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What determines the strength of texturedefined apparent motion perception when the stimuhrs has 
no net directional energy in the Fourier domain? In a previous paper fvyerlthoven, Speriing & Chubb 
(1993) yisioa ~@se~e~, 33,46&4ggj we demo~t~ the ~~~~tive iinding that the corres~o~- 
dence in spatial frequency and in modulation amplitude between neighboring patches of texture in a 
spatiotemporal motion path are irrelevant to motion strength. Instead, we found strong support for 
what we call a single channel or one-&uensional motion computation: a simple nonlinear transfonu- 
ation of the image, followed by standard motion analysis. Here, we further studied the dimensionality 
of the motion computation in a parameter space that includes texture orientation and stimuhrs display 
rate in addition to texture spatial frequency and ~alation arn~~e. We used ambiguous motion 
displays in which one motion path, cousisting of patches of nonsimiIar texture, competes with another 
motion path comprised entirely of similar texture patches. The data show that motion between 
dissimilar patches of texture that are orthogonally oriented, have a two octave difference in spatial 
frequency and differ Stl% in modulation amplitude can easily dominate motion between similar patches 
of texture. A single channel accounts for more than 70% of texture-from-motion strength for the 
parameter space examined and this channel is invariant for stimulus display rates varying over a 
four-fold range. 

Second-order motion Motion energy Spatial frequency Orientation 

INTRODUCTION 

In a previous paper (Werkhoven, Sperling & Chubb, 
1993), we examined the perception of apparent motion 
between dissimilar gratings and introduced a paradigm 
to dete~ine the nature of the underlying motion com- 
putation. Before describing the goals of the present 
paper, we will summarize some of our previous results. 

We used a motion competition scheme that contained 
a heterogeneous motion path between dissimilar gratings 
and a homogeneous motion path between similar 
gratings (Fig. 2). Subjects were asked to indicate the 
perceptually dominant motion path. The phase of the 
gratings was randomized within a motion path, and 
the gratings had mean luminance equal to that of the 
background. These conditions insured that the stimuli 
were microbalanced (Chubb & Sperling, 1988, 1991 j 
whatever motion they displayed was invisible to mechan- 
isms that correlate stimulus luminance across space and 
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time in computing image motion. The simplest models to 
explain such texture-defined motion involve nonlinear 
preprocessing of the stimulus (“texture grabbing”) fol- 
lowed by standard motion analysis. 

Our motion competition scheme was novel in the sense 
that only one heterogeneous motion path competed with 
only one homogeneous motion path. By showing that a 
heterogeneous motion path (between grating patches of 
textures s and V) could easily dominate a homogeneous 
motion path (between grating patches purely of type s), 
we disproved the well-entrench~ presumption that 
strength of texture-defined motion was greatest between 
patches of texture with similar properties. Previous 
experiments (e.g. Watson, 1986; Green, 1986) had 
seemed to support the view that texture-defined motion 
is determined by correspondence matching. However, 
the apparent domination of heterogeneous motion 
paths by homogeneous paths was shown to be inherent 
to the competition schemes used and therefore was 
inconclusive. 

A single-channel motion computation 

The findings of our previous experiments were ex- 
plained in terms of a single-channel motion computation. 
That is, the motion computation consists of a single 
preprocessing stage followed by standard motion 
analysis (Fig. 1). 
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Aim of this study 

In Werkhaven et al. (19931, we examined a two- 
dimensional parameter space: spatial frequency and 
modulation amplitude. We found that transition invari- 
ance held across the family of textures corresponding to 
points in this parameter space. For these parameters, 
texture-defined motion perception could be modeled by 
a single channel motion computation: a computation 
consisting of a single texture grabber followed by stan- 
dard motion analysis. Here we ask whether transition 
invariance holds for a wider range of textural properties 
including grating orientation in addition to modulation 
amplitude and spatial frequency. 

The relative orientation of gratings in a motion path 
was not varied in our previous ex~~rnent~ (the orien- 
tation of the gratings was kept orthogonal to the motion 
direction). Therefore, possible texture grabbers that 
are tuned to other orientations relative to the motion 
direction were not stimulated. If texture grabbers 
tuned to different orientations feed into separate motion 
analysis channels, the computation is essentially muhi- 
dimensional. Wence, we would expect a violation of 
transition invariance. So, the first question is: is 
texture defined motion processed by separate motion 
channels that contain texture grabbers tuned to different 
orientations~~ 

Secondly, the display rate of the motion stimulus 
was not varied in previous experiments. Frames were 
shown contiguously in time. Each frame was shown 
for 133 msec and all stimuli had a temporal period of 
four frames. Thus, stimulus display rate was 1.88 Hz. It 
is known that the temporal characteristics can affect the 
motion computation involved. For example, display rate 
is one of the properties of an apparent motion stimulus 
that has been asserted to distinguish short-range from 
long-range motion perception (Anstis, 1970; Pantle & 
Picciano, 1976). One might argue that, by increasing the 
duration of each frame, the processing time for each 
grating increases, thereby facilitating a more detailed 
comparison between gratings in a motion path. As a 
result, we might expect transition invariance to break 
down for lower display rates. 

Here, we examine the effects of spatial frequency, 
modula~on amplitude, orientation 
the strength of apparent motion 
dissimilar gratings. 

and display rate on 
perception between 

METHID 

The strength of apparent motion perception was 
measured using two motion competition schemes 
(Schemes I and II). Both motion competition schemes 
contain a single homogeneous motion path (motion 
between identical textures) that competes with a single 
heterogeneous motion path (motion between different 
textures). It will be shown in the following sections that 
an analysis and comparison of the results of both 

schemes allows us to distinguish between single-chmnel 
and multi-channel motion computations. 

Stimtk 

Motion ~~rn~et~t~~~ Scheme f. Motion Competition 
Scheme I consisted of a series of eight frames 
V; ,fi, . . . f8) shown successively in time. 

In Fig. 2, we show a sketch of the frames. The first 
frame tfi) contained an annulus of patches of alternated 
texture type s and u at regular positions (see Fig. 2, Ieft). 
The centers of the patches are on an annuius with a 
radius p0 = 1.56 deg. The patches were regularly dis- 
tributed around the annulus. Each patch had a circular 
shape which was the result of windowing a texture with 
a blurred circular aperture. The circular aperture had a 
diameter of 1.03 deg. The standard deviation of the 
Gaussian blurring kernel which was used to blur the 
aperture was 4.0 min are (see Fig. 4). A formal descrip- 
tion of the textures seen through the apertures is given 
in the next section. 

FrameI was similar to frame fit except that patches 
of texture v were replaced by a uniform field of back- 
ground luminance. Furthermore, fi was rotated around 
the center of the annulus over 22.5 deg with respect to 
frame 1 (see Fig. 2, left). In a sequence of frames, frame 

s n+2 was identical to frame fn, except for a rotation 
around the center over 45 deg, 

The frames were shown contiguously in time (no 
interval between frames). The presentation time of each 
frame (“frame display time”) was r = 67, 133 or 
267 msec in different experiments yielding temporal fre- 
quencies of 3.75, 1.88 and 0.94 Hz respectively. The 
presentation time of the sequence was & = 0.533, I.066 
and 4.267 set respectively. The displacement or distance 
separating the two nearest patches between frames was 
36.5 min arc. 

The ambiguous motion stimulus described above con- 
tains two motion paths. This can be understood most 
easily using a diagram in which we show the angular 
positions (#) of the patches of texture for successive 
frames. Angular position is measured clockwise relative 
to the vertical. Such a diagram is shown in Fig. 2, right. 
Note that the rows of patches correspond to frames 1, 
2; 3 and 4 respectively. 

