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We examine apparent motion carried by textural properties. The texture stimuli consist of a sequence 
of grating patches of various spatial frequencies and amplitudes. Phases are randomized between 
frames to insure that first-order motion mechanisms direct@ applied to stimulus luminance are not 
systematically engaged. We use ambiguous apparent motion displays in which a heterogeneous motion 
path defined by alternating patches of texture s (standard) and texture v (variable) competes with a 
homogeneous motion path defined solely by patches of texture s. Our results support a one-dimensional 
(single-channel) model of motion-from-texture in which motion strength is computed from a single 
spatial transformation of the stimulus--an ucfiuity transformation. The value assigned to a point in 
space-time by this activity transformation is directly proportional to the modulation amplitude of the 
local texture and inversely proportional to local spatial frequency (within the range of spatial 
frequencies examined). The activity transformation is modeled as the rectified output of a low-pass 
spatial filter applied to stimulus contrast. Our data further suggest that the strength of texture-defined 
motion between a patch of texture s and a patch of texture v is proportional to the product of the 
activities of s and v. A strongly counterintuitive prediction of this model borne out in our data is that 
motion between patches of different texture can be stronger than motion between patches of similar 
texture (e.g. motion between patches of a low contrast, low frequency texture 1 and patches of high 
contrast, high frequency texture h can be stronger than motion between patches of similar texture h). 

Second-order motion Motion metamers Motion energy Motion correspondence 

INTRODUCTION 

First -order motion extraction 

Drifting spatiotemporal modulations of various sorts of 
optical stuff (such as luminance, contrast, texture, bin- 
ocular disparity, etc.) can induce vivid motion percepts; 
in each case “something” appears to move from one 
place to another. This introspective description, how- 
ever, does not necessarily reflect the underlying processes 
in human visual motion processing. 

The study of visual motion extraction mechanisms has 
traditionally focused on rigidly moving objects, project- 
ing drifting modulations of luminance. Several physio- 
logically plausible computational models have been 
proposed to extract motion information from drifting 
luminance modulations. Examples are the gradient 
detector (see Moulden & Begg, 1986) and the Reichardt 
or correlator detector (see Reichardt, 1961). These 
detectors are designed to detect drifting luminance 
modulations (or their linear transformations) and are 
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therefore called Jirst-order motion extraction mechan- 
isms (Cavanagh & Mather, 1989) 

Psychophysical experiments (e.g. van Santen & Sper- 
ling, 1984; Werkhoven, Snippe dz Koenderink, 1990b) 
have shown that motion perception of drifting modu- 
lations of luminance is well explained by a first-order 
computation called motion energy extraction. Indeed, 
most current models of first-order motion detection 
(e.g. Reichardt detectors and gradient detectors) have 
now been shown to be equivalent or approximately 
equivalent to some variant of motion energy extraction 
(Adelson & Bergen, 1986; van Santen & Sperling, 1985). 
A standard approach to first-order motion energy ex- 
traction (e.g. Heeger, 1987; Adelson & Bergen, 1985) 
proposes that the visual system uses a battery of spatio- 
temporally oriented filters, each of which yields a real- 
valued function of the visual field over time. The output 
of each filter is squared at each location in space to 
obtain a measure of local energy at the spatiotemporal 
frequency to which that filter is tuned. The squared 
outputs of these filters (motion energies) comprise the 
input to a higher order process that computes a velocity 
flow field. For example, Heeger’s (1987) model is built on 
the observation that the Fourier transform of a rigidly 
translating pattern has all its energy contained in a plane 
through the origin in frequency space. Each motion 
energy detector (narrow-band, spatiotemporal linear 
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filter followed by squaring) has its energy confined to a 
Gaussian neighborhood of frequency space near the 
origin. The velocity vector assigned a given point in 
space at a given time is obtained by (i) weighting the 

energy spectrum of each detector by that detector’s 
response, and (ii) finding the plane through the origin of 

frequency space that absorbs the greatest amount of this 
locally measured motion energy. 

Second-order motion extraction 

Chubb and Sperling (1988,1989a, b, 1991) demon- 
strated broad classes of drift -balanced and microbalanced 
stimuli that clearly appeared to move but for which even 
complete knowledge of the energy of all their Fourier 

components would be useless in deciding whether their 

motion was to the left or to the right (see also Cavanagh, 
Arguin & von Griinau, 1989; Lelkens & Koenderink, 

1984; Mather, 199 1; Ramachandran, Rau & Vidyasagar, 
1973; Turano & Pantle, 1989; Victor & Conte, 1990). 

Thus first-order motion energy extraction fails com- 
pletely to account for the perception of motion in 

drift-balanced stimuli. Such stimuli are said to elicit 

second-order motion perception (Cavanagh & Mather, 
1989; Chubb & Sperling, 1988). In second-order motion 
stimuli, what drifts is not a luminance modulation but 

modulation of contrast, or spatial frequency, texture 
type, flicker, or some other stimulus property. 

Stages. Let L be the spatiotemporal luminance func- 
tion defining a stimulus. The luminance at point (x.y) 
at time t is then denoted L(x, ~1, f). In our analysis, we 
discriminate three stages for the extraction of motion 
information from L : preprocessing; flow field extraction; 
and decision. 

First, a preprocessing stage in which one or more 
transformations T, are applied to L yielding a set of 
real-valued, time-varying, “neural images” Ti(L) (Rob- 

son, 1980). The value at point (x, y) at time t that results 
from applying T, to L is thus denoted 7)(L)(x,y, t). 

Usually, we think of i as referring to the dominant 

spatial frequency of a transformation-its scale. 
Second, each time-varying, neural image Ti(L) is the 

input to a motion-analysis stage p, whose output is a 
(time-varying) velocity flow field t, 0 T,(L) = pi[T,(L)]. 

For any point (x,~) in the visual field and every time 
t, the value pi 0 T,(L)(x, y, t) is a two-dimensional 

vector that indicates estimated pattern velocity of the 
transformed image 2;(L) in the neighborhood of 
(x, _v) at time t. The scale of p, corresponds to Ti. 
Associated with vi 0 T,(L) is a real-valued function 
S,(L) that gauges the reliability or strength of the 
velocity estimate provided by vi 0 I;(L). For instance, 
the velocity estimate obtained at point (x, y) and time t 
may have been computed from sparse or noisy data. 
In this case, irrespective of estimated direction or speed, 
the strength S,(L)(x, y, t) of the estimated velocity 
?, 0 T,(L)(x,y, t) may be low. 

Finally, all the velocity flow fields ?, 0 7;(L) and 
their associated strength maps S,(L) feed into a decision 
mechanism; its output determines the direction of appar- 
ent motion in ambiguous displays. 

The preprocessing transformation I :I.II~ hc <~thr-r. 
linear or nonlinear. Generalizing previous :ermlnology. 
we say that any system that employs linear preprocessing 

performs first-order motion extraction, whereas nonlin- 
ear preprocessing performs second-order motion t:utr;tc 

tion (e.g. Cavanagh c’t [II., 1989: (‘hubb Rr Sperling. 
1988). 

We refer to the transformations 6; (_I I; a\ motion 

channels. T, is called the initial transformation and i’; the 

motion extractor. S, is called the strength measure of the 
channel. 

Motion-energy detection L’S rnotion-correJponrl~Jrll,~J 4,. 
tection. Both first- and second-order motion channels 

can be further classified by the type of motion extraction 
they use. A review of the literature on motion perception 

shows that two types of motion extractor have been 

considered and tested experimentally. We call these types 
of motion extraction motion energy extraction and 
motion correspondence extraction. 

Motion energy extraction computes the dircctlonal 
energy of a Fourier representation of the drifting modu- 

lation signal, that is, the relative energy of “drifting” 
spectral components. Within the constraints set by frc- 

quency resolution, energy extraction is independent 01‘ 

the relative phase of the different spatial Fourier com- 
ponents of the modulation signal (van Santen & Sper- 
ling, 1984). In this respect, motion energy extraction 
computations are largely insensitive to similarities be- 
tween items in a motion path. The first-order motion 
analysis models noted above (Reichardt. 1% I : Adelson 
& Bergen, 1985; Marr & Ullman, I981 ) all hare this 
property. 

Traditionally, however. psychophysicists have Inter- 
preted results of a wide range of motion experiments in 

terms of correspondence extraction. The metaphor of 
correspondence extraction describes motion as the con- 

vection of some invariant aspects of spatial structure 
over time. Thus, motion correspondence extraction de- 
pends on similarity of local features. The more nearly 
similar are two adjacent features that are separated by 
an interval in time. the greater will be the strength of 
motion between them. 

The distinction between motion energy extraction and 
motion correspondence extraction can be summarized as 
follows: let a and p be two points separated by a brief 
interval in space and time, and let c, and L’,< be the 
stimulus intensities at x and fi. Then motion energ! 
extraction yields a motion strength that is a monotoni- 
cally increasing function of the product I’~I’,~. Motion 
correspondence extraction yields a motion strength be- 
tween c( and /I that is a decreasing, nonnegative function 
of /z,, - Z’flI. 

Typically, motion channels using correspondence ex- 
traction yield higher motion strengths between similar 
textures than between dissimilar textures. In particular, 
a motion channel using a correspondence extractor can 
never yield motion strength between a patch of optical 
stuff A and a patch of different stuff B that is greater 
than the motion strength between two patches of stuff A. 
This can easily happen, however. for motion channel\ 
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using energy extractors. Suppose, for instance, that 
uA > vg, for uA and us the respective values assigned stuff 
A and stuff B by a channel’s initial transformation. 
Then, motion energy extraction yields greater strength of 
motion between a patch of A and a patch of B (uAvB) 
than between two patches of B (ugug). 

Motion -from-texture 

The purpose of this paper is to characterize the 
mechanism of second-order motion perception in the 
subclass of drift-balanced stimuli for which motion is 
defined by a modulation of spatial texture properties. To 
reiterate, it is not produced by a moving texture patch- 
that would be rigid, luminance-defined motion. Texture- 
defined motion is most conveniently produced by a 
moving patch that is filled with a particular type of 
texture in which each successive frame represents a new, 
uncorrelated instance of that texture type (Chubb & 
Sperling, 1989a, 1991). As is true for all drift-balanced 
motion stimuli, an intriguing aspect of texture-defined 
motion perception is that (unlike perception of lumi- 
nance defined or first-order motion) it cannot be ex- 
plained by Fourier energy or autocorrelational motion 
analysis (standard motion analysis). 

An early example of texture-defined motion was re- 
ported by Ramachandran et al. (1973). Detailed studies 
and analysis were recently presented by Chubb and 
Sperling (1988, 1989a, b, 1991), Cavanagh et al. (1989), 
Mather (1991), Turano and Pantle (1989), and Victor 
and Conte (1989). 

