (m, m) and (—m, —m) conditions, the display
consists of an increased luminance that simply passes from
one bar to the next. According to the Reichardt model, we
are not aware of this simple state of affairs, because, by the
property of segregation of temporal frequencies, we analyze
this display into sine waves that move in conflicting directions.
Figure 7 contains the results for the 8.33-Hz condition. It
shows that perceived direction of motion is completely pre-
dicted by the fundamental component. Both subjects show
near-perfect reversal of perceived motion for the reversed-
pulse stimuli.

C. Experiment 3. Multiplication of Alternate Bar
Amplitudes

Experiment 3 constitutes an additional test of the multipli-
cative law [Eq. (19)]. Experiment 3 focuses on the monoto-
nicity property of multiplication: An implication of the
multiplicative effect of meaq and meyen On accuracy of motion
detection is that, when we hold mqqq fixed, performance
should increase monotonically as we increase Meyen, and vice
versa. This property is counterintuitive for two reasons.
First, it violates the intuition that perception of motion is
enhanced by between-bar similarity. More specifically, if we
start out with mogq and Meven at some low value and then in-
crease one of the amplitudes, this leads to a decrease in the
similarity of the modulation functions in adjacent bars. For
example, similarity as measured by the mean-squared dif-
ference between bars is reduced by unequal amplitudes of
modulation. Similarity as measured by the product-moment
correlation coefficient is neither reduced nor increased by
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Fig. 8. Display used in Experiment 3. Modulation function is si-
nusoidal with asynchrony of 140 msec for 1.8-Hz display (7/2 rad) and
20 msec for 12.5-Hz display (/2 rad). All fields have the same av-
erage luminance, but even-field modulation is four times larger than
odd-field modulation. Note that fields with large modulations are
in counterphase with each other and hence do not contain directional
information.

unequal modulation. Second, suppose that the modulations
are sufficiently low in all bars to cause chance-level perfor-
mance. Suppose that we now increase the modulations of the
odd-numbered bars. In effect, we are adding a display that

by itself does not contain direction information. That is,

increasing moqq from m’ to m” is equivalent to adding the
function L’(x, t), which has zero luminance for even-num-.
bered bars and is equal to (m” — m’)L;(¢t) for odd-numbered
bars. Thus L’(x, ¢) consists of alternate bars that are either
in phase or in counterphase with each other and hence does
not contain directional information. Nevertheless, the Rei-
chardt model predicts that adding this particular ambiguous
display will strengthen whatever perception of motion the
original display might have evoked. This monotonicity pre-
. diction is here tested in a wide range of conditions.

d.P.H. van Santen and G. Sperling

1. Method

The displays consisted of modulation functions of the type
h(t) = sin(2rnwt — jw/2), wherej =1,...,9. Figure 8il-
lustrates five of the nine bars, with m,qq = 4Meyen. The am-
plitudes moqqa and Meyen were manipulated factorially:
Modd/Lo took on values of 0.023, 0.042, 0.064, and 0.085 and
Meven/Lo took on values of 0.023, 0.042, 0.085 and 0.229. It
should be noted that, when both mqqq/Lo and meyen/Lg are at
0.023, performance is at chance levels. Two temporal
frequencies were used (1.8 and 12.5 Hz). Two subjects, NB
and JvS, each made 72 observations in each of the 32 experi-
mental conditions (four values of mqaq and Meyen and two
temporal frequencies).

2. Results

Data for the 32 conditions are shown in Fig. 9. In Fig. 10, we
replotted the data as a function of the product of mq4q and
Meven. Figure 9 clearly shows that the data satisfy monoto-
nicity. That is, except for minor statistical fluctuations,
whenever either mqqq Or Meyen is fixed and the other is in-
creased, performance increases or, when it is already almost
perfect, does not decrease. In addition, although performance
was at chance levels when both mgyen/Lo and myqq/Lo were at
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0.023, performance increased dramatically when either of the
two amplitudes was increased. That is, adding an ambiguous
stimulus to an unambiguous threshold stimulus brought the
combination above threshold of unambiguously correct re-
sponses. : ’

The multiplicative law can be tested directly by comparing
displays that have equal products of msqq and meyen achieved
in different ways. For example, the following (mdd, Meven)
paifs have the same product and induce the same levels of
performance: (0.23, 0.85), (0.43, 0.43), (0.85, 0.23). The re-
lationship between the product meqqMeven and performance
is illustrated in Fig. 10. This relation varies-somewhat de-
pending on the subject and the temporal frequency but ob-
viously is a good predictor of performance over an enormous
range of 48:1 in our data. Other combinations of m.qq and
Meven (Such as summing moqq and Meyey to predict perfor-
mance) fail miserably: For example, summation predicts that
performance with (moqd, Meven) = (0.085, 0.085) should be
worse than with (0.023, 0.229), whereas out multiplicative law
predicts the opposite. Clearly, the data show the latter. We
conclude that the data from Experiments 2 and 3 provide
strong support for the multiplicative law,

D. Experiment 4. Temporal and Spatial Frequency

In this experiment, we measure the effects of temporal fre-
quency (w) and phase difference (¢) on the detection of mo-
tion that is defined by sinusoidal modulation functions A (z)
= sin(2wnwt — jg) [cf. Egs. (2) and (20)]. This experiment
serves several purposes. First, these displays can be consid-
ered as being approximations to rigid, moving sine waves.

The temporal frequency (in hertz) is w; the spatial frequency
[ lin eycles per degree (cpd)] is 3.62¢; the velocity (in degrees
per second) is w/(3.62¢). Hence we can verify whether the
data obtained by our methods are consistent with standard
data on the human spatlotemporal frequency response ob-
tained with spatlally finer approxirhations of sine waves than
our displays, in particular, the data obtained by Kelly3! and
Burr and Ross.32

Second, this experiment allows fora direct test of the point
input assumption of the original Reichardt model. The test
consists of comparing ¢ = 7/4 with ¢ = 3w/4 in a display that
has five bars (F = 5). [Refer to Eq. (22), which describes the
output of a detector for these inputs.] For the distance be-
tween bars, & = 0, 1, 3, 4, sin(kw/4) = sin(k87/4), whereas for
k =2, sin(kw/4) = 1 = —sin(k3w/4). Hence, unless there is
temporal aliasing (i.e., B, sin 8, < 0), the detector output y,
can never be larger for ¢ = 3w/4 than for ¢ = w/4, unless 2%,
Aj2 <0. As we pointed out earlier, for the original Reinhardt
model, Aj, is either 0 or 1, s0 that Z%.; 4j5 = 0. It follows that
the original Reichardt model predicts that, under all cir-
cumstances except temporal aliasing, performance with ¢ =
/4 should be at least as good as performance with ¢ =
3m/4.