When frame f, and frame f,, I were presented in 
succession, two matches between patches of frame f, and 
patches of framef, + , were likely a priori. The first match 
was a homogeneous match between patches of identical 
texture s rotated clockwise around the center of the 
annulus by 22.5 deg (indicated in the diagram by the 
arraw pointing down and to the right). The second 
match was a heterogeneous counter-clockwise mbtch 
between patches of texture v and patches of texture s 
(indicated by the arrow pointing down and to the left). 
Matches between frames fn and fR+2 are purely ambigu- 
ous. Other matches were only possible between patches 
of frames f, and f, + 3 
time intervals. 

over larger angles and across larger 

These displays contain homogeneous and hetero- 
geneous motion paths in opposite directions. By 
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FIGURE 2. Motion competition Scheme I. Left: a series of frames (f, Jr, . . .) was shown successively in time (for details see 
section). The first frame (f,) contained an annulus of “disk shaped” patches of alternated texture type s and v at regular 
positions drawn against a uniform background. Angular position 4 is measured clockwise with respect to the vertical. The 
second frame (h) is similar to framef, , except that the low frequent patches of texture v are now replaced by a uniform patch 
of background luminance. Furthermore, .fr is rotated (clockwise) around the center of the annulus over an angle of 22.5 deg 
with respect to framef, . In a sequence of frames, framef,,, is identical to framef,, except for a rotation around the center 
over an angle of 45 deg (clockwise). Right: each row of patches results from cutting the corresponding annulus at the lowest 
point and stretching them. This schematic presentation reveals the competing motion paths more clearly. Angular positions 
4 are now along the horizontal axis. Time (or frame number) is along the vertical axis. When framefn and framef,, , are 
presented in succession, two motion paths are a priori likely. A homogeneous motion path: clockwise matches (CW) between 
patches of identical texture s (indicated by the arrow pointing down and right). A heterogeneous motion path: counter-clockwise 

(CCW) matches between patches of texture s and patches of texture v (indicated by the arrow pointing down and left). 

randomizing the sign of the rotation, we randomize the 
respective directions of the two motion paths (which are, 
of course, constrained to be opposite). 

The annular stimulus was used for various reasons. 
First, the motion stimulus was presented at a constant 
eccentricity in the periphery, and the effects of anisotropy 
of the retina were averaged across equivalent areas of the 
visual field. Second, it was easier to maintain fixation so 
eye movements were better controlled.* Finally, the use 
of circularly symmetric stimuli made it possible to 
produce a continuous animation by cyclically presenting 
a finite series of frames (computer memory efficiency). 

*Torsional eye-movements induced by the rotating annuli (cyclo- 
induction) were not controlled in our experiment. Balliet and 
Nakayama (1978) reported the ability of extremely trained subjects 
to make stepwise eye torsions up to rotations of approx. 26 deg for 
large field stimuli (25-50 deg of visual angle). However, we do not 
expect torsional pursuit in our experimental conditions: small field 
stimuli, brief presentations, fast motion, unpredictable motion 
direction, and ambiguous or near-threshold motion stimuli. 

Motion Competition Scheme ZZ. Scheme II is very 
similar to Scheme I, except that textures s and u 
are interchanged. The motion stimulus and resulting 
motion paths for this experiment are sketched in 
Fig. 3 

Although the heterogeneous motion path (between 
patches of textures and u) is identical to that of Scheme I, 
the homogeneous motion path is different from that of 
Scheme I. In Scheme II, the homogeneous motion path 
consists of patches of texture v. 

Textures 

To study the effects that textural properties have on 
motion perception, we used a family of textures con- 
sisting of sinusoidally modulated grating patterns. 
The parameters that characterize these gratings were 
(1) modulation amplitude c, (2) spatial frequency o, and 
(3) the orientation of the grating. The phase y of the 
grating was a random variable uniformly distributed on 
the interval [0,212]. 
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The modulation was either tangential to the annulus 
or radial yielding two different orientations of the 
grating. Tangentially modulated “‘pinwheel” gratings are 
conveniently described by the luminance prof%e 4 in 
polar coordinates rektive to the center of the ammlus: 

&(#, P) = ~31 + c sin (2nqbwp0 + r)l. (1) 

In this and following expressions, # is the polar angle of 
a point in the image, p the distance to the center of the 
ammlus, o the spatial frequency (in cfdeg) and 1;(1 the 
background luminance, Here p0 is the distance (in deg of 
visual angle) between the center of the annulus and the 
center of the stimulus patches, and the pinwheel Lt runs 
through %WP, cycles per circumference. This yields the 
desired effect that along the circumference that runs 
thraugh the center of the stimulus annulus, the fre- 
quency of tangential modulation is w c/deg. 

Radially modulated “bull’s eye” gratings are de- 
scribed by the luminance profile L,: 

+L,(bt, PI = &tl f c sin (2x0 a~ta~~~~~~ f ylJp (21 

where d is the viewing distance. 
The value of spatial frequency o was varied over a 

range of three octaves: w was 1.2, 4.9 or 9.9 c/deg. The 
amplitude c of the luminance modulation was adjustable 
between c = 0 (uniform patches} and c = 1 (maximum 
amplitude) in steps of 39 milli-units. At maximum 

amplitude, the minimum luminance value of gratings 
was 0 and the maximum luminance value of the gratings 
(2&J was equal to the maximum luminance value deter- 
mined by the mo&tor setting- The phase fr) of the 
modulation was randomized to insure: that motion 
mechanisms sensitive to correspondence in stimulus 
luminance were not systematically engaged (Chubb & 
Sperling, 1988, 1991). 

The orientation E of a grating is specikd refari~~ to 
the rangant to the annulus at the center of the grating. 
Tangentially modulated gratings L, are called orfhogonaf 
to the their tangent and are labeled with orientation 
a = 90 deg. Radially modulated grating8 L, are called 
parallei to their tangent and are labeled with orientation 
a = 0 deg. The d~~~~ti~~ of motion between two succes- 
sive gratings in a motion path is defined as the direction 
of the displacement of the centers of the gratings. It 
should be noted here, that the motion direction assigned 
to a grating deviates slightly (11.25 deg) from the tangent 
to the ammlus at the center of this grating. In the 
follo~~g sections, however, we discuss gratings with 
0: = 0 deg as being oriented in the motion direction and 
gratings with a = 90 deg as being oriented orthogonal to 
the motion direction. 

An example of a series of frames for Scheme I, 
containing the textures described above, is shown in 
Fig. 4 in which texture s is a “medium” frequency 

FIGURE 3. Motion competition Scheme II. This scheme is simitar to Scheme I (see Fig. 2), except that textures s and u are 
interchanged. As a result the homogeneous motion path contains textures u. 
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stimulus parameter that was varied was frame duration 
r. 

P, (m,; w,, a,, t) is the probability of heterogeneous 
path dominance when using competition Scheme I as a 
function of amplitude m, for a given spatial frequency w, 
and orientation a, of u and a given frame duration t. 
Similarly, we measured the probability of heterogeneous 
path dominance P,(m,; o,, aC, z) when using compe- 
tition Scheme II. We examined three different spatial 
frequencies, w, = 1.2,4.9 and 9.9 c/deg; two orientations 
of gratings v, a, = 0 and 90 deg (parallel or orthogonal 
to the motion direction); and three frame durations, 
t = 67, 133 and 267 msec, corresponding to stimulus 
temporal frequencies 3.75, 1.88 and 0.94 Hz. 