We construct stimuli for which energy and correspon- 
dence mechanisms yield different predictions for the 
strength of texture-defined motion (Werkhoven et al., 
1990b). The resulting data demonstrate that texture- 
defined motion is computed by an energy mechanism, 
and not a correspondence mechanism. And we will show 
how psychophysical data can be used to discriminate 
between these two sorts of mechanisms in human percep- 
tion of texture-defined motion. More importantly, these 
data indicate clearly that, for the class of textures we use 
(similarly oriented patches of random-phased sinusoidal 
grating with different spatial frequencies and contrasts), 
texture-defined motion perception can be modeled in 
terms of a single motion energy channel. 

Energy channels 

Texture grubbers. Chubb and Sperling (1989a, 1991) 
suggested a two-stage mechanism for extracting texture- 
defined motion. Under their model, texture-defined 
motion is computed by motion energy channels whose 
initial transformations are called texture grabbers. As 
discussed below (see Rectification), a texture grabber is 
a linear spatial filter followed by rectification. In Stage 
2, the time-varying output (activity) from each texture 
grabber is subjected to motion energy extraction. 

RectiJication. By rectification we mean any function 
that is zero for an input of zero, and is monotonically 
increasing for both positive and for negative real inputs. 

Previously, Chubb and Sperling (1989b) demonstrated 
stimuli displaying systematic second-order motion that 

could be easily explained in terms of a texture grabber 
that used fullwave rectification (e.g. absolute value, 
square, etc.). However, the motion of these stimuli was 
inaccessible to any mechanism whose texture grabber 
used halfwave rectification (nonzero output only for 
positive or only for negative inputs). These results 
suggest that at least some of the texture grabbers 
used in second-order motion perception use fullwave 
rectification. It remains to be seen whether there are 
second-order motion mechanisms that use halfwave 
rectification. In the present context, however, we do not 
distinguish between different kinds of rectification. The 
essential nonlinear characteristic of texture extraction 
processes has also been recognized by Bergen and Adel- 
son (1988) and Caelli (1985). 

The linear filter used by a texture grabber is presumed 
to be realized in the visual system by an array of linear 
neurons, all with the same receptive field profile, dis- 
tributed across the visual field. The texture grabber 
output results from applying some fixed, rectifying non- 
linearity (e.g. the absolute value or the square) to the 
output of each of these linear neurons. It is assumed that 
the spatial filter of Stage 1 operates on stimulus contrast 
(see Model), rather than on luminance, but this assump- 
tion is not critical to our arguments. The output of a 
linear filter may be positive or negative depending on the 
local phase of the sensed texture. Thus the expectation 
of the output of such a filter is zero over the phase- 
randomized texture patches from which our stimuli are 
constructed. The purpose of rectification is to produce a 
positive average output across the texture so that a 
texture grabber registers the presence or absence of 
texture, independent of local phase. Indeed, that is why 
the Stage-l transformation (linear spatiotemporal filter 
followed by rectification) is called a texture grabber. 

Activity. The output of a texture grabber in response 
to a particular texture is called activity. 

Motion energy-channels. Together, a texture grabber 
followed by motion energy extraction form one (texture- 
defined motion) energy channel. 

Motion correspondence-channels. Together, a texture 
grabber followed by motion correspondence extraction 
form one (texture-defined motion) correspondence 
channel. 

Previous research in texture-dejined motion 

Historically, motion correspondence has been investi- 
gated with ambiguous motion displays in which motion 
is perceived as occurring along one or the other of 
several competing paths. Most studies have dealt with 
stimuli that stimulated the first-order motion system 
(e.g. Burt & Sperling, 1981; Kolers, 1972; Navon, 1976; 
Papathomas, Gorea & Julesz, 1991; Shechter, Hochstein 
& Hillman, 1989; Ullman, 1980; Werkhoven, Snippe & 
Koenderink, 1990a; Werkhoven et al., 1990b) and these 
data are adequately explained by the first-order motion 
energy extraction models. 

We consider here two recent studies that attempt to 
deal with motion correspondence in texture-defined 
motion stimuli. These studies illustrate the difficult 
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methodological issues that arise in attempting to deter- 
mine motion correspondence, and thereby they indicate 
the necessity of the more complex paradigm which 

we use. 

Watson’s crossed-phi procedure. Watson (1986) at- 

tempted to measure the spatial frequency specificity of 
the perceptual mechanism responsible for texture- 

defined motion. He used a “crossed phi” method, in 
which two adjacent texture patches (A and B) in frame 

1 exchanged positions in frame 2. The patches were 
Gaussian-windowed sine waves (Gabor patches). Ob- 

servers reliably perceived apparent motion between the 

locations when A and B were different spatial frequen- 
cies. No apparent motion was reported when the patches 

were of similar spatial frequencies. Watson interpreted 

his results in terms of a model in which motion estimates 
are computed separately within different spatial fre- 

quency bands. He used the increasing probability of 

apparent motion with increasing differences in spatial 

frequency to estimate the spatial frequency selectivity of 
the motion channels. Furthermore, it was implicitly 
assumed that such a model was equivalent to a corre- 

spondence computation. 
In our view, the ambiguous “crossed-phi” paradigm 

admits a simple alternative interpretation in terms of 
single energy channel model. Suppose there were just a 

single energy channel, and suppose that texture A hap- 
pened to produce a bigger response from the texture 

grabber in this channel than texture B. Then, the change 
in position of patch A would produce a strong motion 
response in this channel; the change of position of patch 
B would produce a weak motion response in the oppo- 
site direction; net movement would be perceived in the 
A direction. The critical observation for a multichannel 
model is motion transparency-that motion of the A 

and B patches be seen simultaneously in opposite direc- 
tions. Only then can we be sure that more than one 
channel is activated. In fact, such motion transparency 

was not reported by Watson, and, in our experience, it 
does not occur in such stimuli. Thus, Watson’s exper- 
iment does not support a theory of multiple correspon- 
dence channels. 

Green ‘s Gabor patches. Green (1986) studied texture- 
defined motion with a rotating annular display similar to 
Navon (1976). The type of stimulus used by Green is 
schematized in Fig. 1. Call this stimulus I. One temporal 
period of Z consists of four frames, as shown in Fig. 1. 

Each of these frames is comprised of a circle of 
alternating patches of two types of texture, texture A and 
texture B. From frame to frame, these patches of texture 
take rotary steps clockwise around the circle. This rotary 
clockwise motion is equivalent to left-to-right motion in 
an analogous horizontal display, as indicated by the 
dotted lines connecting annular frames to horizontal 
frames. 

Let T be an arbitrary texture grabber, and suppose 
that uA is the average response of T to texture A and z+, 
is the average response of T to texture B. Then the 
output from texture grabber T in response to stimulus Z 
is a spatiotemporal function whose average value over 

f2 

f3 

FIGURE I. Green’s stimulus, I. One temporal period of I consists ot 
four frames. Each of these frames is comprised of a circle of alternating 
patches of two types of texture, texture A and texture B. From frame 
to frame, these patches of texture take rotary steps clockwise around 
the circle. This rotary clockwise motion is equivalent to left-to-right 
motion in an analogous horizontal display, as indicated by the dotted 

lines connecting annular frames to horizontal frames 

any patch containing texture A is L’* and whose average 
value over any patch containing texture B is 13”. 
Although there will certainly be variability to the T-out- 
put within a given texture patch, this intra-patch vari- 

ability is not critical to the global motion percept elicited 
by I. What determines this global motion percept are the 
average T-output values, uA and Pi. of patches of the two 
textures A and B. 

As many authors have observed (e.g. Adelson & 
Bergen, 1985; van Santen & Sperling, 1985). motion 
detection can be viewed as the detection of orientation 
in space-time. As is clear from inspection of Fig. l(a), 

any motion detection mechanism that adheres to this 
general principle is bound to register clockwise motion 
in response to Z whenever uA # l’8. 

In light of these observations, it is not surprising that 
observers in Green’s experiment tended to perceive 
clockwise motion in displays such as I. In a critical sense. 
the clockwise motion of Z is intrinsic to the format of the 
stimulus, and has little to do with the textures A and B 
comprising the patches of I (see Werkhoven (‘I ul.. 
1990b). Nonetheless, Green took his results as support 
for the view that similar textures tend to match with each 
other in generating motion-from-texture. 

Motion metamers 

A psychophysical equivalence relation on a set fZ of 
physical stimuli is called a metamerism. Equivalent 
elements A and B of $2 are called metamers. Typically. 
metamerisms are defined using discrimination tasks. For 
example, if A and B are two illuminated patches that 
differ in spectral composition. we say they are metamers 
if an observer cannot distinguish between them. 



In this paper, we focus on a different sort of 
metamerism that we call motion metamerism. Let R 
represent a set of texture patches that vary in spatial 
frequency, orientation, and contrast. The relation that 
we wish to capture is the following: for any two textures 
A and B in R, we call A and B motion metamers if and 
only if any occurrence of A in any dynamic visual 
display can be replaced by a patch of B without influenc- 
ing the global motion percept elicited by that display. 
That is, A and B are motion metamers if and only if A 
and B are equivalent inputs to the mechanism that 
computes texture-defined motion. Obviously, A and B 
need not be equivalent inputs for other perceptual 
processes-as we shall show, motion metamers may 
appear quite different. 

(a) Stimulus 11 
00 Stinnllue 12 

It is impractical to interchange A and B in all possible 
motion stimuli to verify that they are motion metamers. 
Instead, we use only two extreme test stimuli, in which 
any failure of metamerism would be most likely 
to appear. The essential core of the test we use is 
defined in terms of the stimuli Z, and Z2 diagrammed in 
Fig. 2. 

FIGURE 2. The binary relation N (t ransition invariance). (a) A sche- 
matic diagram of stimulus I,. Z, contains two frames. In the first frame 
there is a single patch of texture of type A. In the second frame, there 
are two patches of texture, one of type B and another of type A. These 
patches of texture are offset equal distances to the right and left of the 
location in frame 1 of the single patch of texture A. The stimulus I, 
sets up a competition between one motion path containing a patch of 
texture A and a patch of texture B and another, opposite motion path 
containing two patches of texture A. (b) A schematic diagram of 
stimulus I,. For any textures A and B, we set A u B just if the stimuli 
I, and Z2 diagrammed in (a) and (b) respectively are both ambiguous 
in global motion content. That is, both stimuli I, and Z2 are equally 
likely to elicit global percepts of rightward or leftward motion. Any 
textures A and B for which A N B are said to be transition invariant. 
For a broad range of motion computations, it can be shown that, for 
any textures A and B, if A N B, then A and B are motion metamers 
in the strong sense (A and B can be freely traded for each other in any 
stimulus without changing the global motion percept elicited by that 

stimulus). 

Each of these two stimuli pits two symmetrically 
opposite motion paths against each other. Stimulus I, 
pits a path comprised of a patch of texture A and a patch 
of texture B against a path comprised of two patches of 
texture A, whereas stimulus I, pits a path comprised of 
a patch of texture B and a patch of texture A against a 
path comprised of two patches of texture B. We presume 
that each of these paths has an associated motion 
strength, and that the global motion percept (left vs 
right) elicited by one of these stimuli depends only on 
which of its two paths has greater motion strength. In 
the case in which the global motion percept is ambiguous 
we assume that the strengths of the two component 
paths are equal. 