Third, the experiment gives 1nformatlon about the partic-
ular form of the input receptive fields ry(x). Again, the
comparison between the 7/4 and 3w/4 phase differences is
critical. As stated above, performance with 37/4 can exceed
performance with /4 only when 2?%.; A;s is negative. Com-
puter simulations®? showed that this sum is nonnegative for
a wide range of receptive-field shapes that are single-peaked,
symmetric, and identical except for location. This was the
case regardless of the location of the receptive fields relative
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to the display center and the distance between the recep-
tive-field centers. Further simulations showed that minor
violations of these three properties do not cause the sum to
be negative, provided that receptive fields cross at only one
location. On the other hand, the sum is negative for the tri-
ple-lobed receptive-field pairs depicted in Fig. 3, provided that
the detectors are centered on the display and that the spatial
frequency of the display with 37/4 phase difference is fo [Eqs.
(12) and (14)]. In other words, the sum is negative for pre-
cisely those détectors that respbond most strongly tothe ¢ =
3w /4 display, because they are centered on the display and
have a spatial frequency response that peaks close to the
spatial frequency of the display. Although we do not have a
rigorous mathematical proof, these considerations strongly
suggest that 2 %=1 A2 is negative only for receptive-field pairs
that cross more than once arid that must therefore have sev-
eral on and off areas. If we were to find that performance for
¢ = 3w/4 exceeds that for ¢ = w/4 over a range of temporal
frequencies (thereby excludihg temporal aliasing), we would
regard this as strongly suggestive evidence for multilobed
receptive fields. ‘One may remark here that evidence for
multilobed receptive fields may be obtained in the following,
much simpler, way. Since ¢ = 3w/4 corresponds to a higher
spatial frequency than ¢ = w/4, in which we find better per-
formance in the former than in the latter condition, one could
simply say that elaborated Reichardt detectors do not have
a low-pass spatial-frequency response but, rather, a nonmo-
notonic spatial-frequency response such as a band-pass re-
sponse. Because multilobed fields have a band-pass spa-
tial-frequency response and single-lobed fields tend to have
a low-pass spatial-frequency response, it would seem to follow
that band-pass data reject single-lobed receptive fields.
However, the factor D(f) in Eq. (15) shows this argument to
be incorrect: even when Pleg and Prighe are strictly decreasing
(i.e., rece‘pti\?e fields are low-pass), the spatial-frequency re-
sponse of the detector itself is always band-pass, since D(0)
= 0.

1. Method

The stimuli consisted of five bars with luminance function
h(t) = sin(2mnwt — jo). All combinations of three values of
o(w/4, w/2, and 37/4) and eight values of w (1.04, 2.08, 4:17,
6.94, 10.42, 15.63, 20.83, and 31.25 Hz) were tested. The
spatial frequencies corresponding to the three values of @ dre
2.84, 5.68, and 8.52 cpd.

Seventy-five-percent-correct direction thresholds were
measured with the method of constant stimuli. Several
methods of interpolation were applied to the psychometric
functions, but these all gave essentially the same results. We
report thresholds obtained with 1sot0n1c regressmn anal-
ysis. 34

Threshold determinations were based on 384-864 obser-
vations for each of the 24 experimental conditions. -

2. Results

Seventy-five-percent thresholds as a function. of temporal
frequency are given in Fig. 11. Separate temporal modulation
transfer functions (MTF’s) are plotted for the three values of
@, /4, 7/2, and 3m/4, which correspond to spatial frequencies
of 2,84, 5.68, and 8.52 cpd. We see that for each value of ¢,
sensitivity in an inverted-U-shaped function of temporal
frequency that reaches an optimum between 4 and 8 Hz.
Sensitivity decreases sharply beyond 15 Hz. The MTF’s
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Fig. 11. Seventy-five-percent threshold modulations (m/Lg) for
displays with sinusdidal modulation functions, as a function of tem-
poral frequency. Phase differences are 0.257 rad (0), 0.5« rad (O),
or 0.757 rad (A), corresponding to spatial frequencies of 2.84 (C), 5.68
(1), and 8.52 {A) cpd.

cross: at low temporal frequencies, sensitivity is highest for
¢ = 7/2 and lowest for ¢ = 7/4; at high temporal frequencies,
sensitivity is highest for ¢ = w/4 and lowest for ¢ = 37/4.

We now consider the issue of whether these data are con-
sistent with existing data, in particular those of Kelly®! and
of Burr and Ross.32 First, our modulation amplitude at
threshold in the optimal spatiotemporal frequency range is
about 0.04. This is a larger modulation amplitude than Kelly
measured (0.005). However, Kelly used a stimulus area
{about 44 deg?) that was several hundred times as large as ours
(about 0.1 deg?). Our amplitude also is larger than the
smallest amplitude measured by Burr and Ross. However,
their viewing area was even larger than Kelly’s (up to 12,100
deg?). ,

Second, the overall shape of the temporal MTF at our range
of spatial frequencies was similar to the shapes found both by
Kelly and by Burr and Ross. The optimum is in the 4-8-Hz
range, and sensitivity sharply declines for temporal
frequencies over 15 Hz. .

Third, in our data, as in the data of Kelly and of Burr and
Ross, optimal spatial frequency depends on temporal fre-
quency. In fact, our MTF’s in Fig. 11 exhibit a crossover
pattern—an irrefutable interaction. The MTF’s of Kelly and

of Burr and Ross exhibit a similar interaction. However, .

these authors find that the sensitivity to 8.52 cpd, while in-
creasing relative to 2.84 cpd as temporal frequency goes down,
never surpasses the latter. In other words, our data are dif-
ferent in that the 8.52-cpd MTF is elevated as a whole relative
to the 2.84-cpd MTF. Two differences in procedure could
explain the difference in vertical displacement of our temporal
MTF’s and those of Kelly. First, we showed many fewer
spatial cycles of sine waves. For example, for the /4 display
(2.84 cpd), we showed only half a cycle. Second, our presen-
tation was exclusively foveal. Both factors bias our results
in favor of patterns having high spatial frequencies, causing
high-spatial-frequency MTF’s to rise to an altitude in Fig. 11
that enables them to intersect the other curves.

In summary, where comparable, our data, obtained with’

discrete approximations to moving spatial sine patterns, are
quite consistent with data obtained by Kelly and by Burr and
Ross with continuous spatial sines. Qur thresholds are
somewhat higher than theirs, especially at low spatial
frequencies, because of our much smaller displays.

The superior performance at ¢ = 3w/4 over ¢ = w/4 at low
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temporal frequencies shows that the original Reichardt model
with point input assumption is incorrect. The obvious cor-
rection is the assumption of extended receptive fields. Our
computer simulations suggest that the fields must have off
areas in addition to on areas and that the fields must cross at
several locations. Both receptive-field pairs in Fig. 3 have
these properties. R

The crossovers in our MTF’s (and the corresponding in-
teractions in the MTFs of Kelly and of Burr and Ross) ulti-
mately require an additional complication of the Reichardt
model, i.e., the assumption of an inverse relationship between
optimal spatial and temperal frequency. The most obvious
way to implement such a relationship is by assuming that
there are at least two kinds of detectors; specifically, that re-
ceptive fields are smaller for fast than for slow detectors (here,
fast versus slow is defined in terms of the temporal frequency
 that maximizes 3, sind,,).

E. Experirhent 5. Unequal Bar Mean Luminances

As noted before, in both the original and the elaborated Rei-
chardt models, detector output is independent of Lo(x, £), L.e.,
of the stationary component of L(x, t). In this experiment,
we test this property by investigating the effects of adding a
constant amount of background luminance to alternate bars
of a motion display (i.e., a display with sinusoidal modulation
functions with modulation m that-represent motion).  Thus,
in one condition (uniform background), Lo; = Lo, forallj. In
the other condition (grating background, Fig. 12), Ly; = Loif
jisevenand Lo + ¢ if j.is odd. To illustrate the prediction
of no effect of grating background, note that the temporal
phase line in Fig. 12 does not deviate from its counterpart in
Fig. 1, which depicts the uniform-background condition.. The
comparison of uniform and grating backgrounds yields im-
portant information, because, as we shall see, all but one
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in Experiment 5. Arrows indicate modulation m;, and height of
vertical bars indicates average luminance Lo;.
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(spatial bhésé aﬂalysis) of the alternative models predict that
the grating background should have detrimental effects on
performance.