The probabilities P, (m,; w,, a,, t) and Pz(m,.; w,, a,., z> 

are measured as the percentage of heterogeneous motion 
percepts out of 36 presentations. 

For a given spatial frequency, o,, and orientation, a,., 
of grating u, and a given frame duration r, we measured 
P,(m,; w,, a,, r) and P,(m,; w,, a,,, T) as a function of 
amplitude m, for both competition schemes in one 
session. Trials for these different conditions were mixed 
randomly in one session. Different spatial frequencies w, 
and different orientations a,., were tested in different 
sessions. 

MOTION COMPUTATIONS AND THEIR 
PREDICTIONS 

The two competition schemes presented above com- 
prise a powerful tool to discriminate between single- 
channel and multi-channel motion computations. Both 
computations, when applied to the competition schemes 
above, yield strong predictions for the results of the 
experiments presented in this paper. A key notion is 
transition invariance. 

Single-channel motion computation: theory 

In a previous paper (Werkhoven et al., 1993) we 
showed the sufficiency of a single-channel motion com- 
putation for a two-parameter family of textures charac- 
terized by amplitude and spatial frequency. For the 
particular details of this computation (e.g. filter charac- 
teristics), see Werkhoven et al. (1993). Here we are 
concerned with the basic assumptions of a single-channel 
motion computation and their predictions for transitions 
using the competition schemes described above. 

A single-channel motion computation model is based 
on the following assumptions. 

l Assumption 1. I: the spatiotemporal input is pre- 
processed by a single nonlinear transformation T 
whose output we call activity. 

We write T, and T, for the activities of textures s 
and v respectively. These activities can be written as 
functions of spatiotemporal properties of textures such 
as amplitude m, spatial frequency o, orientation a 
and display duration r : T, = T (m,, w,, a,, z) and 
T, = T (m,, o, , a,, t ). Different textures can have identi- 
cal activities; in other words they can correspond to 

points of one isoactivity curve in the parameter space 
isomorphic to the family of textures examined. 

l Assumption 1.2: the activity transformation T is 
‘then input for standard motion analysis. 

The term “standard motion analysis” refers to the 
class of computations equivalent to some variant of 
the bilocal correlation scheme originally proposed by 
Reichardt and elaborated by van Santen and Sperling 
(1984). The computations in this class generally presume 
that the motion carried by a spatiotemporal signal is 
indicated by its Fourier energy spectrum. The Fourier 
components (drifting sinusoidal gratings) with the most 
energy dominate the motion elicited by that signal. For 
the highly restricted competition schemes we use in this 
paper, it is reasonable to assume that the strength of a 
motion path yielded by standard motion analysis is given 
by the product of the activities of two consecutive patches 
of texture in a motion path. 

Single-channel motion computation: prediction 

The motion strength of the heterogeneous path L&e in 
Scheme I (between texture s and u) is the product of the 
activity T, of texture s and the activity Tr of texture v: 

S,.,,e = T, T, . (3) 

The strength of the homogeneous path S,,ho in Scheme I 
(between identical textures s) is the square of the activity 
T, of texture s. Heterogeneous motion was arbitrarily 
considered to have positive sign. Homogeneous motion 
(S,,h,) has opposite polarity, since the motion is in the 
opposite direction: 

S,,ho = -T:. (4) 

The strength of motion perception in the direction of 
the heterogeneous path is proportional to the sum of the 
output of standard motion analysis for the hetero- 
geneous path and the homogeneous path. 

Of particular interest is the condition in which the 
strength of the heterogeneous motion path (S,,h,) and the 
strength of the homogeneous motion paths (S,,h,) are 
equal (except for opposite sign), i.e. when the two 
motion paths are balanced. Motion paths are balanced 
when the activities of texture s and v are equal: T, = T,. 
Hence, s and v correspond to points on one isoactivity 
curve in the parameter space. 

The similarity of textures s and v is not what deter- 
mines motion strength. When the motion paths are 
balanced, we can interchange textures s and v while the 
motion paths remain balanced in strength. This means 
that we will find that Schemes I and II will have identical 
activities of texture v at the point where the motion paths 
are balanced. We will refer to this property as transition 
invariance. Transition invariance is an exclusive property 
of a single channel motion computation, as we will see 
next. 

Multi-channel motion computation: theory 

A multi-channel motion computation differs from a 
single-channel motion computation in that standard 
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motion analysis is performed on more than one activity As a result, the net motion strength (0,) in the 
representation of the optical input. direction of the heterogeneous path is: 

l Assumption 2.1: the optical input is preprocessed D, = S,,, + %.,,o = T, . [T, - T.J. (8) 
by a set of n distinct activity transformations, Ti 
(i=l... n), yielding n different activity represen- 

At a transition, the motion strength of the hetero- 

tations of the optical input. 
geneous and homogeneous motion paths are balanced, 

l Assumption 2.2: standard motion analysis is ap- 
i.e. the net motion strength is zero: 

plied to each of the activity representations. D, = T,<. [T, - T,] = 0. (9) 

An activity transformation followed by standard In T-space, there exists an (n - I)-dimensional solution 
motion analysis is called a motion channel. Thus we have for T, in equation (9). For example, we find a point when 
n different motion channels. n = 1, a straight line (perpendicular to T,) when n = 2, 

l Assumption 2.3: the outputs of the n channels are 
and a plane (orthogonal to T,) when n = 3. 

linearly summed with equal weights. 
It should be noted that the net heterogeneous motion 

strength D, can be positive. Hence, even in a multi- 

The net motion strength of a stimulus is proportional 
channel motion computation, the strength of the hetero- 

to the sum* of the outputs of standard motion analysis 
geneous motion path can dominate. 

on each of the activity representations. 
Using only the result for competition Scheme I, we 

cannot discriminate between a single-channel and multi- 

Multi-channel motion computation: predictions 
channel motion computation, because both compu- 
tations produce transitions from dominance of the 

An important consequence of multi-channel motion homogeneous motion path to dominance of the hetero- 
computations is that transition invariance is impossible 
for n > 1. 

geneous motion path as the projection of T, on T, 
increases. We will show that transition invariance is 

We first apply this motion computation to critical in discriminating a single-channel from a multi- 
Scheme I (Fig. 2). For i = 1,2, . . ., n, we write channel motion computation. 
TiS=Ti(m,,w,,cr,,t) and Ti,,=Ti(m,,o,,cr,,~) for the Using analogous notation and reasoning, we find the 
outputs of transformation Ti applied to textures s and o solution for vectors T, for which the motion strength of 
respectively. The output of channel i for the hetero- the heterogeneous and homogeneous paths are balanced 
geneous path (between textures s and v) is the product when using competition Scheme II (Fig. 3): 
of TiS and Ti,. The output of channel i for the homo- 
geneous path (between textures s) is Ti. D, = T, . r]T, - T,] = 0. (10) 

We now derive an expression for the final motion 
strength after summing the outputs of different channels. 

Note that Scheme II results from Scheme I by inter- 

For simplicity, we will use the vector notation: 
changing elements s and v. In T-space there exists a 
(n - I)-dimensional solution for T, in equation (10). For 

T,= i-1 and T,= r-1 . 

example, we find a point when n = 1 (T, = T,), a circle 
(tangent to the line perpendicular to T,) when n = 2, 

(5) and a spherical surface (tangent to the plane that is 
orthogonal to T,) when n = 3. 