Motion competition schemes 

The matching technique could be applied to a variety 
of ambiguous motion schemes for determining the 
dimensionality of the motion computation. However, 
not all of them have the power to discriminate between 
different types of motion channels (see e.g. the discussion 
on Green’s display). We used an ambiguous motion 
scheme that was introduced by Werkhoven et al. 
(1990b). In this motion competition scheme, one hetero- 
geneous motion path (between patches of texture s and 
texture v) competes directly with one homogeneous path 
(between patches of texture s). 

For any textures A and B in Q, we say A and B are 
transition invariant* if and only if the leftward vs 
rightward motion of each of Z, and I, diagrammed in 
Fig. 2 is ambiguous (i.e. if each of Z, and Z, is equally 
likely to elicit a global rightward or leftward motion 
percept). 

By varying the properties of the textures v, we can 
determine the heterogeneous motion paths s, v that 
are equal in strength to a certain homogeneous path 
s, s. 

If textures A and B are transition invariant, then the 
motion strength of a match between A and A is equal 
to the motion strength of a match between A and B, and 
the motion strength of a match between B and A is equal 
to the motion strength of a match between B and B. 

Werkhoven et al.‘s competition scheme not only al- 
lows to determine the dimensionality of the motion 
computation, but also allows to determine the number 
and type (energy vs correspondence) of channels in- 
volved in the motion computation. This requires a 
thorough analysis (given in the Model section). 

If A and B are motion metamers, then stimuli Z, and 
Z, are ambiguous in motion content; hence, A and B are 
transition invariant. 

On the other hand, for practically all plausible texture- 
defined motion computations, if A and B are transition 
invariant, then they are also motion metamers. Indeed, 
the data we present make it clear that this is true of the 
computation that is actually used to compute texture- 
defined motion. 

However, an intuitively clear property of this scheme 
is that the two types of motion channels considered 
above (energy vs correspondence-channels) yield quali- 
tatively different predictions for motion metamery and 
the relative strength of the heterogeneous and homo- 
geneous motion paths. Hence, they are easily discrimi- 
nated. 

A preview 

Motion Metamers. 

Dimensionality of the computation. In this paper, we 
discuss a general motion computation consisting of 
multiple motion channels, where each channel may be 
either an energy channel or a correspondence channel. 
By studying the above competition scheme with many 

*The reason for this term will be clear in Transition Invariance and 
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different pairs of texture patches (Expts 1 and 2), we can 
determine classes of transition invariant textures 

(motion metamers) and infer the dimensionality of the 

motion computation (Model section). The results 

strongly support the view that texture-defined motion is 
computed by a single energy channel. 

METHOD 

In this section we describe the ambiguous motion 
competition scheme used in the experiments. This 

scheme (proposed by Werkhoven et al., 1990b) differs 
from other schemes (e.g. Burt & Sperling, 1981; Green, 

1986; Navon, 1976; Shechter et al., 1989; Ullman, 
1980) in that it contains a single heterogeneous motion 

path (between patches of texture 1 and texture 2) that 
competes directly with a single homogeneous motion 

path (between identical patches of texture 2). Except 

for textural properties, the other parameters (such as 
step size and frame rate) of the motion paths are 
identical. 

Instead of varying both textures 1 and 2, we sampled 
a subspace of possible textures resulting in two (similar) 
schemes: Scheme I and Scheme II. In Scheme I, we kept 
texture 2 constant (now texture s) and varied texture 2 
(now texture v). 

Stimulus 

Motion competition Scheme I. In Expt 1, we used 
motion competition Scheme I. The motion stimulus 

consisted of a series of eight frames (f, , fi, . ,f8) 
shown successively in time. Figure 3 shows a sketch of 
the frames. 

The first frame (fi) contains an annulus of patches of 
alternating texture types s and v at regular positions (see 
Fig. 3, at the left side). Because the viewing distance was 
constant throughout the experiment, we will specify 
dimensions in degrees of visual angle. The annulus of 
texture patches has an inner radius of r, = I .04 deg, and 

an outer radius of rz = 2.08 deg. The mean radius r is 
1.56 deg. The patches (or sectors) are spatially contigu- 
ous. Since the annulus contains eight sectors, each sector 
has a width of 45 deg. 

Frame ,fi was similar to frame fi , except that patches 
of texture v are replaced by a uniform patch of back- 
ground luminance. Furthermore, fi was rotated around 
the center of the annulus 22.5 deg with respect to frame 
1 (see Fig. 3, left). 

In a sequence of frames, the locations and types of 
patches in frame f, + z were identical to frame f,, except 
for a rotation around fixation of 45 deg. 

The presentation time of a single frame (“frame- 
time”) was 133.3 msec. Thus, the presentation time of 
the eight-frame sequence was 1.066 sec. The annulus 
revolved at an angular speed of 168.8 deg/sec, yielding a 
local velocity of the patch-centers of 4.6deg of visual 
angle per second. 

The ambiguous motion stimulus described above con- 
tains two motion paths. This can be understood most 
easily using a diagram in which we show the angular 

FIGURE 3. Motion competition Scheme 1. Left: a series of frames 

(,h,f,. .) is shown successively in time (for details see Method 

section). The first frame (,h) contains an annulus of patches of 

alternated texture type s and v at regular positions drawn against ;I 

uniform background. The annulus has an inner radius of r, .- I .04 dcg 

of visual angle, and an outer radius of r.. 7 2.08 deg. The patches 01’ 

texture sand texture v are spatially contiguous and alternate within the 

annulus. Since the annulus contains eight patches. each patch hd$ .I 

width of 45 deg. Angular position cp is measured clockwise with respect 

to the vertical. The second frame (/:) is similar to frame /I. except that 

the low frequent patches of texture v are now replaced by a uniform 

patch of background luminance. Furthermore. fi is rotated (clockwise) 

around the center of the annulus over an angle of 22.S deg with respect 

to framej; In a sequence of frames, frame f. , J is identical to frame 
j;,. except for a rotation around the center over an angle of’ 45 deg 

(clockwise). Right: angular positions cp is along the horizontal dxia. 

Patches of texture s and v are shown at their angular positions fog 

frames_/; .,f, yielding rows of patches. The top row of patches s and 

v corresponds to frame f, The second row of patches 3 correspond\ 

to frame fi. Hence, time (or frame number) is along the vertical axis. 

When frame,/: and frame,f, + , are presented in succession. two motion 

paths are (I priori likely. A homogeneous motion path, clockwlsc 

matches (CW) between patches of identical texture 3 (indicated h) 

the arrow pointing down and right). A heterogeneous motton 

path: counter-clockwise (CCW) matches between patches of texturr x 

and patches of texture v (indicsted by the arrow pointing down and 

left). 

positions (cp) of the patches of texture for successive 
frames. Angular position is measured clockwise relative 
to the vertical. Such a diagram is shown in Fig. 3. at the 
right side. Note that the horizontal rows of patches 
correspond to frames 1. 2, 3 and 4 respectively. B> 
definition, motion extraction is based on the dynamic 
properties of the stimulus, that is the spatiotemporal 
pattern of textures. In the diagram, possible motion 
paths are spatiotemporal (oblique) rows of elements. 
The arrows pointing to the left and right are examples 
of motion paths to the left and right respectively. In the 
following description of the stimulus. we will say that the 
neighboring elements in a motion path are spatiotem- 
porally linked or “matched”. Note that the term 
“matching” is used for the purpose of stimulus descrip- 
tion only and that it does nor refer to a “motion 
correspondence” computation. 
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When frame f, and frame f,, , were presented in 
succession, two matches between patches of framef, and 
patches of frame fn+, were a priori possible. The first 
match is a homogeneous clockwise match between 
patches of identical texture s separated by +22.5 deg 
(indicated in the diagram by the arrow pointing down 
and to the right). The second match is a heterogeneous 
counter-clockwise match between patches of texture v 
and patches of texture s (- 22.5 deg, indicated by the 
arrow pointing down and to the left). Matches between 
frames fn and f,, 2 are entirely ambiguous. Matches 
between patches of frames f, and J,+3 involve large 
temporal separations (400 msec) relative to the equival- 
ent matches between framesf, andf,, , (133.3 msec). It 
has been shown that motion strength decreases strongly 
and monotonically with temporal interval for intervals 
larger than approx. 30 msec (Burt & Sperling, 1981; 
Werkhoven & Koenderink, 1991). Therefore, the 
matches between frames f, andf, + 3 are unimportant for 
motion perception in these stimuli. 

Scheme I displays contain homogeneous and hetero- 
geneous motion paths in opposite directions. By 
randomizing the direction of rotation, the directions of 
the two motion paths (although still opposite) are ran- 
domized. 

The annular pinwheel stimulus was used for various 
reasons. First, the motion stimulus was presented at a 
constant eccentricity in the parafovea, and the effects of 
anisotropy of the retina were averaged across equivalent 
areas of the visual field. Second, it was easier to maintain 
fixation so eye movements were better controlled.* 
Finally (with the use of circularly symmetric stimuli) a 
motion path does not end at the boundaries of the 
display, avoiding edge effects. 

Motion competition Scheme ZZ. Scheme II (used in 
Expt 2) is equivalent to Scheme I, except that textures s 
and v are interchanged. The motion stimulus and result- 
ing motion paths for this experiment are sketched in 
Fig. 4. 

Although the heterogeneous motion path (between 
patches of texture s and v) is identical to that of Scheme 
I, the homogeneous motion path is different from that 
of Scheme I. In Scheme II, the homogeneous motion 
path consists of patches of texture v. The critical import- 
ance of the two schemes for our paradigm concerns the 
question of whether, when a particular s and v are 
chosen so that motion paths are balanced in Scheme I, 
the paths will remain balanced when the same s and v 
are used in Scheme II. From the subjects’ point of view, 
however, there is no difference between the two schemes 
because, for any stimulus generated by Scheme I, an 
identical stimulus can be generated by Scheme II. 

*Torsional eye-movements induced by the rotating annuli (cyclo- 
induction) were not controlled in our experiment. Balliet and 

Nakayama (1978) reported the ability of extremely trained subjects 

to make stepwise eye torsions up to rotations of approx. 26 deg for 

large field stimuli (25-50 deg of visual angle). However, we do not 

expect torsional pursuit in our experimental conditions: small field 

stimuli, brief presentations, fast motion, unpredictable motion 

direction, and ambiguous or near-threshold motion stimuli. 

fl 

f2 

f3 

f4 

FIGURE 4. Motion competition Scheme II. This scheme is similar to 

Scheme I (see Fig. 3), except that textures s and v are interchanged. 

In Scheme II, the homogeneous motion path contains textures v. 

However, during the course of a session, when v is varied 
between trials, different families of stimuli are generated 
by the two schemes. 