1. Precautions

(1) Eye movements. There is a risk that the data may
fail to fulfill the prediction of no effect of grating backgrounds
for the wrong reasons. There is the possible role of eye
movements. The stationary grating background increases
or reduces the response of motion detectors to the motion
stimulus, depending on whether the eye movement is against
or with the stimulus movement. These with/against effects
need not cancel each other; in fact, most considerations give
the upper hand to sensitivity reduction over increase. Kelly®!
found that the detection threshold for a moving sine wave is
increased by about 10% when a stationary sine wave that has
the same amplitude and spatial frequency as the moving sine
wave is added. Kelly attributed this small effect to uncon-
trolled eye movements. Since we do not use stabilized images,
the same possibility exists in our experiments. However, in
our procedure, display duration is relatively short (1.32 sec)
as compared with that of Kelly, whose method of adjustment
probably required a much longer duration. Moreover, even
when the method of adjustment is used, it has been shown3®®
that well-trained observers viewing moving sine waves have
negligible eye movements, provided that a fixation mark is
used. Thus it is unlikely that eye movements significantly
affect our data. )

(2) Adaptation. The predictions of the Reichardt model
are based on the assumption that none of the components
changes its characteristics with changes in mean luminance.
Clearly, the human visual system changes enormously with
adaptation level, a complication we strive to avoid, for the time
being, in the expectation that the mechanisms of adaptation
and of motion detection can be treated separately. We expect
to observe that the motion threshold is independent of L only
for small changes in Lo(x, t), for which the assumption of
linearity of the SF and TF components is reasonable accurate.
Because of adaptation, the prediction of no effect of grating
background on motion thresholds must be tested by com-
paring a grating background with a uniform background of
the same average luminance. To obtain sensitive bounds on
this prediction, we actually use two uniform backgrounds as
our controls: (1) Loj = Lo, and (2) Loj = Lo+ ¢. The mean
background luminance in the grating condition lies between
backgrounds (1) and (2); our prediction is that the motion
thresholds against grating backgrounds must lie between
thresholds against uniform backgrounds (1) and (2).

2. Predictions of Alternative Models

The spatial phase analysis model2%21 is immune to addition
of a stationary grating when the spatial frequency of the sta-
tionary grating differs from that of the moving grating, as is
the case in the present experiment (see below). The reason
is that the motion path for the moving sine wave is unaffected
by addition of the stationary grating, the only effect of which
is to produce its own motion path in the form of a horizontal
line (indicating absence of motion). However, the remaining
models predict detrimental effects of adding a stationary
grating.
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(1) Spatial correlation analysis.2!81% Adding a sta-
tionary grating changes the spatial pattern in each frame; we
cannot match up frames exactly anymore, because either the
moving pattern or the stationary pattern will cause a mis-
match. Computer analysis of our displays showed that, in
particular, when ¢ = 2m, no direction of motion can be in-
ferred for any of the three similarity measures (i.e., product-
moment correlation, covariance, and sum of absolute bright-
ness differences). The path that maximizes the frame-to-
frame similarity (by any measure) forms a zigzag pattern
without obvious direction; the straight path that maximizes
the mean frame-to-frame similarity is a horizontal line (no
motion). v ’

(2) Local brightness matching.! If this model sets.a
premium on matching points that are identical or nearly
identical in luminance, then the situation where ¢ = 2m is
particularly interesting. As can be demonstrated graphically,
the only points of equal luminance in adjacent bars in suc-
cessive frames are the peak in one bar and the trough in the
other bar, but these two points indicate motion in the reverse
direction.

(3) Marr-Ullman.2’> Nonmoving zero crossings are in-
troduced in the added-grating stimulus, whereas there are
none in the control displays, and up to one half of the moving
zero crossings in the control conditions are eliminated or re-
versed in the added-grating condition. Thus motion detec-
tion that depends on zero crossings would be severely impaired
by a grating background.

(4) Spatiotemporal gradient matching.?3?* The
spatial derivative at a fixed point on the moving sinusoid is
affected by the value of the derivative of the stationary pattern
at that location, whereas the temporal derivatives are unaf-
fected. Hence the process that matches spatial and temporal
derivatives is perturbed, and motion detection is also.

3. Method

We used the same sinusoidal modulation functions as in Ex-
periment 4 to produce a discrete approximation to a rigidly
moving sinusoidal grating. The critical variable was whether
we added a constant luminance ¢ of 5.9 ¢d/m? to L; for odd-
numbered bars (Fig. 12). To control for effects of overall
luminance, we compared three conditions: (1) Loj = 51 ¢cd/m?
for all j; (1&2) Lo, = 51 cd/m? if  is even, 56.9 cd/m?if j is odd;
and (2) Loj = 56.9 cd/m? for all j. The remaining factors were
w (1.95, 7.81, and 15.6 Hz), ¢ (7/4, w/2, and 3w/4), and m (at
levels needed to ensure motion detection between 65 and 85%
correct). For subject JP, 2m was larger than ¢ in some con-
ditions; for subject JvS, 2m was always smaller than c.
Subject JP received at least 640 trials in each of the 27 [(1)
versus (1&2) versus (2), w, and ¢] experimental conditions;
subject JvS received 884 trials. Presentation was blocked by
¢ and, as usual, by w.

4. Results

Overall, performance on displays of type (1&2) was between
performance in displays (1) and (2): Performance in the three
display conditions was 67.7, 65.6, and 64.9% correct for subject
JP and 78.1, 74.9, and 72.9% for subject JvS. There was no
trend consistent across both subjects that was related to either
spatial or temporal frequency or that could be attributed to
whether (for subject JP) ¢ was larger or smaller than 2m.
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These data warrant two conclusions. First, a uniform
background, which lowers stimulus contrast, produces a small
but measurable sensitivity loss (2.8 and 5.2% for subjects JP
and JvS, respectively). This indicates that direction dis-
crimination mechanisms are not fully linear (independent of
stationary uniform backgrounds); this does not come as a
surprise. Second, and more important, adding a stationary
grating has remarkably little effect beyond what can be ex-
plained by contrast reduction. We found this lack of effect
of background grating over a large range of spatial and tem-
poral motion frequencies.

F. Experiment 6. Adding a Stationary Sine Wave with
the Same Spatial Frequency as the Moving Sine Wave
This experiment was a specific test of the spatial phase anal-
ysis model.2021 In the previous experiment, the spatial fre-
quency of the stationary pattern (11.36 cpd) was dlways dif-
ferent from the spatial frequency of the moving sine wave
(2.84,5.68, and 8.52 cpd). The spatial phase analysis model
was not rejected by this experiment, because (spatial) Fourier
-analysis keeps sine waves of different spatial frequencies
separate. However, when the stationary and the moving sine
wave have the same spatial frequency, something different
happens (Fig. 13).

Within a frame, the moving and stationary sine waves
combine to form a new spatial sine wave with the same spatial
frequency as the component sine waves. However, the am-
plitude of this sine wave changes from frame to frame, and,
more importantly, the spatial phase does not follow the same
path ags the spatial phase of the moving sine wave. In fact, the
spatial phase path is a periodic function that approaches a
straight horizontal line (no motion) as the amplitude of the
stationary sine wave approaches infinity. In particular, when
the stationary and moving sine waves have equal amplitudes,
the spatial phase path moves back and forth over a range of
half of a spatial cycle.

In the present experiment, we investigate the effects of
adding a stationary sine wave to a moving wave; both have the
same amplitude and spatial frequency. It should be noted
that, in this experiment, zero crossings, as defined by Marr and
Ullman,?® follow the same back-and-forth path as spatial
phase.
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- Fig. 13. Effects on the spatial phase path of a moving sine wave when
a stationary sine wave with the same spatial frequericy is added.
Luminance of a given location in a frame is indicated by the vertical
deviation from the horizontal dashed null line for the frame. Vertical
dashed lines connect locations having the same spatial phase in suc-
cessive frames. Left-hand panel: six successive frames of sin(x +
t), where x denotes location and t(=ty, ts,. . . , t¢) time. Right-hand
panel: gix successive frames of sin(x + t) + 2 sin(x).
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Fig. 14. Results of Experiment 6. Effects of adding a stationary
sinusoid having the same spatial frequency w and modulation m; as
a moving sinusoid. Error bars indicate 95% confidence intervals.
Inset: Alternative representation of displays (1), (1&2), and (2) used
in Experiment 6.