The vectors T, and T, are the activity vectors of Transition invariance 

textures s and v respectively. An activity vector rep- The transition points for Scheme I will be invariant 

resents the activity of a texture in the n-dimensional after interchanging elements s and v (resulting in Scheme 

transformation space (T-space) defined by transform- II) when the activity vector T, satisfies both equations (9) 

ations T, . . . T,,. For Scheme I the summed motion and (10). As is easily seen, there is only a single activity 

strengths of all channels for the heterogeneous path can vector T, that satisfies both equations: T, = T,. 

be written as the scalar product: Vector T, is equal to vector T, when each transform- 
ation 7; involved in the motion computation has an 

S,,he = T, . T, = k TiS Tic. (6) 
equal output for both textures v and s: 

,=I Ti, = T, (i = 1 . . . n). (11) 
The motion strength of the homogeneous path is: 

This is a strong constraint for the ensemble of trans- 

S,,ho= -T;T,= -i T,TiS. (7) 
formations that might be involved in a multi-channel 

i= I 
motion computation. Every transformation Ti must 
yield equal activity for both textures s and v, i.e. both 

*For specificity, but without loss of generality, we have assumed 
textures map to an isoactivity contour of Ti. Further- 

summation with equal weights. In fact, we can allow different 
more, when transition invariance holds for a range of 

weights when they are all positive (different positive weights can be properties of texture v, the isoactivity contours of each 
absorbed in the different transformations T,). transformation T, must be identical within this range. 
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This means that the motion computation is one- 
dimensional, i.e. we have a single-channel motion 
computation. 

In conclusion, transition invariance for a range of 
texture properties excludes a motion computation in- 
volving more than one transformation of the optical 
input (or more than one texture grabber). Transition 
invariance can be tested by comparing the conditions 
for which the motion paths are balanced between 
Schemes I and II. 

EXPERIMENTS 

We measured the probability P,(m,; w,, a,, z) of 
heterogeneous path dominance using Scheme I, and 
the probability Pz(m,; o,, a,, z) using Scheme II. The 
probabilities P, and P2 are measured as a function of 
amplitude m, of grating ZJ for 18 conditions: three 
different spatial frequencies of grating u, two orien- 
tations of grating u and three frame durations. For each 
scheme we will show the probability curves for each of 
these conditions. 

JS: ov=l .2 cpd 

(a) 
2=67 maec, a_,=90 deg 2=67 msec, a = 0 deg 

The effects of spatial frequency on the strength of 
apparent motion perception have been presented and 
discussed in detail in another paper (Werkhoven et al., 
1993). In this paper, the organization of the presentation 
is chosen to facilitate the analysis of the effects of 
orientation and frame duration. Hence, for one par- 
ticular spatial frequency w,, we grouped together the 
probability curves P,(m,; w,, a,, r), for i = 1,2 (both 
competition schemes), u, = 0,90 deg (both orientations), 
and z = 67,133 or 267 msec (all three frame durations) in 
the same figure (see e.g. Fig. 5). 

For each of the probability curves P,(m,; w”, uv, t), we 
write ~~(w,, a,, z) for the amplitude m, satisfying 
P,(m,; w,, au, 7) = 50%. Thus, pi(wO, a,, r) is the ampli- 
tude for which the strength of the heterogeneous motion 
path and the strength of the homogeneous motion path 
are balanced. The amplitudes p, and pz are called the 
transition amplitudes for Schemes I and II respectively. 
Although p, and /J* are both functions of w, (spatial 
frequency of u), a, (orientation of u), and r (frame 
duration of the presentation), it will be convenient to 
omit explicit reference to all but the argument(s) relevant 

0 i=l (Scheme I) 
0 i=2 (Scheme II) 

0.0 0.2 0.4 0.6 0.8 1 .O 0.0 0.2 0.4 0.6 0.8 ’ 

2=133 msec, Ct =90 deg .I 2=133 msec, a__= 0 deg 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

2=267 msec, a,,=90 deg 2=267 msec, a__= 0 deg 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Amplitude of V, m, 

FIGURE 5(a). Caption overlenf. 
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PW: av=1.2 cpd 0 i=l (Scheme I) 
0 i=2 (Scheme II) 

@I 

‘X=67 msec, deg X=67 msec, a = 0 deg 

0.0 0.2 0.4 0.6 0.8 l:o 

Z=133 msec, a,,=90 deg 

lOOf 

X=133 msec, av= 0 deg 
a 

80 

60 

40 

20 

0 -I 
0.0 0.2 0.4 0.6 0.6 1 .o 0.0 0.2 0.4 0.6 0.8 1 .o 

T=267 msec, a =90 deg 
\, 

0.0 0.2 0.4 0.6 0.8 1 .o 
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FIGURE 5. Effect of frequency and orientation differences: the probability p&w?_; wC = 1.2 c/deg, t(, , T) of heterogeneous path 
dominance as a function of the amplitude M,. of texture L for two different orientations (c(, = 0 deg and CX, = 90 deg) of texture 
t’ and for different frame durations (I = 67, t 33 and 267 msec) and two subjects. Solid circles represent the probability P, for 
Scheme I (Fig. 2), open circles P2 for Scheme II (Fig. 3). The horizontal dashed line indicates a 50% probability of 
heterogeneous path dominance. The amplitude tn,, spatial frequency w,, and orientation a, of texture s is the same for all panels: 

m, = 0.5, w, = 4.9 c/deg, and c(, = 90 deg. 

in a given context whenever the omission causes no 
confusion. 

Estimation of transition amplitudes pj and p2 

To estimate transition amplitude ~~(0,. , ~1,. , T), we 
selected the three data points of each probability curve 
around the crossing of the curves with the 50% guide 
line that were closest to the 50% guide line. Within this 
selected range, the curve was assumed to be linear, and 
these data points were subject to a least-squares method 
of tinear regression. 

A Monte Carlo bootstrapping method was used to 
estimate the variability in the measurements of 
,D = ~1,) ,u2. Specifically, let p, , p2 and p3 be the estimates, 
obtained from the data, of the probability of hetero- 
geneous motion for the three amplitudes x, , x2 and x3 in 

the neighborhood of the transition ampfitude, p. Each 
estimated pi is derived from 36 trials at amplitude xi, We 
assume that p,, p2 and p3 are the p-parameters of 
independent, 36-trial, binomial random variables under- 
lying our data. Then we (a) obtain 400 realizations of 
each of three binomial random variables, n,(N = 36, 
p =P,), n2(N=36,p =pd, and n,W= 36, P =pd; (W 

fit a straight line to the obtained points (x,, n,/N), 
(.x2, nJN>, and (x,, Q/N); and (c) find the amplitude 
pslrn for which (psi,, 0.5) is on this line. This procedure 
yields 400 independent, simulated estimates of the tran- 
sition amplitude p. The standard deviation of this distri- 
bution is taken as the standard error of our original 
estimate of p. 

The error in the estimation of ~~(8,. , ~1,. , r ) depends on 
the steepness of the probability curve at the transition 
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TABLE 1. Transition amplitudes for observer PW 

w, = 1.2 c/deg w, = 4.9 c/deg o, = 9.9 c/deg 

a0 = 90 deg a,=Odeg a,, = 90 deg a,=Odeg a, = 90 deg a,, = 0 deg 

Ir, P2 PI Y2 PI I42 PI P2 PC, P2 Pi I42 

T = 67 msec 0.19 0.16 0.21 0.11 0.52 0.52 0.62 0.49 0.75 0.68 0.92 0.78 
T = 133 msec 0.20 0.15 0.26 0.10 0.49 0.51 0.55 0.42 0.68 0.62 0.89 0.79 
‘T = 267 msec 0.20 0.15 0.31 0.15 0.50 0.50 0.50 0.42 0.59 0.58 0.92 0.83 

Transition amplitude p, for Scheme I and p2 for Scheme II are given for 18 conditions: three frame 
durations (horizontal rows), three spatial frequencies and two orientations (columns). 
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amplitude. As will be clear from the following Results 
section, the steepness of the probability curves is roughly 
determined by the spatial frequency w,. Therefore, we 
can summarize the errors in p by taking the average 
errors which are 0.014 for the CD, = 1.2 c/deg condition, 
0.022 for the CD, = 4.9 c/deg condition and 0.030 for the 
CD, = 4.9 c/deg condition.* 

We will say that transition amplitudes p, and p2 are 
significantly different (with a probability of 95%) when 
they differ more than 2 times the error in the difference 
of p, and pL2, That is a difference of more than 0.039 for 
the w, = 1.2 c/deg condition, 0.062 for the o, = 4.9 c/deg 
condition and 0.084 for the w, = 4.9 c/deg condition. 