Texture stimuli 

The textures used to characterize texture-defined 
motion are patches of sinusoidally modulated gratings 
that differ in spatial frequency and amplitude. The 
grating patches were arranged in eight sectors of an 
annulus (pinwheel) around the fixation point with the 
grating extending radially in each sector. Two critical 
parameters that characterize a texture patch at a given 
location of the pinwheel are amplitude m and spatial 
frequency w. Within a location, grating orientation was 
always radial. The phase y of the grating was a random 
variable with a uniform distribution. 

We use polar coordinates to further characterize the 
pinwheel. Let cp be the polar angle of a point in the 
image, and p be the distance to the origin (the center of 
the annulus). Then the luminance distribution at the 
point p, cp in sector j of frame i is: 

h,,(P, Cp) = Lo [1 + mi,j W27VT,, + Yi,,)l. (1) 

We define the mean spatial frequency oy as the spatial 
frequency at mean radius r. The mean spatial frequency 
wij of a texture patch depends only on whether j is odd 
or even. That is, two spatial frequencies, os, o, strictly 
alternate between adjacent patches on every frame of the 
display. 

Within a trial, the amplitude mij of a sector ij 
depended only on whether i and j were even or odd. On 
odd frames, m,,j was chosen as m, or m, according to 
whether the sector j was even or odd. On even frames, 
sector amplitude m,j alternated between 0 and m, in 
Scheme I and between m, and 0 in Scheme II. Between 
trials, m, and o, were changed. Sixteen values of 
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amplitude m, from 0 to 1 were used increasing by steps 
of 0.0625: 0, 0.0625, 0.13. , I. Spatial frequency u), 
was varied over a range of three octaves: 
1.2.2.5, 3.7,4.3,4.9, 5.6, 7.4 or 9.9 c/deg. The amplitude 
m, and spatial frequency Q, of texture s were constant 
throughout the experiment: m, = 0.5, o, = 4.9 c/deg. 

The phase yiJ, 0 d yIJ- ,< 2~, was chosen randomly and 
independently for every combination of i and j, that is, 
for every single patch. The phase randomization of every 
patch makes the motion of the stimulus inaccessible to 
any first-order (Fourier-based) mechanism. Phase ran- 
domization insures that motion mechanisms sensitive to 
correspondences in stimulus luminance were not system- 
atically engaged (Chubb & Sperling, 1988). 

Figure 5 shows an example of a series of frames for 
Scheme I. Texture s is a “medium” frequency grating 
and texture v is a “low” frequency grating. The regions 
inside and outside the annulus (background) were uni- 
form gray and had a luminance value (L, = 72 cd/m2). 
Within the annulus’ texture patches the expected lumi- 
nance value was equal to the background luminance. 

Apparatus 

The experiment was controlled by a IBM 386 PC 
compatible computer, driving a TrueVision AT-Vista 
video graphics adapter. A 60 Hz Imtec 1261L monitor 
with a P4-type phosphor was used to display the stimuli. 
The screen dimensions were 21.8 x 14 cm (640 x 480 
pixels; 12.3 x 8.0 deg visual angle).* We used a look-up 
table to linearize the monitor’s luminance values with the 
gray values of the computed stimulus patterns. The 
decay time to 10% and 1% intensity was about 1.3 and 
6.2 msec respectively which is shorter than the temporal 
properties of retinal processing (Farrell, Pave1 & Sper- 
ling, 1990; Sperling, 1976). 

Subjects 

Two subjects participated in the experiments: one of 
the authors (PW) and a colleague (JS). PW is 
emmetropic. JS is myopic (-0.5 D) but was in focus for 
the viewing distance used. Both subjects were experi- 
enced psychophysical observers. Natural pupils, binocu- 
lar viewing, and spectacle corrections were used 
throughout. Several naive subjects confirmed the main 
findings for the experiments. 

Procedure 

Subjects indicated the dominant motion path (coun- 
ter-clockwise/clockwise) by pressing one of two buttons. 
In both experiments, texture s (the standard texture) had 
amplitude m, = 0.5 and spatial frequency u, = 4.9 c/deg. 

*Due to the limited bandwidth of the video amplifier (30 MHz) of the 

monitor, an anisotropy was observed for the average luminance of 
differently oriented textures that contain high spatial frequencies. 

Therefore, we only displayed the pixels at column position M and 

row position n for which (m + n) was even. The other pixels were 

dark. Hence, vertical and horizontal gratings share a common 
“carrier” component. This procedure forfeits maximum luminance 

and resolution in favor of eliminating anisotropy; the net resolution 
(320 x 240 pixels) was more than adequate for the displays. 

From trial-to-trial, the spatial frequcncq I*), ,IIK! 
amplitude m, of texture v was varied. The experiment> 
determined the probability P,(m, ; w, ! iif’ perceptuai 
dominance of the heterogeneous motion path as ;i 
function of m,. for certain 8, using the method 01’ 
constant stimuli. The subscript i, i = I, 2. indicates Expt 
1 with competition Scheme 1 (Fig. 3) or Expt 3 with 
Scheme IT (Fig. 4). 

The probabilities P, (m,.: w,) and Pz(m, ; cc), ) are esti- 
mated by the fraction of perceptually dominant hetero- 
geneous motion paths out of 36 presentations. Spatial 
frequency w, was varied over a range of three octaves: 
LC), = 1.2, 2.5, 3.7. 4.3, 4.9, 5.6, 7.4 and 9.9c:deg. Within 
a session, amplitude m, was varied (pseudo-randomly 
from trial-to-trial; ~1)~ was varied only between sessions. 
For each spatial frequency Q,. , Expts 1 and 2 were hot h 
conducted within one session. 

Subjects viewed the stimuli in a room with dimmed 
background illumination. 

EXPERJMENT 1: SCHEME I 

Results 

By definition, the homogeneous path (consisting en- 
tirely of identical patches of texture s) does not change 
in this experiment when texture v is varied (see Scheme 
I, Fig. 3). The strength of the heterogeneous path. which 
is composed of alternate patches of textures s and v i\ 
varied by varying spatial frequency and amplitude, (!I, 
and m,, of texture v. Figure 6 shows the probabilit), 
P, (m,; o,) of reporting the heterogeneous motion path 
as dominant as a function of the amplitude m, of texture 
v. Each panel shows P, (m, ; co,) for a different value 01‘ 
spatial frequency cc), . 

The data show that the probability of reporting the 
heterogeneous path as dominant increases monotoni- 
cally from 0 (for small m,) to 1 (for m, = 1) for all values 
of w, except the highest, where the probability ol 
heterogeneous motion dominance has only reached 
about 65% when ~1, = 1. A remarkable feature of these 
data is that in all eight panels, the probability P, (m,.; q) 
of heterogeneous motion dominance exceeds 50% for 
sufficiently high amplitude of patch v. 

The upper left panel of Fig. 6 shows data for a two 
octave difference between the spatial frequency of tex- 
ture s (w, = 4.9c/deg) and the spatial frequency 01’ 
texture v (w, = 1.2 c/deg). Heterogeneous motion is per- 
ceived in 50% of the presentations when the amplitude 
m, of texture v is approx. 0.2. Note that at this balance 
point where both paths are equally likely. both the 
amplitudes and the spatial frequencies of textures s and 
v are markedly different. Once /)I, exceeds 0.5. the 
heterogeneous motion path is dominant in 100% of the 
presentations. A 100% perceptual dominance of a het- 
erogeneous over a homogeneous path demonstrates that 
the similarity between the textures in a motion path 
certainly is not essential for motion strength. Indeed, for 
sufficiently large m,, the heterogeneous path is dominant 
over the homogeneous path for every combination ot 
frequencies tested in Fig. 6. 
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of a motion energy analysis scheme applied to this 
activity representation. The motion strength of a path is 
computed from the product of activity measures between 
successive patches along the path in space-time. Motion 
strength of a heterogeneous path balances homogeneous 
motion strength when the responses (activities) to tex- 
tures v and s are equal. Differences in textural properties 
between elements s and v are irrelevant as long as the 
activities are equal, just as, in scotopic vision, differences 
in wavelength are irrelevant as long as the rod response 
is the same. 

The results for Scheme I suggest an activity transform- 
ation that is a monotonically increasing function of 
amplitude and a monotonically decreasing function of 
spatial frequency. For example, to balance the activity of 
texture s, with amplitude m, and spatial frequency o,, 
with a lower spatial frequency texture v, (m,; co,) re- 
quires a m, < m,. This pattern of results suggests a single 
class of texture grabbers consisting of a low-pass spatial 
filter followed by rectification. 

We argued that a single energy-channel is sufficient to 
explain the results of Expt 1. It is important to note here, 
however, that our finding that heterogeneous motion can 

(a) 

0.0 0.2 0.4 0.6 0.6 1.0 
Amfdfhdemofv 

4.3 cpd 

0.0 0.2 0.4 0.6 0.6 1.0 
Amplitude m of v 

7.4 cpd 

0.0 0.2 0.4 0.6 0.6 1.0 
Amplitude m of v 

dominate homogeneous motion is also consistent \+~th 
multiple energy-channels, as will be shown in the Model 
section. For example, the dominance of heterogeneous 
motion may well be the result of two indcpendcn( 
energy-channels, both favoring heterogeneous ir1ot1o11 
To uniquely determine the number of channels in\ olveti. 
we need the results for competition Scheme I1 together 
with a formal analysis (Model section). 

Secondary contributions of’ u cwrvrspondenc ~~-~~/!~uIw 
In the Discussion above, we argued that a single-channel 
model is sufficient to model the (amplitude.‘frequenc! 
dependent) dominance of hctcrogencous motion t’ourlrl 

for Scheme I. However, we cannot exclude ;i po\sihlc 
secondary effect of texture similarity based &)II 11114 
scheme. To motivate Expt 7. WC nc~~l to clabor;llc on this 
argument. 

Although motion perception ma) be dominated h) <! 
single energy-channel. there may yet be ;I \econdar> 
contribution of a correspondence-channel 

The relative strength of the heterogeneous motion 
path would decrease as the differences bctwecn the 
spatial frequencies and amplitudes of successive patche\ 
of textures s and v increased. Suppose there wcrc ;I 

PW 
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FIGURE 6(a). Caption ovrrleqf~ 
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FIGURE 6. Probability P,(m,; 0,) of dominance of a heterogeneous motion path over a homogeneous motion path is shown 
as a function of the amplitude m, of texture v for different spatial frequencies w, of texture v for two subjects. Open circles 
represent the probability P, (m,; 0,) for Scheme I (Fig. 3); solid circles P,(m,; co,) for Scheme II (Fig. 4). The horizontal dashed 
guide line indicates a 50% probability of heterogeneous motion dominance. The amplitude m, and spatial frequency o, of 

texture s is the same for all panels: m, = 0.5 and o, = 4.9 c/deg. (a) Subject PW; (b) subject JS. 

secondary contribution of a correspondence-channel in 
Expt 1, sensitive to differences between textures in either 
amplitude or frequency. Because the correspondence- 
channel favors the homogeneous path (by definition), 
motion balance requires v in the heterogeneous path to 
have a higher amplitude m, to overcome the similarity in 
path s, s than if there were no correspondence-channel. 
Thus, in Scheme I, a secondary correspondence effect 
would displace transition amplitude p,(w,) to higher 
values. 