1. Method

The same procedure followed in Experiment 5 was used here
with the following exceptions (Fig. 14, inset). First, conditions
(1), (1&2), and (2) were defined as follows. In condition (1),
Lj(t) = Lo — m + msin(2wwt — jw/6); in condition (1&2), L;(¢)
= Lo+ msin(2rwt — jw/6) + msin(—jx/6); and in condition
(2), Lj(t) = Lo + m + msin(2nwt — jw/6). Thus the time-
averaged luminance was Lo — m in all bars in condition (1),
Lo+ m in all bars in condition (2), and varied across bars from
Lo~ mto Ly + m in condition (1&2). Since the 15-bar dis-
play contains 1.25 cycle of the stationary grating, the space-
averaged luminance of this grating is not necessarily zero and
depends on which 1.25-cycle segment is displayed. We'ran-
domly displayed two segments on different trials that differed
by w. Thus, across trials, effects of nonzero space-averaged
luminance of the stationary grating would cancel each other.
Second, we used 15 bars that had one third the usual overall
width, resulting in a display that had the same width as usual
(0.22 deg) but was spatially a finer approximation to a sine
wave. Third, we used two temporal frequencies (4.2 and 16.7
Hz). Fourth, we made from 576 to 1728 observations in each
of the six [(1) versus (1&2) versus (2), and w] conditions.

2. Resulis

Data were similar to those in Experiment 5 (Fig. 14), although
subject NB showed a slight but insignificant trend for per-
formance in condition (1&2) to be worse than in conditions
(1) and (2). Overall, the data of Experiments 5 and 6 show
that adding a stationary sine-wave background (of the same,
or different spatial frequency than the moving grating) has
no effect on movement detection other than the small effect
that is to be expected from the addition of (uniform) back-
ground luminance. These data further confirm the original
and elaborated Reichardt models. Experiments 5 and 6 each
lead to rejection of the following models: (1) spatial corre-
lation analysis, (2) local brightness matching, (3) Marr-Ull-
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man zero crossings, (4) spatiotemporal gradient matching;
Experiment 6 requires rejection of spatial phase analysis.

G. Experiment?7. Adding Homogeneous Flicker

The previous experiment showed that adding a stationary
grating that has the same spatial frequency as a moving
grating has little, if any, effect on the accuracy of direction
judgments. We had predicted this finding on the basis of two
properties that are shared by Reichardt’s original model and
the elaborated model, namely, (1) segregation of temporal
frequencies and (2) having a zero response to a stationary
pattern. In the present experiment, we investigate the effects
of a dual manipulation: the addition of homogeneous flicker
that has the same temporal frequency as a moving sine
wave.

1. Predictions of the Original Reichardt Model

The Reichardt model predicts that addition of homogeneous
flicker to a moving sine wave should affect motion perception.
Even though, as can be easily shown, the response to flicker
presented alone is zero, the response to the sum of two lumi-
nance modulations that have the same temporal frequency
is not equal to the sum of the responses to the luminance
modulations. Obviously, merely predicting that adding ho-
mogeneous flicker affects performance would not constitute
- a critical test of the elaborated Reichardt model. However,
it turns out that, under appropriate conditions, the Reichardt
model predicts that addition of homogeneous flicker will re-
verse the direction of perceived motion.

Figure 15 illustrates the logic underlying the prediction of
flicker-produced motion reversal in the Reichardt model.
Figure 15A contains an ordinary moving-grating display L
with ¢ = 7/6 (the control display). That is, L;(t) = Lo +
msin(2rwt — 9;), with ¥; = —0.33w, —0.17, 0, 0.177, and
0.33m,forj=1,...,5. Figure 15B shows homogeneous flicker
L’ that has the same temporal frequency w but with twice the
amplitude (2m) and that has a relative phase (¢re)) of 7 (Fig.
15B). The relative phase of flicker ¢y is defined to be the
phase of L’ relative to the phase of the center (third) bar of L.
Thus L’ (¢) = Lo + 2msin(2rwt — ¢rel) forj =1,...,5; @rel
= 7. Then the resulting reversal display, L” = L + L’ — Ly
in Fig. 15C, is obtained by adding the time-varying compo-
nents of L and L’ while keeping the average luminance at Lo.
Thus one could say that L” consists of a control component
(the time-varying part of L) and a flicker component (the
time-varying part of L’). The same logic, with the roles of
space and time interchanged, was used in the previous ex-
periment, in which we tested the spatial phase analysis model
(Fig. 18). In the context of the present experiment, we spell
out the mathematics in full detail. As can be seen in Fig. 15C,
L” consists of temporal sinusoids that again have the same
temporal frequency w but an ascending temporal phase line
and hence phase differences that are opposite in sign to those
in Fig. 15A; also note that the amplitudes vary across the
display. Specifically, L;” = Lo+ m;” sin(2rwt — 9;”), where

;” =117, 113w, w, 0.877, and 0.83, and m;” = 1.73,1.24,
1.00,1.24,and 1.73m forj = 1,...,5.

The compound display of Fig. 15C illustrates the following

property of sinusoids:

sin(wt + x) + K sin(wt + m) = A(x)sin[wt + B(x)]. (23)
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Here A(x) = 0, and B(x) = tan—Ysin(x)/[cos(x) — K} + .
What is critical is that B(x) is a nonmonotonic function of x.
In fact, it follows that, by restricting x to an interval in which
B(x) is decreasing in x, we can reverse the sign of the phase
differences between adjacent bars. The back-and-forth path
of the spatial phase path in Experiment 6 corresponds to the
nonmonotonicity of B(x) in the present experiment. In Ex-
periment 6, however, we did not restrict ¢ to an interval in
which the spatial phase path is descending, because this would
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Fig. 15. Displays used in Experiment 7. A, sinusoidal modulation
function with a synchrony of /6 rad. B, sinusoidal modulation
function with asynchrony of 0 rad (homogeneous flicker) and same
temporal frequency w but twice the modulation m used in A. C, result
of adding flicker in B to display in A. Note that asynchronies are
opposite in sign to those in A, whereas modulation m; varies across
fields.
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require display durations of one third of a temporal cycle; this
would violate the assumption of temporal periodicity on which
all our analyses are based.

According to the original Reichardt model, the sign of de-
tector output depends on the sine of the temporal phase dif-
ference in the input channels [Eq. (8)], sin("Yrightn — Yieft,)-
In the control display, these differences begin at +0.177 (for
adjacent bars) and increase to +0.677 (for bars 1 and 5). In
the reversal display of Fig. 15C, the differences begin at
—0.0347 (for bars 1 and 2 and for bars 4 and 5) and decrease
to —0.337 (for bars 1 and 5). No matter from which pair of
bars a detector derives its input, the temporal phase difference
is between 0 and 7 in the control display and between 0 and
— in the reversal display. Hence the control and the reversal
displays yield detector outputs that are opposite in sign. This
is the case for each individual detector. Hence our linking
assumption implies that direction of perceived motion should
reverse. Note, however, that the control and the reversal
display differ in more respects than just the sign of the phase
differences. First, the phase differences have different
magnitudes. Second, the amplitudes m and m;” are unequal.
Hence, in contrast to Experiment 2, the original Reichardt
model does not predict that reversal should be perfectly
symmetrical, i.e., that performance in the reversal condition
should fall below the 50% mark by precisely the same amount
by which performance in the control condition should exceed
50%.

The original model makes additional predictions. First,
when added homogeneous flicker is in phase with the central
bar in Fig. 15A (¢re = 0), phase differences are not reversed.
Thus superimposition of this type of flicker should not lead
to reversal of motion direction. Second, when added homo-
geneous flicker has a different temporal frequency than the
moving grating [’ # w, Eq. (23)], no reversal of motion di-
rection is predicted at any relative phase. This follows from
the property of segregation of temporal frequencies of detector
outputs and from the fact that detector output to homoge-
neous flicker is zero.