Spatial frequency co, = 1.2cldeg 

In Fig. 5, we show the probability curves for Scheme 
I (solid circles) and Scheme II (open circles) for which 
the spatial frequency of grating v is 2 octaves lower than 

*On request of an anonymous reviewer, we have also applied a 
maximum likelihood estimation technique (called ERF-fit) using a 
cumulative normal distribution to model the probability curves (see 
Werkhoven et al., 1993). Cumulative normal distributions 
Erf[(m, - p,)/o,] are theoretically justified for the probability 
curves obtained for Scheme I, but not for Scheme II (see 
Werkhoven et al., 1993). The value D characterizes the steepness of 
the probability curve at the transition amplitude. No linearity 
assumption is required and all data-points can be used to estimate 
transition amplitude p, These estimates obtained by ERF-fit are 
equal to those obtained by a linear fit within 1 SD for the ERF-fit 
estimates. The standard deviations for the ERF-fit estimates also 
depend on the steepness o, of the probability curve and thus on the 
spatial frequency w,. Bootstrap simulations similar to those de- 
scribed above (but now taking all data points) yield standard 
deviations for the ERF-fit estimates of p approx. 0.009, 0.012 and 
0.019 for the w, = 1.2, 4.9 and 9.9 c/deg conditions respectively. 
Because of the good agreement between the ERF-fit estimates and 
those of a linear fit and because the ERF-fit procedure cannot be 
applied directly to Scheme II, we have chosen to use the estimates 
of the linear fit procedure. 

that of grating s (0, = 1.2 c/deg). For each subject [JS, 
Fig. 5(a); PW, Fig. 5(b)] we collected data for 12 
conditions. The 12 conditions shown result from two 
different orientations of grating v (left column, 
a, = 90 deg; right column, u, = 0 deg), and three different 
frame durations (top row, r = 67 msec; middle row, 
r = 133 msec; bottom row, t = 267 msec). 

The curve marked by solid circles in the left upper 
panel of Fig. 5 shows that the probability P,(m,; 
1.2 c/deg, 90 deg, 67 msec) of heterogeneous path domi- 
nance increases monotonically with m,. For sufficiently 
high amplitude (m, > 0.3), heterogeneous motion domi- 
nates homogeneous motion in more than 90% of the 
presentations. 

Following the estimation method, we find a transition 
amplitude p, (1.2 c/deg, 90 deg, 67 msec) = 0.19 (subject 
PW) and 0.13 (subject JS) for Scheme I (see Tables 1 
and 2). 

Also in the upper left panel, we show the probability 
P2(m,; 1.2 c/deg, 90 deg, 67 msec) of heterogeneous path 
dominance for Scheme II (open circles). When the 
amplitude of grating u is zero, P2 is 50% (the competition 
scheme is purely ambiguous!). Starting at m, = 0 and 
increasing rnti we find that P, first increases. It reaches 
some maximum and decreases monotonically when we 
further increase the amplitude m, of grating u. We find 
a transition amplitude when P2 is 50%. The transition 
amplitude for Scheme II is: ~~(1.2 c/deg, 90 deg, 
67 msec) = 0.16 (subject PW) and 0.08 (subject JS). 
Thus, the transition amplitude of Scheme I is not 
markedly different from that of Scheme II (see Table 1). 

Interestingly, the results are not much different for 
longer frame durations, as can be concluded from 
comparing the panels in the left column. The middle 
panel shows the probabilities P, (m,; 1.2 c/deg, 90 deg, 
133 msec) and P,(m,; 1.2 c/deg, 90 deg, 133 msec) for a 
longer frame duration of 133 msec. For the left bottom 

TABLE 2. Transition amplitudes for observer JS 

o, = 1.2 c/deg 0,. = 4.9 c/deg w, = 9.9 c/deg 

a, = 90 deg a,=Odeg a, = 90 deg a,, = 0 deg a,=9Odeg a,=Odeg 

n, P2 PI 112 PI P2 PI P2 A4 P2 PI P2 

T = 67 msec 0.13 0.08 0.13 0.10 0.48 0.48 0.43 0.37 0.57 0.53 0.79 0.62 
T = 133 msec 0.17 0.10 0.21 0.11 0.43 0.39 0.50 0.41 0.59 0.56 0.72 0.53 
t = 267 msec 0.19 0.08 0.18 0.08 0.50 0.49 0.48 0.37 0.58 0.58 0.73 0.59 

Transition amplitude p, for Scheme I and p2 for Scheme II are given for 18 conditions: three frame 
durations (horizontal rows), three spatial frequencies and two orientations (columns). 
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panel the frame duration was 267 msec. The results are 
nearly identical for all three frame durations. 

In the right column, we show the results for three 
different frame durations when grating v is oriented 
parallel to the motion direction (while grating s is still 
oriented orthogonal to the motion direction). Now, 
textures s and v of the heterogeneous motion path have 
perpendicular orientations. Although gratings s and v 
differ two octaves in spatial frequency and have perpen- 
dicular orientations, the heterogeneous path can easily 
dominate the homogeneous path for sufficient 
amplitude m,. However, the right upper panel shows 
that, for a brief frame duration, the transitions 
~1, (1.2 c/deg, 0 deg, 67 msec) and ,u2( 1.2 c/deg, 0 deg, 
67 msec) are slightly but significantly different from 
those found when gratings s and v have identical orien- 
tations (compare the right upper panel with the left 
upper panel). 

Also at longer frame durations (middle right and 
bottom right panels), heterogeneous motion easily dom- 
inates over homogeneous motion for sufficiently high 

JS: a+ 34.9 cpd 

(a) 
2=67 msec, a_,=90 deg 2=67 msec, a = 0 c&g 

0.0 0.2 0.4 0.6 0.0 1 .o 0.0 0.2 0.4 0.6 0.6 1.0 

amplitude m,. Again we find that the transitions p, and 
,LQ are slightly but significantly shifted apart for different 
oriented gratings s and zl. 

Spatial frequency w,. = 4.9 cjdeg 

The effects of grating orientation on the strength of 
apparent motion is most clearly revealed by letting 
gratings s and v have identical spatial frequencies and by 
comparing a condition in which the orientations of both 
gratings are identical with a condition in which gratings 
s and v are perpendicular. Figure 6 shows the results 
when gratings s and v have an identical spatial frequency 
of 4.9 c/deg. Similar to Fig. 5, the different rows show 
results for different frame durations. 

In the left column, both spatial frequency and orien- 
tation of grating s and v are identical. As expected, 
transitions occur when the amplitude rnC of grating v is 
equal to the amplitude of gratings s b, (4.9 c/deg, 90 deg, 
r) = ~~(4.9 c/deg, 90 deg, r) = 0.51. At this amplitude, 
gratings s and v are identical (except for random phase 
differences). 