To test for a correspondence-channel, we introduce 
Scheme II in which s and v are interchanged (see Fig. 4). 
If there were a correspondence effect, in Scheme II it 
would favor the v, v path and the transition amplitude 
p, (0,) would be shifted below p2(o,) for any texture v. 

When the homogeneous and heterogeneous motion 
paths remain balanced after interchanging textures s and 
v, this is called transition invariance. Transition invari- 

ance would imply that there is no contribution 
correspondence-channel. 

EXPERIMENT 2: SCHEME II 

Results 

of a 

Figure 6 shows the probabilities P,(m,; co,) of the 
dominance of the heterogeneous motion path as a 
function of the amplitude m, of texture v for different 
spatial frequencies o, of texture v. The data points for 
Scheme II are marked by a solid circle. 

When m, = 0, the display is physically as well as 
perceptually ambiguous. A value of 50% is shown for 
m, = 0, though no data were collected at this point. By 
varying the amplitude of texture v in this experiment, the 
strength of both the heterogeneous motion path and the 
homogeneous motion path are varied. As the amplitude 
m, increases, the probability of heterogeneous motion 
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FIGURE 7. Transition amplitudes ~,(a,) as a function of spatial frequency w,. Open circles for Scheme 1, solid circles br 

Scheme II. The vertical dashed line indicates the spatial frequency of texture s: w, = 4.9 c/deg. The horizontal dashed guide 

line indicates the amplitude of texture s: m, = 0.5. 

dominance first increases to a maximum, then decreases 
to zero for high amplitude m,. On the whole, for 
amplitudes above 0.1 or, in a few cases, 0.2, the Scheme I 
and Scheme II curves are mirror complementary, and 
seem to cross at exactly P = 50%. That is, the two 
schemes produce remarkably similar transition ampli- 
tudes. 

To examine the correspondence between the data 
from Schemes I and II, some definitions are needed. Let 
the transition amplitude pZ(w,) be the amplitude m, of 
texture v for which the motion paths are balanced, and 
the probability of heterogeneous motion dominance 
Pz(m,; CO,) is 50%. The steepness at this transition 
amplitude is (TV. The transition amplitude am and 
steepness value c~(o,) are estimated as ,v, (0,) and 
c,(o,) in the previous section. 

To compare the transition amplitude puz(w,) for 
Scheme II with transition amplitude ,u,(o,) for Scheme 
I, they are presented together as a function of spatial 
frequency w, in Fig. 7. Transitions pZ(w,) are presented 
with solid circles. As in Scheme I, the amplitude am 
of texture v, necessary for balancing the motion paths, 
increases systematically with increasing spatial frequency 
w, of texture v. An exception for both subjects are the 
transition amplitudes for w, = 9.9 c/deg. 

PW 

1 5 10 

Spatial Frequency of v (cpd) 

To compare the steepness values az(cu, ) I’or Scheme 11 
with steepness values (T, (w,) (for Scheme I). the absolute 
value of Go is shown as a function of the varied 
spatial frequency w, in Fig. 8 (using solid circles). It 
should be noted that the estimation is not very accurate: 
the standard deviation in the distribution of steepness 
coefficient ~~(0,) is approx. 20%. However, like 0, (Q,), 
the steepness cr>(w,) shows a tendency to decrease with 
increasing spatial frequency 0, of texture v. 

Discussion 

Transition invariance and motion metamers. It is im- 
mediately clear that, for most spatial frequencies (0, of 
texture v, the transition amplitude p2 (w,) is equal within 
measurement error to transition amplitude /c~(cu,) (see 
Fig. 7). In fourteen of sixteen cases, the transition 
amplitudes are invariant when the textures s and v are 
interchanged. This we call transition invariance. 

In two cases (the highest spatial frequency used-- 
w, = 9.9 c/deg-for both subjects), a small difference 
between transition amplitudes for Schemes I and II 
is observed. At the high spatial frequency of v. the 
amplitude of texture v necessary to balance the motion 
paths is slightly smaller for Scheme II than for Scheme 
I. This shift in transition amplitude suggests ;i small 

JS 
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FIGURE 8. Steepness values a,(o,) as a function of spatial frequency 0,. Open circles for Scheme 1, solid circles for Scheme 

II. (Note that to facilitate comparison absolute values are given!) The vertical dashed guide line indicates the spatial frequency 
of texture s: ~0~ = 4.9 cideg. 
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similarity effect (a small contribution of a correspon- 
dence-channel), and was discussed in the Discussion of 
Expt 1. 

Transition invariance implies that textures s and v 
(at transitions) are equivalent with respect to motion 
processing and can be interchanged in any motion 
path (Scheme I and Scheme II) without affecting motion 
strength. This leads to the important conclusion that 
textures s and v are (texture-defined) motion metamers. 

It is interesting to note that Green (1986, Fig. 7, p. 

604) was unable to find an amplitude that could make 
a spatial frequency patch of 5.0c/deg into a motion 
metamer of a 1.7 c/deg patch. We had no difficulty in 
finding metamers between even more disparate spatial 
frequencies. However, our data in Fig. 5 show that one 
of the two subjects would require the 5 c/deg stimulus to 
have more than two times the amplitude of the 1.7 c/deg 
stimulus, and this is outside the range of amplitudes that 
Green explored. 

Necessity of a single energy-channel. The general 
finding of transition invariance strongly constrains the 
possible ways in which motion can be computed between 
textures in the class we are considering. 

Transition invariance shows that there is no secondary 
contribution of correspondence-channels (see the 
discussion on this issue in Expt 1). The effect that a 
patch of texture v has on the strength of motion is 
independent of the other patches in the path. At a 
transition, the strength of motion path s, v is equal to 
that of v, v and that of s, s, although a correspondence- 
channel would yield stronger motion for the homo- 
geneous paths. 

The only alternative is a system of multiple energy- 
channels that must be combined and represented by a 
single scalar representation (e.g. summation of energy- 
channels). In the Model section, we prove (under the 
assumption of channel summation) that if multiple 
energy-channels were involved, the transition amplitude 
would generally shift when the textures s and v are 
interchanged in Schemes I and II. However, when 
motion perception is exclusively ruled by a single energy- 
channel (the product of the activity of a single type 
of texture grabber), the transition amplitude is in- 
variant when the textures s and v are interchanged. 
Hence, transition invariance uniquely supports a 
single energy-channel model of texture-defined motion 
perception. 

EXPERIMENT 3: AMPLITUDE LINEARITY 

Motivation 

In the above experiments, we have shown that the 
transition amplitude p, (w,) increases systematically 
with increasing spatial frequency o, of texture v for 
both subjects. The strength of the heterogeneous motion 
path in Scheme I increases monotonically with increas- 
ing amplitude m, but decreases with increasing spatial 
frequency w, . In order to further specify the dependency 
of motion strength on amplitude, we performed an 
experiment similar to that described above using com- 

petition Scheme I, and varied the amplitude of 
texture s. 

Results 

We kept the frequency of textures s and v constant 
(0, = 4.8 c/deg and o, = 1.2 c/deg) and measured the 
transition amplitude p, as a function of amplitude m, 
(Scheme I). Transition amplitude was estimated from the 
psychometric curves using the method described earlier. 

Figure 9 shows the transition amplitude p of texture 
v for three amplitude values of texture s (m, = 0.50,0.75 
and 1 .OO) for three subjects. The data strongly suggest a 
linear dependence of the transition amplitude of texture 
v on the amplitude of texture s. The solid lines are the 
best fits (minimizing the sum of squares), accounting for 
at least 97% of the variance for each subject. 

Discussion 

We showed that the transition amplitude of texture v 
needed to balance the motion path s, v with the motion 
path s, s varied linearly with the amplitude of texture s. 
This dependency is easily accommodated in a model 
where the texture grabber is linear in the amplitude of 
the texture. In fact, one can easily show that amplitude 
linearity follows directly from the linear data under the 
assumption that the texture grabber is a separable 
function of spatial frequency and amplitude. A linear 
(low-pass) spatial frequency filter is a simple example of 
such a separable filter characteristic. 

MODEL 

Summary of model constraints 

We used the analogy with calorimetry and some 
general assumptions about the possible motion compu- 
tations involved to reach the conclusion that texture- 
defined motion strength is ruled by a single 
energy-channel. We summarize our reasoning. 
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FIGURE 9. The dependence of transition amplitude n, (0,) on 
amplitude m, of texture s. The spatial frequency o, was 4.9 c/deg, and 

o, was 1.2 c/deg. Competition Scheme I was used. Circles, subject JS; 

squares, subject PW. The solid lines show the best linear fit (minimizing 

the sum of the squared deviations). 
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rectification, the activity transformation T is pro- 
portional to m and to F(o): 

T(m, o) = mF(o). (2) 

This texture activity T is fed into the second (motion 
energy analysis) stage. 

Stage 2: motion energy analysis. The second stage 
(motion energy analysis) is a coincidence detector: it 
computes the product of the delayed activity at Location 
1 with the current activity at Location 2 (van Santen & 
Sperling, 1984). For the displays we use in our exper- 
iments, the output of the second stage corresponds to 
motion strength. 

To simplify the computation in the model, we assume 
that the first-stage spatiotemporal filter is space-time 
separable. Indeed, space-time separability seems to be 
the rule in apparent motion (Burt & Sperling, 1981; van 
de Grind, Koenderink & van Doorn, 1986).* Given 
space-time separability, we can ignore the temporal 
component of filtering because temporal patterns were 
not varied in our stimuli. 

We proceed as follows. The perceived direction of 
motion is considered to be the outcome of a competition 
in motion strength between motion paths. Within a 
path the strength of motion between a patch of texture 
v and a patch of texture s is determined by the product 
of the activities of the first stage. We assume that the 
strengths of detectors for all paths are additive in the 
final motion percept, and adopt a linear combination 
model (Dosher, Sperling & Wurst, 1986). Additive in- 
ternal noise determines the shape of the psychometric 
functions for motion direction as a function of ampli- 
tude. 

Consider the strength model with respect to compe- 
tition Scheme I (Fig. 3). In one direction there is a 
homogeneous motion path containing patches of identi- 
cal texture s. In the opposite direction, there is a 
heterogeneous motion path containing patches of differ- 
ent textures s and v. For sine wave stimuli, a half-Re- 
ichardt model (simple product) is equivalent to the whole 
Reichardt model (difference of products) (van Santen & 
Sperling, 198.5) so we need to consider just a simple 
product rule. 