2. Predictions of the Elaborated Reichardt Model

The elaborated Reichardt model makes the same predictions
for added, homogeneous. flicker as the original model. The
prediction is based on an analysis of the primary spatiotem-
poral sine-wave components of the displays and can be sum-
marized as follows: The control display L (Fig. 15A) is
dominated by sin(27wt + 271.89x). The homogeneous
flicker L’ (Fig. 15B) is simply sin(2wwt — 7). The reversal
display L” (Fig. 15C) is dominated by sin(2nwt — 271.19x).
In other words, the displays in Figs. 12A and 12C are domi-
nated by sine waves that move in opposite directions. Hence
the elaborated model, like the original Reichardt model,
predicts that opposite directions of motion are perceived for
the control and reversal displays. Second, when homogeneous
flicker is added in phase with the central bar of the moving
grating (Fig. 15A), the dominant sine wave of the compound
stimulus is sin(27wt + 271.19x). Hence no reversal should
be observed. Third, when the flicker has a different temporal
frequency from the moving sine wave, no effects should be
observed, because the elaborated Reichard model, like the
original Reichardt model, has the property of segregation of
temporal frequencies and has a zero response to homogeneous
flicker.
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Reversal of perceived direction because of addition of flicker
casts considerable doubt on several of the alternative models.
A homogeneous change in the luminance of a frame has no
effect on the spatial correlation with the preceding frame, nor
does this change affect the spatial phase of the most promi-
nent spatial Fourier component. [Spatial Fourier integral
analysis of either the entire display (i.e., the five bars and the
dark surround) or only of the five bars shows that motion
paths of spatial Fourier components are insignificantly af-
fected and certainly not reversed in direction by homogeneous
flicker.)

3. Method
The control display, a moving grating, is illustrated in Fig. 15A
and was discussed above. The value of 7/6 for between-bar
temporal phase difference ¢ yields a spatial frequency of 1.89
cpd. The temporal frequency (') of added flicker was w/2,
w, and 2w. The following values of ¢ were tested: for o’
= /2, ¢re1 = 0 and 7; for 0’ = w, ¥ = 0 and m; and for o’ =
2w, ¢re1 = 0 and 7/2 (note that here ¢, = 0 is equivalent to
@rel = T).

The seven conditions (the control display and the six
added-flicker displays) were presented at two temporal
frequencies (2.08 and 6.94 Hz), with a modulation of 0.128.

" Two observers made 96 observations in each of the 12

added-flicker conditions and 576 observations in each of the
two control conditions.

4. Results

There was an overall effect of temporal frequency in the
control condition (dashed lines in Fig. 16) consistent with the
temporal MTF’s obtained in Experiment 4 (Fig. 11}. Inthe
reversal condition (v’ = w, and ¢, = ), the apparent direc-
tion of motion was reversed in all cases, although the reversal
was not quite symmetrical. That is, the reversed stimulus was
opposite (as expected) but not quite equal in effectiveness to
the control. Similarly, the in-phase flicker (¢, = 0) enhanced
the perception of direction in the control direction (in three
of four cases), but the magnitude of the enhancement is dif-
ficult to estimate because of ceiling effects. Added flicker at
frequencies different from the moving grating has little effect
in three of four cases (as predicted). The exceptional case
(subject NB, 6.94 Hz) can be best understood by assuming
that the subject’s performance was disturbed in some general
way by added flicker in all the conditions. Once this overall
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Fig.16. Results from Experiment 7. Effects of adding homogeneous
flicker. Dotted horizontal lines indicate performance without added
flicker. The remaining lines indicate performance with added flicker.
The flicker frequency is 2w(0), w(Q), or w/2(A), where  is the tem-
poral frequency of the display without added flicker.
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deficit has been parceled out, these data became consistent
with the rest. The magnitude of the reversal effect is greater
than the magnitude of the enhancement effect (distance of
endpoints of heavy lines from dashed control line, Fig. 16).
The reversed stimuli are less strongly perceived (in the op-
posite direction) than the control gratings for many reasons.
The differences in between-bar phase difference (99; versus
9;”) and in modulation amplitude (m versus m”) have already
been pointed out. Additionally, for the specific conditions
tested, by extrapolating from Fig. 11, we can infer that, at the
temporal frequencies used, sensitivity is lower for the spatial
frequency in the reversal condition (1.19 cpd) than for the
spatial frequency in the control condition (1.89 cpd). Inad-
dition, Fig. 11 shows that reduced sensitivity to low spatial
frequencies should be more pronounced at lower temporal
frequencies, as we, in fact, found in the present experiment.
Second, the fraction of a spatial cycle contained in an indi-
vidual frame was smaller in the reversal than in the control
condition. It is easy to show that the detector output in-
creases with the size of this fraction.

In summary, the w/2 and 2w data strongly support the
predictions based on the property of segregation of temporal
frequencies that are shared by the original and the elaborated
Reichardt models. The prediction of reversal of perceived
direction by addition of homogeneous flicker to a moving
grating, a prediction based on nonlinearity of the Reichardt
model, is also strongly supported.

4. DISCUSSION

We have proposed a model of direction-sensitive units in
human vision that is a modified and elaborated version of
Reichardt’s model. The model analyzes a small patch of the
visual field, and its response is additive when input compo-
nents have different temporal frequencies.

The model was tested in experiments in which the subjects
viewed adjacent vertical bars with independently (typically
sinusoidally) modulated luminances. The experiments
confirmed several fundamental properties of the model.
Experiment 1 demonstrated that motion detection involves
sine-wave analysis in the temporal domain. Experiments 2
and 3 showed that, when the between-bar phase difference is
/2, detection performance depends on the product of adja-
cent bar amplitudes. Experiment 4 rejected the point-input
assumption of the original Reichardt model, provided evi-
dence that input receptive fields have both on and off areas,
and demonstrated that the detector population is heteroge-
neous. Detectors sensitive to high temporal frequencies are
less sensitive to high spatial frequencies and vice versa. Ex-
periments 5 and 6 showed that addition of a stationary pattern
has little or no effect on performance, even when the ampli-
tude of the pattern exceeds that of the moving pattern and
when the spatial frequencies of the stationary and moving
pattern are the same. Experiment 7 showed that the direction
of perceived motion can be reversed by adding homogeneous
flicker, but only when its temporal frequency is the same as
that of the moving sine wave and when it has the appropriate
temporal phase relationship with the moving sine wave.

These results cast doubt on a number of alternative models.
In particular, the final three experiments demonstrate that
motion perception does not involve the frame-to-frame
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comparison processses that are hypothesized by several of
these models. The reason is that addition of stationary pat-
terns changes pattern information within individual frames
but has no effect on performance, whereas addition of ho-
mogeneous flicker does not affect directional information in
frames but is shown to reverse the perceived direction of
motion.

Our model differs fundamentally from models that involve
frame-to-frame comparison, because, rather than comparing
two spatial luminance patterns at two instants in time, it
compares two temporal luminance patterns at two loca-
tions.