2=133 tnsec, a,,=90 deg 

0 i=l (Scheme 1) 
0 i=2 (Scheme II) 

0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 
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Amplitude of V, m, 

FIGURE 6(a). Caption on ,facing page 
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FIGURE 6. Effkct of orientation differences: the probability P,(m,; co, = 4.9 c/deg, cr,, 1) of heterogeneous path dominance 
as a function of the amplitude m, of texture u for two different orientations (a, = 0 deg and a, = 90 deg) of texture u and 
for different frame durations (t = 67, 133 and 267 msec) and two subjects. Solid circles represent the probability P, for 
Scheme I (Fig. 2), open circles P2 for Scheme II (Fig. 3). The horizontal dashed line indicates a 50% probability of 
heterogeneous path dominance. Tbe amplitude mS, spatial frequency o, and orientation a, of texture s is the same for all panels: 

m, = 0.5, w, = 4.9 c/deg, and cc, = 90 deg. 

By comparing the left and right panel in a row, we can 
see the effect of orientation differences between gratings 
s and v on the relative strength of the heterogeneous 
path. Obviously, the transition amplitudes ,u~ (4.9 c/deg, 
0 deg, r) and pz(4.9 c/deg, 0 deg, 7) are slightly but 
si~i~~n~y shifted apart when the o~~tations of 
grating s and Y are perpendicular (see right column). The 
transition amplitude for Scheme I is systematically 
higher than that for Scheme II. This effect of orientation 
is similar for different frame durations (see Table 1). 

Spatial frequency co, = 9.9 c jdeg 

Figure 7 shows the results for a grating v with a spatial 
frequency of 9.9 c/deg (1 octave higher than the spatial 
frequency of grating s). For this condition, we need 
transition amplitudes m, that are higher than that of 

grating s to have heterogeneous path dominance. In 
the left column, the differences between transitions 
p, (9.9 c/deg, 90 deg, r) and pL2(9.9 c/deg, 90 deg, 7) are 
insignificant. 

Looking at the right columns (~~ndicularly 
oriented gratings s and u), we find that the transitions are 
slightly but significantly shifted apart. 

MODEL I~LICA~ONS 

We start out with a rough analysis of the results for 
Schemes I and II separately. Subsequently, we’ll elabor- 
ate our analysis to account for the slight difference 
between the results found with Scheme I and those with 
Scheme II. 



The results of the experiments with Scheme T show 
that heterogeneous motion is d~rni~ant over homo- 
geneous motion whenever the activity T, of grating e 
exceeds some value (i.e, when m,. exceeds the transition 
p,). At the transitions, heterogeneous and homogeneous 
motion strength is balanced. These transitions are ap 
~r~x~rnate~y ~nde~e~de~t of frame d~ratjon f. This result 
for Scheme f is wetI expfained in terms of a single- 
channel motion computation as described earlier. The 
mullon strength Sf8hc of the heterogeneous path contain- 
ing gratings s and u is proportional to the product of the 
outputs of a certain transformation T of these gratings: 
SI,kf = TVq,. The motion strength St.hO of the homo- 
geneous path is: S,,ho = T, Ts_ After linear combination, 
the net motion strength in the direction of the hetero- 
geneous motion path is: D, = r,(T,. - L?,) [see equation 
(IO)]. Thus, the net motion strength is linear in the 
activity T, of texture P. Furthermore, we have &own 
(see ~erkhoven eb ai., f993) that the actitityr is l&ear 

2~67 msec, deg 

in amplitude m: T(m, w, x, ‘r ) = WI/‘(W, z). Assuming :I 
Normal noise distribution with mean D, for the 
n~easureme~t of net motion strength, our model predicts 
that the ~robab~~jty P, (RQ; W, , a, ,T ) is an error-fun~tjo~~ 
of m,.. The shapes of the probability curves found for 
Scheme I (see e.g. Fig. 5) are qualitatively in agreement 
with this simple model. 

Further, we consider the ~~~~~~~~~~.~ OF the probability 
curves, At a transition ampiitude the motion strengths of 
both paths are balanced, i.e. the activities of both 
gratings are equal: IT.@,. , 0,. , ix, , z) = ~s,(m,, co,, a,, r.). 
Since activity T, is constant throughout the experiment, 
the dependence of activity T. on spatial frequency 0,. 
and amplitude m,. can be inferred from the &an&ion 
arn~~~t~des &u~., g. rf for different spatial f~quen~~e~ 
but constant orientation a,. = a and constant frame 
duration r = h (see Table 1). That is, we find: 
f(o,. , a) = rYp i ’ (co,. , a, h ), Obviously, transition ampli- 
tude pi(w,, a, b) increases with frequency w,, for all pairs 
CI, tt, suggesting that the function ,f and thus the activity 
T is a rn~~oton~~~~~ decreasing function of crt,.. 
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FIGURE 7. Effect of frequency and orientation differences: the probability P&B,; w, = 9.9 c/deg, K~, 5) of heterogeneous path 
dominance as a function of the amplitude m, of texture Y for two difYerent orientations (as, = 0 deg and c[,, = 90 de& of texture 
B and for different frame durations (T = 67, f33 and 267 msec) and two subjects. Solid circks represent the probability Pt for 
Scheme 1 (Fig. 21, open circks, P2 for Scheme II (Fig. 3). The horizantal dashed iine indicates a 50% probability of 
heterogeneous path dominance. The amplitude m,, spatial frequency w,, and orientation a$ of texture s is the same for all panels: 

m, = 0.5, o, = 43 c/deg, and a, = 90 deg. 

Even wlsen the gratings are ~~~~~~~~~1~~ orienti, a sir&e activity rep~se~tation. The nonlinear trans- 
the strength of the heterogeneous motion path easily formation that yields the activity representation in- 
dominates the strength of the homogeneous path. The creases monotonically with amplitude and decreases 
transition amplitudes for orthogonally oriented gratings monotonically with spatial frequency. Furthermore, the 
o are approximately equal to those for parallel oriented transformation is approximately rotationally invariant 
gratings t‘ for all spatial frequencies examined. This (not tuned to specific orientations of the texture sensed). 
strongly suggests that the function & and thus the 
activity T, is almost independent of its orientation c(. 

Finally, the results are similar for different frame 
Rough analysis of Scheme II 

durations, suggesting that f is independent of r in the 
first approximation. In fact, the F-ratios given by an 
ANNA test show that spatial frequency accounts for 
87% of the variance in pI for subject PW (95% for 
subject .TS). Orientatian accounts for only 11% (PW) 
and 3.5% (JS). 

A tentative conclusion is that the results of Scheme I 
can be explained by standard motion analysis applied to 

If the conclusions for Scheme I were valid, the activity 
T, of texture D would increase monotonically with its 
amplitude m,. Applying our model to Scheme II, the 
strength of the homogeneous path increases quadrati- 
cally with T,, whereas the strength of the heterogeneous 
path increases linearly with c,. The net motion strength 
in the direction of the heterogeneous path is r,( 7’, - T,) 
[see equation (lo}]. As a result, the heterogeneous path 
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FIGURE 8. Transition amplitudes p, as a function of spatial frequency 0,. In fact, we have projected the transition amplitudes 
which are represented in a four-dimensional graph--p&,, m,, r)--on the pi, w,-plane. Transitions for Scheme I (i = 1) are 

indicated by open circles, those for Scheme II (i = 2) by solid circles. 

is dominant for small T, and the homogeneous path is 
dominant for large amplitude TV. As in Scheme I, the 
motion paths are balanced when T, = T,. This prediction 
is supported by the data. The curves start at Pz = 50% 
climb to a maximum and decrease monotonically for 
larger amplitude m,, crossing the dashed line (Pz = 50%) 
at the transition amplitude pcz. 