The strength of the heterogeneous motion path is: 

Sl.he(mV5 WV, m,, 0,) = mJ(o,)m,F(o,). (3) 

The motion strength &ho for the homogeneous motion 
path is equal to: 

Sl,ho(ms, 0,) = -mZF’@,) (4) 

(strength in the opposite direction has opposite sign). 

*It is reasonable to consider that the linear filter in the texture grabber 
may itself be composed as a weighted sum of many filters, i.e. filters 
that also are in the processing path for first-order motion. A linear 
filter composed as the sum of component filters would be 
space-time separable if each of its component filters were 
space-time separable and had the same temporal function, inde- 
pendent of spatial scale. This seems to be the case in motion 
processing (Burt & Sperling, 1981; van de Grind et al., 1986). 

Linear combination of both components with equal 
weights yields a net motion strength D, in the direction 
of the heterogeneous path: 

D,(m,, a,, m,, w,) = %(m,, m,, m,, w,) 

+ &,ho(msY 0,). (5) 

Response variability across trials is due to additive 
internal noise which is assumed to be distributed as a 
standard normal density function with mean 0 and 
standard deviation ,l (Fig. 10). A linear addition of noise 
yields the internal decision variable i which has a normal 
distribution N with mean D and standard deviation il. 

According to signal detection theory (Green & Swets, 
1966) the probability P of heterogeneous motion domi- 
nance is: 

P, (m,; 0,) = P(i > 0) 

=+= s mN{DI(m,,w,,m,,o,),~}di. 
2rc12 0 

(6) 

Substituting motion strengths [expressions (3) and (4)] 
into the additive linear combination [expression (5)] and 
then substituting [expression (5)] into the noise-driven 
decision process [expression (6)] yields: 

P,(w;~,)=- ~{hfX~vh~(4 

- m?F’(o,)l, A> di, (7) 

for the probability of heterogeneous motion dominance 
for Scheme I (Fig. 3). 

Similar reasoning yields the net motion strength D2 
and the probability P,(m,; 0,) of heterogeneous motion 
dominance in Scheme II (see Fig. 4): 

D2(mVY m,, m,, 0,) = S2.he(mV, c~,, m,, 0,) 

+ S2,ho (m, y 0, > (8) 

= m,F(w,)m,F(w,)-mtF2(W,) (9) 

and 

P2(m,; w,) = 

- mzF2(o,)], A} di. (10) 

This model predicts the transition and steepness at 
transitions of the probability curves for both the exper- 
iments. 

Predictions for Scheme I 

For different spatial frequencies o, of texture v, we 
measured the probability P, (m,; w,) of heterogeneous 
motion dominance as a function of the amplitude m, of 
texture v. Our model predicts that the probability P, of 
heterogeneous motion dominance is an error function 
of the net motion strength D, [see equation (6)]. In 
this experiment, the net motion strength D, is linear in 
m,. Hence, we expect an error function for the prob- 
ability function P,(m,; o,) as a function of m, [see 
equation (7)]. 
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liansition amplitude. The transition amplitude ,u, (o,, ) 
is defined as the amplitude m,. of texture v at which the 
probability of heterogeneous motion dominance 
P,(??r,; WV) is 50% for a given spatial frequency (11, of 
texture v. Hence, for in, = ,u, (CD, ), the strength of the 
heterogeneous and homogeneous motion paths are 
balanced and we have S,,,, = -S,,,, or [see expressions 
(3) and (4)]: 

p,(w,)F(o,) = m,F(o,) = K, (11) 

where K is a constant equal to the activity of standard 
texture s. If F(o,) is a low-pass filter, ~~(0,) will be a 
monotonically increasing function of w, (as supported 
by our experiments): 

&(UJ,) = tiF ‘(CC),). (12) 

Steepness. The steepness 0, (w,) is defined as the 
derivative of P, (m,; CO,) with respect to m, at transition 
amplitude p, (CD,): 

Thus, the steepness g,(o,) is expected to decrease as a 
function of the spatial frequency (0, for low-pass filters 
(as supported by our experiments). 

In conclusion we expect error functions for the prob- 
ability P, (m,; w,) of heterogeneous motion dominance 
as a function of amplitude m, with (a) a transition 
amplitude p,(wy) that is inversely proportional with 
F(o”) and (b) a steepness c,(o,) that is proportional 
with F(o,). If we have low-pass filters, F(o,) decreases 
monotonically with spatial frequency w, 

We can simply find the Fourier transform I;((u) of the 
low-pass filter from the reciprocal transition /1( ’ (tu,) [see 
expression (12)] and from the steepness o,(tu, ) as a 
function of spatial frequency (0, [see expression (1311. 

The reciprocal transition amplitudes are expected to 
be proportional to the function F(Q),). Estimates of the 
reciprocal transition amplitudes ,u, ‘((I)~) are shown in 
Fig. 11. 

From the reciprocal transitions in Fig. 11, it follows 
that F(o) is a low-pass filter in the range of frequencies 
examined. 

Predictions for Scheme II 

For different spatial frequencies o, of texture v, we 
measured the probability P2(m,; 0,) of heterogeneous 
motion dominance as a function of the amplitude m, of 
texture v. P2(m,; CO,) is an error function of D,, [see 

The model predicts that the steepness of the prob- 
ability function is proportional with the function F(c:>, ) 
and inversely proportional with i. (the strength of the 
internal noise). Thus, unlike the transition amplitude, 
the steepness is biased by the internal noise contribution. 
If the relative strength is constant and independent of the 
spatial frequency and amplitude of the patches of texture 

PW JS 

equation (IO)]. However. for Scheme Ii (unlike f’tlr- 

Scheme I) D,, is not linear with the varied :tmplitude ~1, 
of texture v. As L\L’ increase the amplitude ~II *I: l.cutiin 
v. I),, shows a quadratic dependence on t)i -I‘hel-efole. 
we do not expect an error function for P (u),, . i*~l ). 

If amplitude ~1, of texture \’ is /era, the probability OI 
heterogeneous motion dominance P, will bc 40% (the 
motion stimulus is purely ambiguous!). Starting at 
m, = 0. it first increases linearly with I?z,*. is maximal foi 
m, = m, F(r0,)/[3F(w, )], and decreases again with further 
increases of nz,.. Obviously, there may exist an amplitude 
m,8 = p2 (between the ‘*optimal” amplitude, that yields a 
maximal D?, and a very high amplitude. that yields ;I 
negative D2) for which P, = 50%. 

Analogous to the derivation in the previous section. 
one can find the analytic expressions for the transition 
~~((0,) and steepness CJ~(C!)\ ) of the probability curves for 
Scheme II. The expressions for the transition amplitudes 
are equal: j~~(r0, ) = /I, (cl,, ). The expressions for the 
steepness of the transitions for Scheme I and II diff‘cr 
only in sign: 0?(r0, 1 = ----n! (ru,. 1. 

The texture grahhcr 

1 5 10 1 5 10 

Spatial Frequency of v (cpd) Spatial Frequency of v (cpd) 

FIGURE Il. Reciprocal transitions p;‘(w,) as a function of spatial frequency w,. Open circles for Scheme I; solid circles 

for Scheme II. The vertical dashed guide line indicates the spatial frequency of texture s: w, = 4.9 c/deg. The horizontal dashed 
guide line indicates the reciprocal amplitude of texture s. The solid line curve is the mean of the reciprocal transitions. In terms 

of the model, this curve shows the amplitude of the Fourier transform of the spatial filter F(o) of the texture grabber involved 
[see equation (2)]. 
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involved, the steepness CF~(W,) is expected to be pro- 
portional with F(o,). Estimates of cri(o,) are shown in 
Fig. 8. The steepness shows a tendency to decrease with 
increasing spatial frequency. However, we find some 
nonmonotonicity, in particular for higher spatial fre- 
quencies. This may reflect a certain variability of the 
internal noise for different spatial frequencies. 

EXPERIMENT 4: PERCEIVED CONTRAST 

We have discussed texture grabbers and motion en- 
ergy analysis in terms of objective amplitude of patches 
of texture. The experiments implied that the activity of 
the texture grabber increases monotonically with objec- 
tive amplitude and decreases monotonically with spatial 
frequency. An interesting question is whether this re- 
lation is consistent with the subjective amplitude of static 
grating contrast as a function of spatial frequency. In 
other words, is the activity of a texture grabber simply 
proportional to the subjective amplitude? 

To answer this question, we performed an amplitude 
disc~mination experiment. 

Method 

In a two interval presentation subjects looked at an 
annulus containing either gratings s or v. In one interval 
we showed an annulus of gratings s (see frame h of 

PW, v: I .2 cpd 

0.0 0.4 0.8 

Amplitude m of v 

JS, v: 1.2 cpd 

. . . 

0.0 0.4 0.8 

Amplitude m of v 

FIGURE 12. Results of the perceived amplitude experiment. Observers compared the amplitude of a grating v (spatial 
frequency W, and amplitude m,) with the amplitude of texture s (m, = 0.5, o, = 4.9 c/deg). Shown are the probabilities PC for 
judging the amplitude of v higher than that of s (solid circles). The matching amplitude for texture v is the crossing of the 
curve with the dashed 50% line. To compare the matching amplitude with the transition amplitude in the motion experiment, 

we have shown the probabilities Pt(mv) for Scheme I (open circles). 
YR Wd--0 

Fig. 3), with fixed amplitude m, = 0.5 and hxed spatial 
frequency CO, = 4.9 c/deg. In the other interval we 
showed an annulus of gratings v (see framef, of Fig. 4), 
with amplitude m, and spatial frequency CO,. The order 
of presentation of the intervals was randomized. Each 
annulus was shown for 133 msec (which is equal to the 
frame display time in the motion stimulus). The intervals 
were separated by a time interval of 133 msec in which 
the screen was uniform with background luminance. 
Apparatus, viewing conditions, and other aspects were 
identical to the motion experiment. 

Procedure 

The task of the subject was to indicate the interval that 
contained the patches of grating with the highest ampli- 
tude. We measured the probability P,(m,; w,) that ob- 
servers judge the grating v as the grating with the highest 
amplitude as a function of the objective amplitude m, of 
grating v. In the amplitude matching experiment, we 
examined two spatial frequencies: w, = 1.2 c/deg, and 
w, = 7.4 cJdeg of grating v. These were the lowest and 
highest spatial frequencies for which we found transition 
invariance in our modern experiment. From these prob- 
ability curves, we estimated the matching amplitude of 
grating v for which the perceived amplitude of grating s 
and v was equal. The precise estimation of the matching 
amplitude was analogous to the estimation of transition 
amplitude in the motion competition experiments. 