A. Time Averaging and Adaptation

1. Infinite Time Averaging

Perhaps the most implausible assumption of the Reichardt
model is infinite time averaging. The role of time averaging
in the model is important, because it removes all time-varying
components of the subunits’ outputs. However, because time
averaging requires integration over an infinite amount of time,
this operation cannot be implemented in real-world systems.
If, as suggested by Foster,28 TA is replaced by low-pass tem-
poral filtering, these subunit outputs will fluctuate around
their average values. If the time-varying components in the
input to these low-pass temporal filters are sufficiently fast,
or if viewing time is sufficiently long to allow the observer to
view several cycles of each component and perform a type of
mental time averaging, replacement of the TA units by low-
pass filters will have few observable effects. However, if there
is a slow, time-varying component and only one segment of
its temporal cycle is shown, then significant departures from .
the model should be observed. We are currently working on
this issue. :

2. Linearity

The assumption of linearity of TF, TA, and of any other
temporal filters that could be included in the model is a weak
spot. Because we have used small modulation depths, we
have not taxed this assumption. It would be of interest to see
how large the modulation depth m has to be for linearity to
break down. A related issue is the dependency of detection
performance on average luminance level L, demonstrated in
Experiments 5 and 6. This finding clearly requires a further
elaboration of the elaborated Reichardt model to incorporate
stimulus quantum noise (the amplitude of which is related to
stimulus level) as well as gain-control adaptation in the input
channels.

B. Physiological Considerations

Cats have cortical neurons that exhibit several of the funda-
mental properties of the elaborated Reichardt model.
Movshon et al.36 found complex cells in area 18 that have the
following properties. First, they are directionally selective.
Second, these cells derive their inputs from linear subunits.
Third, the receptive fields of the subunits consist of several
on and off areas. Fourth, the complex cells have essentially
zero sensitivity to stationary patterns (their temporal-fre-
quency sensitivity is band-pass). Fifth, there are facilitory
(and, to a lesser extent, inhibitory) interactions between the
subunits. Sixth, these interactions cause the complex cell to
respond in certain ways that are characteristic of the elabo-
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rated Reichardt model: the response to a moving sine wave
consists primarily of a steady-state component, whereas the
response to a counterphase grating consists primarily of the
second harmonic. This is precisely what the modified model
predicts, provided that (a) recordings are made before time
averaging (or time averaging is imperfect; see above), (b) the
receptive-field arrangement is given by Eq. (12), and (c) the
temporal phase shift 6, = #/2. Finally, there is evidence that
most cells in the striate cortex conform to the separability
hypothesis, according to which the optimal temporal fre-
quency is independent of the spatial frequency of a moving
sine wave, and vice versa.ll

These considerations indicate that the elaborated Reichardt
model is not inconsistent with current physiological facts.
However, it is not necessary for physiological mechanisms to
have precisely the same structure as the elaborated Reichardt
model (e.g., Fig. 2). Aswe shall see in the next sections, there
exist several versions of the elaborated Reichardt model (with
different components) that are functionally equivalent in that
they perform the same net computation.

C. Equivalent Forms

1. Shunting Inhibition versus Multiplication

It is easy to show?” that the behavior of a detector’s subunits,
and hence that of the detector as a whole, is not affected if we
simultaneously (a) add a high-pass temporal filter somewhere
before the multiplication unit and (b) replace this multipli-
cation unit by shunting inhibition (i.e., multiplication of the
high-pass-filtered input with one minus the input received
from TF). The latter change has the effect of reversing the
preferred direction. The underlying logic is that inhibition
in the nonpreferred direction is equivalent to facilitation in
the preferred direction. The high-pass input filter is needed
to eliminate steady-state components in the output of the
inhibition unit.

2. Direct Subunit Access and Generalized Subtraction

In the elaborated Reichardt model, the subject’s response is
based not on the outputs from the individual subunits but on
the difference between these outputs. However, one can
imagine a different scheme in which the responses are based
directly and completely on subunit outputs rather than on
their pairwise differences. In fact, one can imagine a scheme
in which subunits tuned to rightward and leftward motion
have no direct, “physical” connection with each other and
occur in pairs only in the formal sense that for every left-
ward-tuned detector we can find elsewhere in the system a
rightward-tuned detector that is its complete mirror image.
In this new scheme, it still would be reasonable to assume that
the probability of giving a right response would increase in the
output from the right subunit and decrease in the output from
the left subunit but would not necessarily be equal to the
difference between these two outputs. Formally, in the new
scheme for any stimulus L (x, t), Plright|L) = V[2(¥right,3,1
Yieft,3,1)s - + - » 8 Wright, 3,0 Vest,a.m)].  Here, yp 3; denotes the
output of the ith subunit tuned to direction H (left, right); g
is a generalized subtraction operation that has no restrictions
other than that it increases in the first argument, decreases
in the second argument, and has the (antisymmetry) property
that g(a, b) = —g(b, a); and V is a reasonable voting rule, i.e.,
nondecreasing in all of its M arguments.
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The question now arises under what conditions this gen-
eralized subtraction scheme is equivalent to the old simple-
difference scheme. That is, what, if any, amendments in the
subunits do we have to make, and which properties must a
display L have so that for any g having the above properties,
the output of detector D; (according to the simple-difference
scheme), ¥4, is monotonically related (by some monotonically
increasing function H) to g(Vright,3,i» YViert,3,1)7 Here, y4; is
defined as yright, 3, — Yleft,3,i> as always.

Whether generalized subtraction is equivalent to simple
difference depends on the following conditions.

(1) The scheme must incorporate the high-pass temporal
filter, as indicated above.

(2) Temporal phase shift é,,, [Eq. (5)] must be 7/2 for all
n.

(3) The input receptive fields must be of the form de-

scribed in Eq. (12), or, to be more exact, reg(x) must be equal
to the convolution of rght(x) with an arbitrary function a(x)
that has the property of antisymmetry [ie., a(—x) =
—a(x)].

(4) For each temporal frequency w, L contains at most one
spatiotemporal Fourier component with that frequency.

It can be shown that yiight3; = —¥left,3,, 1.€., the outputs
from the left and right subunits are completely equivalent
when either conditions (1), (2), and (3) are satisfied or con-
ditions (1) and (4) are satisfied. If we nowlet H(x) = g(x/2,
—x/2), it follows that H is monotonically increasing, and
& Vright,3,i» Yiert,3,i) = H(y4;); this shows that the generalized
subtraction g is monotonically related to y ;.

Note that the generalized subtraction scheme includes the
important special case in which negative outputs from a
subunit are truncated at zero. [If weletg(a,b) =aifa > —b
and gla, b) = b if a < —b, it can be easily demonstrated that,
thus defined, g has the desired properties.]

The existence of several equivalent forms and the wide
range of conditions for equivalence show that the behavior of
the model does not depend on details, such as the precise type
of comparison operation {(multiplication versus shunting in-
hibition), the voting rule, and the nature of the receptive fields
and temporal filters. Most of the model’s behavior stems
from its deep structure, i.e., the nonlinear comparison of
temporal luminance modulations in adjacent locations.

D. Detection of Counterphase Gratings

In our task, subjects were to determine direction of motion.
A more common task, however, consists of detecting the
presence of a (moving or nonmoving) spatial pattern. As
stated earlier, nonmoving patterns, such as stationary pat-
terns, homogeneous flicker, and counterphase gratings, lead
to zero detector output. Hence these patterns cannot be
detected on the basis of our hypothetical detectors. This
leaves us with two possibilities. First, detection of nonmoving
patterns involves a population of units that are not direction
selective. Alternatively, detection of nonmoving patterns
involves direct access to subunit output before subtraction.
For example, even though the detector’s response to coun-
terphase gratings is zero, the subunit’s responses are in general
not zero. [Note that counterphase gratings do not have
condition (4) needed for generalized subtraction to be
equivalent with the standard subtraction scheme.]



J. P. H. van Santen and G. Sperling

This brings us to a current theoretical issue, namely, the
explanation of the fact that contrast sensitivity is lower for a
counterphase grating than for a moving sine wave with the
same temporal and spatial frequency. Levinson and Sekuler?
and Watson et al.8 discuss the elegant hypothesis that de-
tection of a counterphase grating is mediated by channels that
are tuned to its moving components, i.e., to S(m/2, d, f, w) and
S(m/2, —d, f, w), where S is a grating stimulus with spatial
frequency f and temporal frequency w, d is the direction of
movement, and m is the modulation depth of the counter-
phase grating. It follows that, for a single channel to reach
threshold, a moving sine wave needs only one half of the
modulation depth that a counterphase grating needs. Watson
et al.8 argue that, under reasonable linking assumptions, this
hypothesis explains why contrast sensitivity is lower for
counterphase gratings than for moving sine waves.