Consistent with the model and the results for 
Scheme I, we find that (1) the transitions pz increase with 
increased spatial frequency; (2) the transitions p2 for 
orthogonally oriented gratings u are approximately 
equal to the transitions for parallel oriented gratings 
u for all spatial frequencies examined; and (3) the 
transitions p2 do not systematically depend on frame 
duration. 

For Scheme II, the F-ratios given by an ANOVA test 
show that spatial frequency accounts for 98% of the 
variance in ,u, for subject PW (99O/ for subject JS). 
Orientation accounts for only 0.4% (PW) and 0. I % (JS). 

Comparing Schemes I and II 

In the section Motion Computations and their Predic- 
tions, we argued that transition invariance was consist- 
ent with a single channel motion computation. 
Werlchoven et al. (1993) have shown that transition 
invariance is true for a two-dimensional parameter 
space: spatial frequency and amplitude. Here we have 
shown that transition invariance approximately (but not 
entirely) holds for the orientation parameter of the 
textures involved. Furthermore, transitions are approxi- 
mately invariant for different frame durations. There- 
fore, we conclude that the motion computation is 
dominated by a single motion channel C, whose texture 
grabber (nonlinear preprocessing transformation) is not 
tuned for texture orientation and largely independent 
of frame duration. To illustrate this point, we have 
projected the transition amplitudes which can be rep- 
resented in a four-dimensional gmph-pi(Wo, a”, z)---on 

the pi, w,-plane. Thus, transition amplitudes pi taken 
from different conditions (different orientations and 
different frame durations are shown as a function of 

spatial frequency a”). Transitions for Scheme I (i = 1) 
are indicated in Fig. 8 by open circles, those for 
Scheme II (i = 2) by solid circles. 

The variance in the data for a particular frequency 
indicates the range of effects of the two other parameters 
(orientation and frame duration), which is quite small 
for the higher frequencies. 

The small but consistent violations of transition in- 
variance reported here do, however, indicate that the 
motion computation is more complex than a single- 
channel system. When the patches of texture have 
orthogonal orientations (see right columns of Figs 5, 6 
and 7), the transitions are slightly but markedly different 
for Schemes I and II (summarized in Fig. 8). The fact 
that transition invariance is not valid for the orientation 
parameter, suggests that the processing of texture- 
defined motion receives a modest contribution from 
additional channels (other than C,) whose texture 
grabbers are specific for texture orientation. 

To estimate the contribution of multiple channels to 
motion strength, we will use the following approach. 
First, we use the observation that the data are well 
described by a dominant contribution of a single motion 
channel C,, with an isotropic texture grabber together 
with a smail contribution of motion channels that 
have nonisotropic texture grabbers. This contribution of 
motion channels with nonisotropic texture grabbers is 
called 6. This nonisotropic contribution 6 will enter the 
motion computation when the textures in a motion path 
have orientation differences. When the textures have 
identical orientation, we find transition invariance and L 
is negligibly different from zero (Werkhoven et al., 1993). 

Second, because the data show that orientation differ- 
ences systematically weaken the strength of the hetero- 
geneous path, we say that the contribution c is positive 
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TABLE 3. Relative contribution c/T: (in %) of motion channels with nonisotropic texture grabbers 
for observer PW 

w, = 1.2 c/deg w, = 4.9 c/deg o, = 9.9 c/deg 

a,=9Odeg a,=Odeg a,=9Odeg a,=Odeg a, = 90 deg a,=Odeg 

r=67msec 8 26 0 11 5 8 
* = 133 msec 13 33 2 12 5 6 
r =267msec 13 28 0 8 1 5 

in the direction of the homogeneous motion path. Since, 
the anisotropic contribution c will depend mainly on 
the orientation differences of the textures in the 
heterogeneous path, it will be similar in strength for 
competition Schemes I and II, given two textures s and u. 

The net motion strength D, for Scheme I is determined 
by standard motion analysis applied to the dominant 
activity transformation T and the contribution 6 of other 
channels that adds positively to the homogeneous path: 

D, = T,(T, - T,)- t. (12) 

Similarly, we find the net motion strength D, for 
Scheme II: 

D2 = T,(T,- TJ- c. (13) 

To proceed, we propose that the activity of a texture 
grabber is linear in the amplitude of a texture, and that 
the dependency of T on amplitude and spatial features 
such as frequency CO and orientation a are separable: 

q(mi, Wi, ai, 5) = mif (Oi, Ui). (14) 

Separability of spatial frequency and amplitude is 
supported by the results presented in Werkhoven et al. 
(1993). 

We will focus on the transitions to derive a useful 
expression for the contribution .c. At transition ampli- 
tude m, = p, the motion paths are balanced and D, = 0. 
After substitution of equation (14) into equation (12), we 
find the following expression at transition amplitude for 
Scheme I: 

hf G4, a,) = m,f (us9 a,) + 6 [m,f (OS, cd-‘. (15) 

At transition amplitude m, = p2 with Scheme II, we find: 

hf (o,, a,) = m,f (s aA 

P + 1 - 4~l(mf(% cr,))21/2 (16) 

which reduces to a similar expression as equation (15) 
using the approximation that c is much smaller than Tz : 

~*f(WU,aU)Xm,f(O,,a,)--L[m,f(O,,a,)l-’. (17) 

The expressions equations (15) and (17) show that the 

transition amplitudes for Schemes I and II shift apart 
symmetrically in case of a small similarity contribution 
L. This approximation allows an easy derivation of a 
quantitative measure of a similarity effect. 

Equations (15) and (17) can be combined to find an 
expression for the contribution c. However, because the 
experiments give us the relatiue strength of motion paths, 
6 can only be measured relative to some reference. We 
will use the strength of the homogeneous reference path 
for Scheme I (containing textures s only) as the standard 
to compare to L. The strength of this standard path is Tf . 
Simple combination of equations (15) and (17) yields: 

c/T: = (PI- /Mp, + ~2). (18) 

The approximation EC< Tz provides a useful rule of 
thumb in the form of equation (18). To quantify 
the similarity effect in our experiments, however, we 
combine expressions (15) and (16) to find the general 
expression for L as a function of p, and pL2 (allowing for 
larger 6). Furthermore, we say that the activity of 
textures s equals the average activity of texture v at 
the transition amplitudes in Schemes I and II: 
T, = f (o,, a,)@, + pL2/2 (recall the symmetry in the shift 
of the transitions). The relative similarity contribution t 
with respect to the average motion energy Tf becomes: 

(19) 

In Tables 3 and 4, we presented the relative contri- 
bution 6 as expressed in equation (19) in percentage of 
the standard strength for all conditions examined here. 
The contributions of multiple channels are smaller than 
14% for all conditions and subjects except for the 
IX, = 1.2 c/deg conditions. When the spatial frequency 
of texture u is 2 octaves lower than that of s 
(CO, = 1.2 deg/sec), and the orientation of s and u are 
orthogonal, the contribution becomes markedly larger. 
For this “orthogonal” condition, nonisotropic motion 
channels contribute an average net motion strength that 
is maximally 33% of the standard strength vs 13% for 
the “parallel” condition (for subject PW). For subject JS 

TABLE 4. Relative contribution L/T: (in %) of motion channels with nonisotropic texture grabbers 
for observer JS 

r=67msec 
r = 133 msec 
t = 267msec 

w, = 1.2 c/deg o, = 4.9 c/deg w, = 9.9 c/deg 

a,=9Odeg a,=Odeg a,=9Odeg a,=Odeg aU=90deg a,=Odeg 

21 12 0 7 4 11 
22 26 11 9 3 14 
32 30 1 12 0 10 
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we see marked contributions (although smaller than 
32%) of a similarity channel for both the “parallel” and 
“orthogonal” condition when 0,. = 1.2 c/deg. This fmd- 

ing suggests that the possible nonisotropic channels 
involved in motion-from-texture perception are tuned to 
low spatial frequencies. 