PW, v: 7.4 cpd 

8 
l- 

0.0 0.4 0.8 

Amplitude m of v 

JS, v: 7.4 cpd 

0.0 0.4 0.8 

Amplitude m of v 
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Results 

In Fig. 12, we show the probabilities of judging the 
amplitude of grating v higher than that of grating s (with 
m, = 0.5) as a function of objective amplitude m,, (solid 
circles). For all conditions and subjects, the perceived 
amplitude of texture v increases monotonically with its 
objective amplitude m,. The amplitude m, where the 
curve crosses the 50% guide line is the matching ampli- 
tude. For a “low” spatial frequency grating v 
(0, = 1.2 c/deg), we find that the perceived amplitudes of 
s and v are matched when m, = 0.47 for subject PW and 
m, = 0.44 for JS. This matching amplitude is close to the 
objective amplitude m, = 0.5 of grating s. For a ‘“high” 
spatial frequency grating v (LI), = 7.4 c/deg), the match- 
ing amplitudes are m, = 0.54 for PW and M, 0.53 for JS. 

The comparison of the matching amplitude with the 
transition amplitude in the motion experiments, we have 
also shown the probabilities to perceive heterogeneous 
motion using Scheme I as a function of nz, in the 
corresponding panels. 

Interestingly, the matching amplitudes for low and 
high spatial frequency gratings are approximately equal 
to the objective amplitude of grating s, for the range of 
amplitudes and spatial frequencies of grating v exam- 
ined. That is, perceived amplitude does not depend on 
spatial frequency. However, the amplitude of grating v 
for balancing the motion paths when w, = I .2 c/deg for 
Scheme I was: m, = 0.22 for subject PW and m, = 0.36 
for JS. Obviously, at the transition amplitude for the 
motion experiment, the perceived amplitude of grating s 
and v are markedly different. That is, the activities of the 
grating v are matched even when both spatial frequency 
and perceived amplitude are different from grating s. In 
conclusion, activity cannot be a function that depends 
solely on perceived amplitude. 

EXPERIMENT 5: DICHOPTIC PRESENTATIONS 

Motivation 

We have successfully modeled the strength of motion- 
from-texture in terms of a texture grabber followed by 
motion energy analysis. Motion energy analysis is a type 
of motion computation that is not sensitive to correspon- 
dences in textural features. An interesting property of 
first-order motion energy analysis is that the neural 
substrate for such a process is organized so as to require 
successive stimulation to the same eye. When monocular 
motion information is not availabie to the observer 
first-order motion energy analysis fails. 

The motion system that extracts first-order motion 
information of both eyes (when motion is presented 
dichoptically) has been classified as a correspondence- 
channel. For example, Pantle and Picciano (1976) stud- 
ied apparent motion with a three-dot stimulus and 
reported element movement for monocular and binocu- 
lar presentation, but group movement for dichoptic 
presentation. The group movement suggests a represen- 
tation of features or shapes precedes the extraction of 

motion. Also, Georgeson and Shackleton (1989) shw 
that drifting squarewave gratings with missing funda- 
mental (MF) moved backwards while presentctl rnon, 
ocularly (following the third harmonic) but moved 
forwards when presented dichoptically. They suggested 
that the perceived direction of dich~~ptic :rppareni 
motion was consistent with a system that cttmbine\ 
information across spatial frequency channels to idcntif) 
local features and then tracks the location 01’ corre- 
sponding features over time. 

Generalizing the above reasoning to second-o&r 
motion, the motion mechanism for dichoptic presentu- 
tions of our (second-order) stimuli would be sensitive to 
the similarity of the textures involved. Thus, the contri- 
bution of what we call correspondence-channels might 
be more pronounced when our competition schemes arc 
presented dichoptically (sofar viewing has been binocu- 
lar in our experiments). We tested our energy-channel 
model for motion-from-texture for both dichoptical and 
monocular presentations of our motion stimuli. This test 
may also locate the motion extraction process involved 
in our stimuli in terms of different levels in the visual 
nervous system (before or after the sites of hinocdnr 
combination). 

Results 

The ambiguous motion competition Schemes I and II 
can be presented dichoptically in two different modes. In 
the first mode, the odd frames are presented in one eye 
and the even frames in the other. In this way, the 
spatiotemporal stimulus is purely ambiguous in each eye. 
Both the heterogeneous and the homogeneous paths are 
processed by dichoptic mechanisms. In this mode, di- 
choptic mechanisms are not competing with monocular 
mechanisms. 

In the second mode, the patches of one texture type 
are presented in one eye and the patches of the second 
type of texture type are presented in one eye and the 
patches of the second type of texture in the other eye. In 
this way the homogeneous motion path (textures s for 
Scheme I) is presented in one eye, while the textures v in 
the other eye form a purely ambiguous stimulus. In this 
mode, dichoptic mechanisms processing the heterrt- 
geneous path have to compete with monocular mechan- 
isms processing the homogeneous path. 

We determined the psychometric functions fat 
both competition schemes for a condition where the 
texture s and v differ two octaves in spatial frequency 
(w, = 4.9 c/deg and oV = 1.2 c,/deg) for subject PW. The 
binocular results were presented in top-left panel of 
Fig. 6. As discussed for Expts 1 and 1, a difference 
between the transition amplitudes gcll and gZ indicates the 
involvement of additional (correspondence) channels. 
The results for monocular presentation were identical 
(within measurement error) to the results for binocular 
presentation. For both conditions, we find transition 
invariance: p, = /12 z 0.2. 

The results for both modes of dichoptic presentation 
were very similar to those for binocular presentation. 
That is. dichoptic presentation yields psy~llometrjc 
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functions for Schemes I and II similar to those for 
binocular presentation. For adequate amplitude m, het- 
erogeneous motion dominated homogeneous motion for 
both modes of dichoptic presentation suggesting the 
dominance of an energy-channel even when monocular 
motion information was absent. However, the contri- 
bution of a correspondence-channel is noticeable for 
dichoptic presentations: transition invariance no longer 
holds. We found p, z 0.2 and pLz z 0.1 for both modes of 
dichoptic presentation. 

Discussion 

Motion perception between patches of nonsimilar 
texture is easily perceived for both modes of dichoptic 
presentation (as predicted by our energy-channel). Even 
in the second mode, where a dichoptic heterogeneous 
motion path competes with a monocular homogeneous 
path, heterogeneous motion can easily dominate for 
small amplitude of texture v (e.g. m, > 0.2 for Scheme I). 
These results suggest that dichoptic processing of our 
motion stimuli is dominated by the same mechanisms as 
monocular processing and that motion strength is not 
predicted by the similarity between textural features such 
as spatial frequency. 

However, although dichoptic presentation leaves tran- 
sition amplitude p, for Scheme I unaffected, transition ,u~ 
for Scheme II decreases. This difference from the binocu- 
lar results indicates a significant contribution of other 
channels when monocular information for the hetero- 
geneous path is ambiguous. A more detailed investi- 
gation might be useful. 

GENERAL DISCUSSION 

Fallacy of correspondence matching 

The experiments presented in this paper provide co- 
gent evidence that texture similarity is not relevant to the 
texture-defined motion computation (within the range of 
spatiotemporal parameters varied in this experiment). As 
an example it was shown that motion between patches 
of texture that differ by two octaves in spatial frequency 
and a factor of 2 in amplitude can be stronger than 
motion between patches of identical texture. 

The correspondence matching metaphor to explain 
visual processes in several visual domains seems to have 
lost predictive power. Correspondence matching fails to 
explain the dominance of (1) heterogeneous motion 
paths composed of textures that differ in spatial fre- 
quency and amplitude (this paper), (2) heterogeneous 
motion paths composed of elements that differ in size, 
orientation and luminance (Werkhoven et al., 1990a, b), 
and (3) stereoscopic matches between elements that 
differ in size and luminance (Gulick & Lawson, 1976). 

The visual motion system does not seem to be de- 
signed to establish correspondence between similar fea- 
tures in a motion sequence. This should not come as a 
surprise given the inherent difficulties in designing corre- 
spondence matching mechanisms. Such mechanisms 
would look for “similar features” in “successive” time 
samples of the spatiotemporal stimulus. However, what 

constitutes a feature, and how strict should similarity be 
taken? 

Recently developed stimulus (motion) energy models 
for motion extraction bypass the correspondence prob- 
lem and are more likely candidates for the kind of visual 
processing early in the visual system (Adelson & Bergen, 
1985; Heeger, 1992). The energy-channel described in 
this paper is equivalent to such a motion energy compu- 
tation, applied to a nonlinear transformation of the 
stimulus (van Santen & Sperling, 1984). 

Contrast and motion 

In Expt 3, we showed that the transition amplitude of 
texture v needed to balance the motion path s, v with the 
motion path s, s varies linearly with the amplitude of 
texture s. In the context of our model, this means that 
the activity of a texture grabber is appioximately linear 
in texture amplitude. In fact, we find linearity even for 
high amplitudes in the range of 5&100%. As a conse- 
quence of this amplitude linearity, motion strength 
varies linearly with the amplitude of each of the texture 
inputs. That is, the strength of motion between two 
textures with identical texture amplitude is quadratic 
with this amplitude. Approximate amplitude linearity of 
the input lines for first-order motion energy analysis was 
also found for experiments with spatiotemporal modu- 
lations of luminance Werkhoven et al. (1990b). 

It should be noted, that the linear amplitude depen- 
dency is at odds with the amplitude thresholds for 
motion direction discrimination reported by Nakayama 
and Silverman (1985). They measured the smallest phase 
shift (yielding threshold direction discrimination per- 
formance) of sinusoidal gratings as a function of grating 
amplitude. The smallest phase shift yielding threshold 
performance leveled off for grating amplitudes exceeding 
5%. They interpreted their finding in terms of a ampli- 
tude saturation function. However, their results are open 
to a different interpretation in which the minimum phase 
shift is limited by other (spatial) properties of the motion 
extraction mechanism leaving the amplitude dependency 
unknown. 

A shared motion analysis stage? 

An intriguing question is how mechanisms for the 
extraction of motion carried by the spatiotemporal 
modulation of luminance relate to those for extracting 
motion carried by the spatiotemporal modulation of 
texture type. To discriminate both mechanisms we have 
to compare the characteristics of the perception of both 
motion types. For example, Turano and Pantle (1989) 
studied velocity discrimination performance for both 
types of motion stimuli and showed similar discrimi- 
nation characteristics. Their results support the hypoth- 
esis of a higher order (motion analysis) mechanism that 
accepts input from both the luminance domain as well 
as texture domain. 

A shared motion energy analysis stage for the two 
types of motion is also supported by our finding that 
strength of motion-from-texture is ruled by the same 
metric as motion in the luminance domain. Motion 
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strength is the covariance (or product) of local activities. 
This activity is simply the luminance itself when the 
motion is carried by luminance (van Santen & Sperling. 

1984) or a nonlinear transformation of the luminance 
pattern for motion-from-texture (this paper). 

In conclusion, the extraction of motion from the 
spatiotemporal modulations of luminance and that of 
texture types seems to be mediated by a shared motion 
energy analysis stage. However, additional experiments 
with different paradigms may weaken this idea. For 

example, Mather (1991) showed that both motion types 
produce motion after effects, but that the duration of the 

aftereffects were significantly different. 