Although the subunits in the Reichardt model could be
interpreted as channels that are tuned to leftward and right-
ward motion, the model suggests quite a different explanation.
It does not decompose a counterphase grating into its moving
sine-wave componénts. Stimulus components that have the
same temporal frequency, as is the case for the moving sine-
wave components of a counterphase grating, interact in
complicated ways in our detector system. The response y3 i
of subunit H to a counterphase grating is generally not equal
to the response to the moving sine-wave component to which
the subunit is tuned. The relative magnitude of the subunit’s
responses to moving sine waves and counterphase gratings
depends on the properties of SF and TF. For example, when
we have the receptive-field arrangement expressed in Eq. (12),
the ratio of the sensitivities of a subunit to moving sine waves
and counterphase gratings depends on tan é,, where 4, is the

" temporal phase shift. When TF is a first-order filter with
time constant 7, the ratio is 2w7. This ratio can be equal to
2 for at most one temporal frequency w.

In summary, our subunits cannot play the role needed for
the explanation given by Levinson and Sekuler and by Watson
et al. According to the Reichardt model, a counterphase
grating is not decomposed into its component sine waves.
Any regularity in the relation between thresholds for coun-
terphase gratings and for moving gratings either does not re-
flect the workings of Reichardt-type detectors (and must be
a result of other factors) or it must be a result of accidental
properties of SF and TF.

E. Spatiotemporal Fourier Analysis

In the introduction, we stated the general notion that the
human visual system performs some type of spatiotemporal
Fourier analysis. In this section, we spell out in more detail
to what extent and how the elaborated Reichardt model per-
forms this spatiotemporal Fourier analysis.

In the context of direction-discrimination tasks, We mean
by spatiotemporal Fourier analysis the following two-step
process. First, the display is decomposed into Fourier com-
ponents (spatiotemporal sine waves). Second, a voting rule
is applied to the components to decide which direction has
received the most weight, i.e., which direction has the largest
Fourier component amplitudes. We use V’ to distinguish it
from the voting rule V, which is applied to detector outputs.
It seems reasonable to require that V’ should be increasing in
each argument. Thus the sign of V” indicates direction,
whereas its magnitude indicates the strength of the vote.
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First, consider displays in which all Fourier components
have different temporal frequencies. For a single, elaborated
Reichardt detector, the response is the weighted sum of
squared amplitudes; the sign of each term in this sum corre-
sponds to the direction of the Fourier component. This fol-
lows from segregation of temporal frequencies [Eqgs. (8a) and
(8b)] and from the absence of temporal and spatial aliasing
(Sections 1.C.1 and 1.C.2). Thus, for these displays, a single,
elaborated Reichardt detector performs the spatiotemporal
Fourier analysis that we described above with an addltlve
voting rule V’.

For an entire system of detectors, a voting rule V is applied
to combine the individual detector responses. Because V is
strictly increasing in each argument (detector output) and
each detector output is increasing in each Fourier component
amplitude, V is strictly increasing in each Fourier component
amplitude. Thus, for displays in which all Fourier compo-
nents have different temporal frequencies, the elaborated
Reichardt model indeed performs a spatiotemporal Fourier
analysis.

Second, consider displays in which some Fourier compo-
nents have the same temporal frequency. Now the property
of segregation of temporal frequencies does not apply, and the
elaborated Reichardt model does not, in general, perform a
Fourier analysis. In particular, as predicted by the elaborated
Reichardt model, Experiment 7 (and, in particular, an infor-
mal replication with a fixation point that provides an atten-
tional rather than a physical window) showed that perceived
direction is location dependent and thus does not depend only
on the amplitudes of the Fourier components. The only
condition under which the elaborated Reichardt model per-
forms a Fourier analysis of shared temporal-frequency dis-
plays is when Fourier components with the same temporal
frequencies have sufficiently different spatial frequenmes to
stimulate nonoverlapping sets of detectors.

We now argue that for the remaining displays, i.e., displays
that have components with shared temporal frequencies and
similar spatial frequencies, our model’s behavicr may be de-
scribed as that of performing a local spatiotemporal Fourier
analysis. By this we mean that for a given location we first
apply some attentional window to the display and then apply
spatiotemporal Fourier analysis. What is the effect of a
window on Fourier components that share the same temporal
frequency and that have similar spatial frequencies? The
usual effect is to spread out their spatial-frequency spectra
in such a way that the combined spatial-frequency spectrum
has only one dominant peak. (This happened in Experiment
7, in which the spatial-frequehcy spectra of a physically win-
dowed drifting grating and uniform flicker combined to form
a spectrum with one prominent peak for a direction of
movement opposite that of the drifting grating.) In effect,
a window causes Fourier components with the same temporal
frequency and with similar spatial frequencies to become
unresolvable. Then, however, we have a display in which
there are no shared temporal-frequency components, so that
our model performs a spatiotemporal Fourier analysis.

Analysis of a linear, local, spatiotemporal Fourier analysis
model, recently proposed by Watson and Ahumada,3® pro-
vides further evidence of the profound relation between the
elaborated Reichardt model and the notion of local, spa-
tiotemporal Fourier analysis. Their model is incomplete in
that it does not specify how the ultimate left-right response
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is based on the time-varying detector output. We embellished
their model with an appropriate linking assumption:
squaring and time averaging of the detector outputs and
subsequently subtracting outputs of left- from right-tuned
detectors. The resulting model can be shown to be fully
equivalent to a special case of elaborated Reichardt model.

To summarize, for all displays except for those that have
components with shared temporal frequencies and similar
spatial frequencies, the elaborated Reichardt model performs
a spatiotémporal Fourier analysis; for the remaining displays,
the elaborated Reichardt model’s occasional failure to perform
a spatiotemporal Founer analysis is resolved by performing
a local Fourier analysrs As the empirical evidence accumu-
lates, the range of variation in models that describe short-
range motion perception is becoming restricted to models that
do not differ essentially from the elaborated Reichardt
model.

ACKNOWLEDGMENTS
This research was supported by the U.S. Air Force, Life Sci-
ences Dlrectorate, under grant AFOSR-80-0279. We are
grateful to. Ted Adelson, Yoav Cohen, Joyce Farrell, Mike
Landy, and Tony Movshon for helpful comments. Parts of
this work were presented at the Annual Meeting of the Asso-
ciation for Research in Vision and Ophthalmology, Sarasota,
Florida, May 1983, and at the Sixteenth Annual Mathematical
Psychology Meeting, Boulder, Colorado, August 1983.

REFERENCES

1. O. Braddick, “A short-range process in apparent motion,” Vis.
*Res. 14, 519-529 (1974); G. Westheimer, “The spatial sense of the
eye,” Invest. Ophthalmol. Vis. Sci. 18, 893-912 (1979).

2. S. M. Anstis, “Apparent movement,” in Handbook of Sensory
Physiology, Vol. VIII: Perception, R. Held, H. W. Leibowitz,
and H.-L. Teuher, eds. (Springer-Verlag, New York, 1977).

3. AJ. Pantle and L. Picciano, “A multi-stable movement display:
evidenee fof {wo separate motion systems in humans,” Science
193, 500-502 (1976).

4. O.J. Braddick, “Low-level and high-level processes in apparent
motion,” Philos. Trans. R. Soc. London Sect. B 290, 137-151
(1980). v

5. F. W. Campbell and J. G. Robson, “Application of Fourier analysis
to the visibility of gratings,” J. Physiol. (London) 197, 551-566
(1968).