GENERAL DISCUSSION 

We have used a special ambiguous motion compe- 
tition scheme and the notion of transition invariance to 
reveal the dimensionality and metric of the motion-from- 

texture extraction process under study. This powerful 
technique was previous study (Werkhoven et al., 1993) 
to demonstrate that the motion-from-texture compu- 
tation is one-dimensional with respect to a two- 

parameter family of textures (spatial frequency and 
amplitude). Consequently, the motion computation con- 
sists of standard motion analysis applied to a single 
nonlinear transformation of the stimulus input: the 
activity transformation. The similarity in spatial structure 
between elements in a motion path does not determine 
the motion strength. 

Perhaps surprisingly, the study presented here shows 
that the motion-from-texture computation is also 
quite insensitive with respect to orientation differences 
between gratings in a motion path. This means that the 

activity transformation that precedes standard motion 
analysis is roughly isotropic. Furthermore, the perform- 
ance of the motion-from-texture mechanism seems in- 
variant for the temporal frequency of the stimulus 
(between 0.94 and 3.75 Hz). Thus, the assumption of a 
single channel is almost sufficient to predict the strength 
of second-order motion for a larger family of textures 

(orientation, in addition to spatial frequency and ampli- 
tude). To explain the small violations of transition 
invariance, however, we assume a modest contribution 
of a secondary channel characterized by non-isotropic 
preprocessing. The contribution of a channel with non- 

isotropic preprocessing is 32% of the strength of the 
dominant isotropic channel. 

Texture orientation 

We find that a motion path containing differently 

oriented textures (~1,~ = 90 deg, c(,. = 0 deg) yields a slightly 
weaker motion strength than a path containing identi- 

cally oriented textures (GI, = a, = 90 deg). Recall that a 
patch of orthogonally oriented texture (a = 90 deg) has 
an orientation of 90 deg relative to the tangent to the 
annulus of the center but an orientation of 78.75 deg 
relative to its assigned motion direction. Similarly, a 

texture oriented parallel to its tangent (a = 0 deg) has an 
orientation of 11.25 deg relative to its assigned motion 

direction. Due to the circular display geometry, the 
actual orientation differences between successive textures 
in a homogeneous motion path were 22.5 deg whereas 
successive patches in the heterogeneous paths differed 
67.5 deg in orientation. 

The weaker motion when a? = 0 deg may be due to 
(a) the orientation difference a,. - a, between texture 2’ 

and texture s (which we call a correspondence measure) 
or simply (b) a,. itself: the difference between the orien- 
tation of texture c’ and the motion direction. To dis- 

tinguish between (a) and (b), one needs to vary a, and 
a,. - a(, independently for a given a,, which is not possible 
with the present configuration. Since we cannot rule 

out explanation (b), the small deviations of transition 
invariance are not necessarily due to correspondence 
measures. Werkhoven et al. (1990a) reported on a 

method to solve this question for oriented elements in 
the first-order motion domain and showed that the 
relative orientation of elements in a motion path are 
irrelevant to motion strength. Instead, the element orien- 
tation relative to the motion direction rules first-order 
motion strength. We have not yet applied this method to 
the second-order motion domain. 

Stimulus display rate 

A second important finding is that the parameters 
extracted by motion computation proposed here are 
invariant for frame durations between 67 and 267 msec 
(corresponding to stimulus temporal frequencies be- 
tween 3.75 and 0.94 Hz). As argued in the Introduction, 
one might expect an increasing contribution of more 
complex (and perhaps more time consuming) correspon- 
dence measurements as the presentation time for each 
increases. Temporal frequencies of 3.75 Hz (together 
with the small displacement of 37 min arc) would be 
classified under low-level or short-range motion process- 
ing, as opposed to long-range motion processing (Anstis, 
1970). However, even when the presentation time of each 
patch of texture in a motion path is 267 msec (0.94 Hz), 
similarities between textures do not seem to play a role 
in motion processing. For shorter frame durations. 
67 msec, we find transitions equal to those for 267 msec. 
Thus, we find no shift towards different motion compu- 
tations at longer frame durations. 

Orientation and,fiequency selectivity in,first- and second- 

order motion perception 

In this paper we have argued that motion-from- 

texture processing can be understood by assuming a 
dominant channel consisting of isotropic low-pass 
preprocessing followed by motion energy analysis. To 
explain the small similarity effects found for texture 
orientation at low spatial frequencies we have assumed 
a second weak nonisotropic channel tuned to low spatial 
frequencies. Thus, motion-from-texture analysis seems 
to be an extremely low-dimensional process. 

Interestingly, first-order motion analysis is believed 
to be composed of multiple channels that differ in 

their spatial and temporal frequency tuning and their 
orientation selectivity. Anderson and Burr (1985) for 
example, employed a masking technique (measuring the 
sensitivity to a sinewave grating with and without a 
superimposed high contrast mask grating) to reveal the 
involvement of multiple channels tuned to different 
spatial frequencies and orientations (see also Anderson, 
Burr & Morrone, 1991). Studies on motion aftereffects 
(e.g. Cameron, Baker & Boulton, 1992) provide further 
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support for a multiple spatial frequency channel model 
of first-order motion processing. 

Before discussing any possible discrepancies between 
spatial frequency and orientation selectivity in first- and 
second-order motion processing, it is helpful to realize 
the following. Generally, the selectivity for spatial fre- 
quency and orientation infirst -order motion processes is 
attributed to the spatial properties of the subunits of 
bilocal motion detectors. These subunits filter the input 
in both space and time and are thought to be followed 
by a nonlinear operation to compute, e.g. motion energy. 
The receptive fields of these subunits have a fine struc- 
ture that determines the selectivity of a bilocal motion 
detector to the orientation and spatial frequency of a 
moving grating (see e.g. Anderson et al., 1991). 

The selectivity to orientation and spatial frequency 
discussed in this paper, however, should be attributed to 
the properties of the preprocessing stage that transforms 
the moving texture-modulation into a moving activity- 
modulation. This moving activity-modulation can be 
sensed by a bilocal motion detector. Obviously, the 
properties of the subunits of the motion detector can 
account for the effects of the orientation and frequency 
of the activity-modulation. Conversely, the properties of 
the preprocessing stage account for the effects of the 
orientation and frequency of the textures. 

Our stimuli are basically one-dimensional moving 
modulations of texture type and we have examined 
second-order motion strength as a function of textural 
properties. We have not yet studied the dependence of 
second-order motion strength on the properties of the 
modulation function itself. Such a study would be 
necessary to compare orientation and frequency selectiv- 
ity in first- and second-order processing. 

CONCLUSION 

We have shown that the strength of texture defined 
motion is dominated by a single nonlinear transform- 
ation followed by standard motion analysis for a family 
of textures that includes orientation, spatial frequency 
and amplitude. Given the relative insensitivity of 
motion-from-texture processing to correspondences be- 
tween these simple features of textures in a motion path, 
it is unlikely that more detailed aspects of spatial fine 

structure will trigger other more elaborate motion-from- 
texture mechanisms. 

Our findings decisively refute the historically influen- 
tial notion that shape and contrast correspondence 
underlie the motion-from-texture computation. 
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