Transitivity and additivity 

Under the assumption of energy channels and channel 
summation, the transition invariance of a pair of tex- 
tures s and v implies that s and v are (texture-defined) 
motion metamers. That is, all such textures v in this 
metameric class yield identical motion strength when 
embedded in a motion path s, v. 

Metamery yields two strong predictions. First, 
metamery predicts transitivity: if textures a and b are 
metameric with s, then a is metameric with b. Second, 
metamery predicts additivity: if textures a and b are 
metameric with s, then any linear combination M. a + /I b 
(with CI + /? = 1) is metameric with s. 

These predictions have not yet been tested. 

Motion transparency 

The energy-channel proposed in this paper computes 
the difference between left- and rightward motion. This 
implies that motion transparency (the simultaneous de- 
tection of left- and rightward motion) is not readily 
accommodated in this model. Because the motion analy- 
sis component of the energy-channel is a Reichardt- 
correlator, the motion energy of the left- and rightward 
motion path are no explicit intermediate results). How- 
ever, occasionally, observers reported transparency for 
stimuli that were nearly balanced. 

Adelson and Bergen (1985) addressed this issue by 
pointing out that although their energy detector was 
functionally equivalent to correlation detector, the inter- 
mediate results are not. Specifically, the energy of left 
and rightward motion are explicit intermediate results in 
energy detectors, but not in correlation detectors (the 
output of a half Reichardt-correlation is the half-phase 
opponent energy!). Although our conclusions do not 
depend on the specific choice of motion model, a further 
study of transparency in this context might reveal the 
specific type of detector involved. 

Extension of the parameter space 

It is important to remember that we have shown the 
one-dimensionality of the motion-from-texture compu- 
tation only with respect to parallel sinewave patches that 
differ in spatial frequency and amplitude. Chubb and 
Sperling (1991) found that motion-from-texture could be 

carried by differences in spatial orientatton, ahhougl~ 
differences in orientation did not produce a\ vigorott< 

motion as did differences in spatial frzquenc~,. ‘~III~ 
observation indicates that orientation (and possibl\ 
other properties) are relevant to motion-from-texturt~ It 

would be interesting to determine the dimensionalit) ol‘ 
the computation for a larger class of stimuli 

Although motion strength at a “frame rime‘. T o! 

B/60 set is exclusively determined by the product al‘ 

activities, we can not exclude that effects of texture 

similarity are stronger at longer frame time. In tact. the 

temporal frequency of texture modulation in our exper- 
iments is 1.9 Hz (one cycle consists of four frames of 

133 msec each). At slower temporal frequencies, the 

processing time for the textures increases. perhaps en- 
abling more elaborate “texture grabber” tilters or corrc- 

spondence-channels to contribute to motion strength. 

Effects of other properties (e.g. orientation) and tem- 
poral parameters are currently under investigation. 
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APPENDIX 

Multiple Energy-Channels and Transition Invariance 

A system of multiple energy-channels 

We propose a multi-channel model (multiple energy-channels) for 
computing the strength of motion-from-texture. The model consists of 
two stages, as shown in Fig. 13. 

S~irnul~ ?r~s~rmafion: texture grabbers. Stage 1 consists of n types 
of texture grabbers-where each type of texture grabber i is described 
by nonlinear spatiotemporal transformations T,, i = 1 . n, of the 
optical input. Each transformation yields a spatiotemporal function 
T,(cp, t) whose value reflects the local texture preferences of the 
Stage 1 filters in the visual field as a function of position 9 and time 
t. (We use 9 for position because, in our essentially one-dimensional 
stimulus, the texture position is determined by the angle rp.) The output 
of these texture grabbers is called activity. The n different transform- 
ations ‘I; of Stage 1 transform the optical input into n activity 
representations. 

Motion detection. Stage 2 is a set of motion detectors. For specificity, 
but without loss of generality (see van Santen & Sperling, 1984; Chubb 
& Sperling, 1988,199l) we adopt Reichardt’s scheme for standard 
motion analysis (Reichardt, 1961) which consists of two oppositely 
tuned coincidence detectors. Motion detectors operate on the outputs 
of the texture grabbers. Each type of texture grabber (transformation 
r,) has its own, unique set of motion detectors. A transformation 7’i 
together with its motion detectors is called a motion channel i. 

A coincidence detector performs a m~tiplication operation on 
the current activity T,(qo, I) at position fo at time t and the (de- 
layed) activity T,(tp -A cp, t - Aht) at position 46 - Arp and time 
t - At. Hence, the output of the coincidence detector is: 
T,(cp - Aq, t - At)T,(rp, I). The outputs of two coincidence detectors 

Transformation T, T2 T3 ~~~ T,, 

Motion 
Energy MMM es. M 

Analysrs 

t 
FIGURE 13. A motion computation consisting of multiple energy- 
channels. The first stage consists of n independent transfo~ations r, 
(the texture grabbers). Transformation T, is a nonlinear tranformation 
(e.g. spatial filtering followed by rectification). The output of each 
transformation is called an activity representation of the optical input. 
Motion energy analysis (M) is applied to each of the activity represen- 
tations of the input. Finally the motion strength is summed across the 

different channels. 
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tuned to identical velocities but opposite directions are subtracted to 

yield a net motion strength D,(cp. 1): 

(14) 

Channel i has a positive output for motion in the direction 01 

positive cp and a negative output for motion in the opposite direction. 

Summation. In a one-dimensional motion computation, the outputs 

of a system of energy-channels described above (represented in an II 

dimensional channel space) are essentially mapped to a single (de- 

cision) dimension: the final net motion strength. This mapping maps 

an (n - I)-dimensional manifold in the channel space to a single point 

in the one-dimensional decision space (final motion strength). For 

example, channel summation maps a planar surface in the channel 

space to zero final motion strength (for Scheme I). For other combi- 

nation rules than summation, other (nonplanar) surfaces will map to 

zero final motion strength. However, when we assume that this 

mapping is continuous and differentiable, these true manifolds are in 

first order approximated by a planar surface for small channel signals 

at transition points. Channel summation is a sufficient first-order 

combination rule. 

Summation of channels D, yields net motion strength D: 

Predictions for competition schemes 

We apply the multi-channel computation to competition Schemes I 

and II (see Figs 3 and 4). Consider first Scheme I. The hetero- 

geneous path is the motion between texture s (at time t -At and 

position cp - Acp) and texture v (at time t and position cp). Let r,,$ be 

the activity of texture grabber T, for texture s, and T,,, the activity 

of texture grabber T, for texture v. The output of channel i for this 

path is the product of the delayed activity T,,, of texture s and the 

current activity T,,, of texture v. For simplicity, we will use the vector 

notation: 

T,., 

T2.S 
7;: 

1. T “S , 

and Fv = 

T,.” 

T2.V 

T fl.6 1, (16) 

The vectors ?s and ?” are the activity vectors of textures s and v 

respectively. An activity vector represents the activity of a texture in 

the n-dimensional transformation space (T-space) defined by trans- 

formations T, ‘Tn. 
For Scheme I, the motion strengths S,,,, summed over all channels 

for the heterogeneous path can be written as the vector product: 

We have arbitrarily assigned a positive sign to motion strength in this 

direction. Motion in the opposite direction has a negative sign [see 

equation (14)]. The output of channel i for the homogeneous path 

(between textures s) is the squared output of transformation T, s. The 

motion strength S,,,, of the homogeneous path is (after summing all 

channels) is: 

s I,hO = -;i; i-,. (18) 

Adding equations (6) and (7) gives the net motion strength D, in the 

direction of the heterogeneous path for Scheme I: 

D, = ;i; (F” - ?;). (19) 

Analogously, the net motion strength D, in the direction of the 

heterogeneous path for Scheme II is: 

D, = ;i;. CT? - ;i;.). (20) 

FIGURE 14. Solutions for transitions (path equality) in J two-dimen- 

sional T-space. Each texture in a motion path is processed by different 

texture grabbers. Vector ;i; represents the activity of texture v m 

T-space, vector 7; that of s. The collection of activity vectors T, that 

satisfy the constraints for path equality are given by the thin line in (a) 

for Scheme I and by a thin circle in (b) for Scheme II. 

Transitions : Scheme I 

At a transition for Scheme I. the net motion strength I>, is zero: 

D,=T;.(p,--J-O. (‘II 

There exists an (n ~ I)-dimensional plane of TV vectors in T-space 

for which the motion strength of the heterogeneous and homogeneous 

motion paths are balanced (the vectors 7, for which the difference 

vector TV - ;i, are orthogonal to vector p,). 

Consider, for example, a two-dimensional T-space (a two-channel 

motion computation). The vectors ?‘,, in T-space that satisfy equation 

(21) for a certain vector fs must end on the thin guide line in Fig. 14(a). 

It should be noted in passing, that the net heterogeneous motion 

strength D, = 7;. (pv - T$i;, can be positive. Hence, even in a multi- 

channel computation, the strength of the heterogeneous motion path 

can dominate. 

Transitions: Scheme II 

Similarly, at a transition for Scheme II (Fig. 4). the net motion 

strength Dz is zero: 

The (n - I)-dimensional solution of ?” vectors m T-space lirr which 

the motion strength of the heterogeneous and homogeneous motion 

paths are balanced is not a plane. For example. we consider again the 

two-dimensional T-space. The vectors ?” in T-space that satisfy 

equation (22) for a certain vector ?‘, end on a circle containing i; [see 

Fig. 14(b)]. 

Transition invariance 

Using only the result for Scheme I, we cannot dtscrimmatc between 

a single-channel (n = I) and multi-channel computations (PI > I) 

either single- or multi-channel computations might yield solutions to 

equation (21). To resolve the issue, we need the constraint of transition 
invariance. 

Transition invariance means that once the motion strength of the 

heterogeneous path and that of the homogeneous motion path arc’ 

balanced for a particular pair of textures s and v for Scheme I. this 

balance is not disturbed by interchanging the textures s and v (yielding 
Scheme II). We now show that transition invariance is inconsistent 

with a multi-channel computation. 

The transitions are invariant if the activity vector 7; simultancousl> 
satisfies equations (21) and (22). Because the difference vector i; -- i; 

is always in the plane defined by vector ?s and vector F$, the only 

vector TV that satisfies both equations is pv = T. 

Vector ?” is equal to vector ps if each transformation r, involved 

in the motion computation has an equal output for both textures v 
and s: 

r,,, = T,; (i = I .‘.IIl. (3.3! 
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Equation (23) represents a very strong constraint for the ensemble texture pairs (s, v); the iso-activity contours of each transformation 
of transformations that might be involved in a multi-channel com- T, must be identical for all these pairs. Transformations that are 
putation. Every transformation T, must have an isoactivity contour identical at arbitrarily many observable points, are identical in the 
as a function of all textural properties (e.g. frequency-amplitude range of observable points. To say that all T, are identical is equivalent 
space) that contains both the activity of texture s and that of to saying that there is only one T;, that is, the T-space is one-dimen- 
texture v. Furthermore, transition invariance holds for different sional. 