6. H. R. Wilson and J. R. Bergen, “A four mechanism model for
threshold spatial vision,” Vision Res. 19, 19-33 (1979).

7. E. Levinson and R. Sekuler, “The independence of channels in
human vision selective for direction of movement,” J. Physiol.
(London) 250, 347-366 (1975).

8. A.B. Watson, P. G. Thompson, B. J. Murphy, and J. Nachmias,
“Summation and discrimination of gratings moving in opposite
directions,” Vision Res. 20, 341-347 (1980).

9. E. Adelson, “Some new motion illusions, and some old ones, an-
alyzed in terms of their Fourier components,” presented at the
meetings of the Association for Research in Vision and Oph-
thalmology, Sarasota, Florida, 1982.

10. W. Reichardt, “Autokorrelationsauswertung als Funktionsprinzip
des Zentralnervensystems,” Z. Naturforsch. Teil B 12, 447-457
(1957); W. Reichardt and D. Varju, “Uebertragungseigenschaften
im Auswertesystem fuer das Bewegungssehen,” Z. Naturforsch.
Teil B 14, 674-689 (1959); W. Reichardt, “Autocorrelation, a
principle for the evaluation of sensory information by the central
nervous system,” in Sensory Communication, W. A. Rosenblith,
ed. (Wiley, New York, 1961).

11. Equation (10) implies the separability hypothesis [H. R. Wilson,

12.
13.

14.

15.

16.

17,

18.

19.

20.

21.

22.

23.

24.

25,

26.

217.

dJ. P. H. van Santen and G. Sperling

“Spatiotemporal characterization of a transient mechanism in
the human vision system,” Vision Res. 20, 443-452 (1980)] ac-
cording to which the spatiotemporal frequency response of a
detector is the product of the spatial- and the temporal-frequency
responses. However, Eqgs. (11)-(22) can still be derived if we
replace Eq. (10) by a weaker form: - yg,0 = 2Z5g S 7o (x)La(x,
t) dx, which does not imply separability.
D. Gabor, “Theory of communication,” J. Inst. Electr. Eng 93,
429-457 (1946). o
S. Marcelja, “Mathematical description of the responses of simple
cortical cells,” J. Opt. Soc. Am. 70, 1297-1300 (1980).
For example, J. G. Daugman, “Two-dimensional spectral analysis
of cortical receptive field profiles,” Vision Res. 20, 837-846 (1980);
C.R. Carlson, R. W. Klopfenstein, and C. H. Anderson, “Spatially
inhomogeneous scaled transforms for vision and pattern recog-
nition,” Opt. Lett. 6, 386-388 (1981).
D. A. Polleni and S. F. Ronner, “Phase relationships between
adjacent simple cells in the visual cortex,” Science 212, 1409-1411
(1981).
In fact, Eq. (15) holds for any.pair of symmetric receptive fields,
including ones that are completely low-pass. This implies that
the detector can-have band-pass characteristics even when its
input receptive fields are low-pass and that, thus, a psycho-
physical band-pass response, to the extent that it is based on
Reichardt-type detectors, does not imply the existence of single
cells with band-pass linear receptive fields.
The critical property needed for the specific voting rule V is that,
when detector output z; is of the form z; = x£; (where £; is a factor
specific to detector D;), then V is monotonicinx. We need this
property to test the multiplicative law [Eq. (19)], where the role
of x is played by the detector-independent term moddmeven and
the role of &; is played by the detector-dependent term =52} 5
1 -1 p("ﬂ-k -9 )A]k
dictions is

The voting rule used to generate pre-

M
Vizy,...,2m)=¢q .Z k sign(z;)|z;|P
where ¢ is a function that ranges between 0 and 1, is antisym-
metric around 0.50 [i.e., ¢(2) — 0.50 = 0.50 — g(—2)], and is strictly
increasing; k and p are arbitrary positive constants. This rule
includes both the additive case (for p = k.= 1), in which the re-
sponse depends on the sum of the detector outputs, and the
maximum case [for p — «, k = 1, and q(z) = 21/P}, in which the
response depends on the maximum of the detector outputs (as
in threshold models).
J. A. Leese, C. S. Novak, and V.R. Taylor, “The determination
of cloud pattern motions from geosynchronous satellite image
data,” Pattern Recognition 2, 279-292 (1970).
E. A. Smith and D. R. Phillips, “Automated cloud tracking using
precisely aligned digital ATS pictures,” IEEE Trans. Comput.
C-21, 715-729 (1972).
R.C.Loand J. A. Parikh, “A study of the application of Founer
transforms to cloud movement estimation from satellite photo-
graphs,” Comput. Sci. Tech. Rep. TR-242 (University of Mary-
land, College Park, Md., 1973).
S. M. Anstis and B. J. Rogers, “Illusory reversal of visual depth
and movement during changes of contrast,” Vision Res. 15,
957-961 (1975).
S. Ullman, “Analysis of vision motion by biological and computer
systems,” Computer 14, 57-69 (1981).
J. 0. Limb and J. A. Murphy, “Estimating the velocity of moving
images in television signals,” Comput. Graphics 4, 311-327
(1975).
C. L. Fennema and W. B. Thompson, “Velocity determination
in scenes containing several moving objects,” Comput. Graphics
9, 301-315 (1979).
D. Marr and S. Ullman, “Directional selectivity and its use in early
visual processing,” Proc. R. Soc. London Sect. B 211, 151-180
(1981).
D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R.
Soc. London Sect. B 207, 187-217 (1980).
J. F. Schouten, “Subjective stroboscopy and a model of visual
movement detection,” in Proceedings of the Symposium on
Models of the Perception of Speech and Visual Form (MIT,
Cambridge, Mass., 1967).



J. P. H. van Santen and G. Sperling

28.

29.
30.
31.
32.

33.

D. H. Foster, “A model of the human visual system in its response
to certain classes of moving stimuli,” Kybernetik 8, 69-84
(1971).

G. Sperling, “Movement perception in computer-driven visual
displays,” Behav. Res. Methods Instrum. 8, 144-151 (1976).

A. Korte, “Kinematoscopische Untersuchungen,” Z. Psychol. 72,
193-296 (1915).

D. H. Kelly, “Motion and vision. II Stabilized spatiotemporal
threshold surface,” J. Opt. Soc. Am. 69, 1340-1349 (1979).

D. C. Burr and J. Ross, “Contrast sensitivity at high velocities,”
Vision Res. 22, 479-484 (1982).

These simulations consisted of calculating the value of Z3._; A;,,
with x. (location of detector center relative to display center),
Zright—X1eft (receptive-field center distance), and scale parameter
o factorially taking values between 0.05 and 105.2 by steps of a
factor of 2. We did this for rgr(x) = exp[—(x — x1)*/¢?], exp(—|x

34.
35.
36.

317.

38.

Vol. 1, No. 5/May 1984/J. Opt. Soc. Am. A 473

— xg|/0) uniform with width parameter ¢, triangular, and
semicircular.

R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D.
Brunk, Statistical Inference under Order Restrictions; The
Theory and Application of Isotonzc Regression (Wiley, New
York, 1972).

B. J. Murphy, “Pattern thresholds for moving and stationary
gratings,” Vision Res. 18, 521-530 (1978).

J. A. Movshon, I. D. Thompson and D. J. Tolhurst, “Receptive
field organization of complex cells in the cat’s strlate cortex,” d.
Physiol. 283, 79-99 (1978).

J. Thorson, “Small-signal analysis of a visual reflex in the locust.
II. Frequency dependence,” Kybernetik 3, 53-66 (1966). .

A. B. Watson and A. J. Ahumada, “A Look at Motion in the
Frequency Domain,” NASA Tech. Mem. 84352 (Natlonal
Technical Information Service, Sprlngfleld Va., 1983). .



