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The elaborated Reichardt detector (ERD) proposed by van Santen and Sperling [J. Opt. Soc. Am. A 1,451 (1984)],
based on Reichardt’s motion detector [Z. Naturforsch. Teil B 12, 447 (1957)}, is an opponent system of two mirror-
image subunits. Each subunit receives inputs from two spatiotemporal filters (receptive fields), multiplies the fil-
ter outputs, and temporally integrates the product. Subunit outputs are algebraically subtracted to yield ERD
output. ERD’s can correctly indicate direction of motion of drifting sine waves of any spatial and temporal fre-
quency. Here we prove that with a careful choice of either temporal or spatial filters, the subunits can themselves
"become quite similar or equivalent to the whole ERD; with suitably chosen filters, the ERD is equivalent to an elab-
orated version of a motion detector proposed by Watson and Ahumada [NASA Tech. Memo. 84352 (1983)}; and
for every choice of filters, the ERD is fully equivalent to the detector proposed by Adelson and Bergen [J. Opt. Soc.
Am. A 2, 284-299 (1985)]. Some equivalences between the motion detection (in x, t) by ERD’s and spatial pattern
detection (in x, y) are demonstrated. The responses of the ERD and its variants to drifting sinusoidal gratings,
to other sinusoidally modulated stimuli (on—off gratings, counterphase flicker), and to combinations of sinusoids
are derived and compared with data. ERD responses to two-frame motion displays are derived, and several new
experimental predictions are tested experimentally. It is demonstrated that a system containing ERD’s of various
sizes can solve the correspondence problem in two-frame motion of random-bar stimuli and shows the predicted
phase dependencies when confronted with displays composed of triple sinusoids combined either in amplitude
modulation phase or in quasi-frequency modulation phase. Finally, it is shown that, while the ERD may in some
instances give larger responses to nonrigid than to rigid displacements, the subunits (and hence the ERD) are espe-

cially well behaved with continuous movement of rigid or smoothly deforming ohjects.

1. INTRODUCTION

Recent theoretical work on motion detectors in human vision
has shown a remarkable convergence. Current theories as-
sume that a motion detector involves the comparison of the
outputs of two spatiotemporal filters.!7 This general idea
was orginally formulated by Reichardt? in the context of ex-
periments on insects. In Reichardt’s original version, the
detector had no spatial filters: it tapped the visual field at
two points. Reichardt’s detector formed the basis for a model
proposed by van Santen and Sperling,? the elaborated Rei-
chardt model, that included spatial input filters and also a
linking hypothesis relating the combined response of many
detectors to a measure of human performance. (In our ter-
minology, a detector refers to the elementary motion-de-
tecting unit; a model refers to the whole system that combines
outputs of many detectors into a prediction of performance.)
The elaborated Reichardt model was shown to explain several
old and new phenomena in human motion perception. Its
basic component was an elaborated Reichardt detector
(original Reichardt detector plus spatial receptive fields), and
it had some enticing properties. For a wide choice of spatial
and temporal filters, the elaborated Reichardt detector (ERD)
was shown to be well behaved from a Fourier-analytic point
of view. That is, the detector indicated the correct direction
of motion for a drifting sinusoidal grating of any spatial or
temporal frequency.

In this paper, we present further theoretical and empirical
results on several versions of the ERD—including ERD sub-
units, special cases, and generalizations. Section 2 outlines
Reichardt’s original detector and the elaborated Reichardt
detectors. Section 3 derives the response of various ERD’s
to any display. We analyze the relationship between ERD’s
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and the detectors recently proposed by Watson and Ahum-
ada® and Adelson and Bergen.® Coming from a Fourier-
analytic tradition, their detectors are superficially quite dif-
ferent from the ERD although they share with it the general
architecture (fwo spatiotemporal input filters and a com-
parison operation). We prove that these apparently different
detectors actually are, or can be elaborated to become,
equivalent to the ERD’s. Section 4 outlines some equiva-
lences and differences between one-dimensional motion de-
tection (in x, ¢ space-time) and two-dimensional pattern
detection (in x, y space). This section also discusses receptive
fields, windowing, frequency analysis, and related theoretical
issues. Section 5 applies the general results derived in Section
3 to particular, commonly used displays; temporally modu-
lated, drifting sinusoidal gratings, combinations of gratings,
two-frame displays, and displays of rigid-object translation.
Various empirical phenomena that can and cannot be ex-
plained by the ERD are considered. We reject claims®-10 that
the ERD can explain certain phenomena involving spatial
resolution in nonmoving, sinusoidally modulated stimuli; we
report predictions and results with four paradigms involving
two-flash stimuli.

2. ELABORATED REICHARDT DETECTOR

A. Original Reichardt Detector

Subunits. We begin the discussion of the ERD by explaining
the detector as originally formulated by Reichardt.” Asin
previous work,1 to simplify the exposition, we consider a
version of the ERD that has been stripped of several temporal
filters. In Subsection. 2.D we consider these additional fil-
ters.
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Fig.1. (a) The ERD. The input is a luminance pattern with contrast c(x, ¢); it is sampled by linear spatial filters (receptive fields, SF’s) with
spatial responses ries; and rygne centered at locations xie and Xright; ¥i,1r (H = left, right) represents the signal at the various stages i for the left
and right subunits. TF indicates a linear, time-invariant filter with Fourier transform D{w), X indicates a multiplication unit, TA indicates
a temporal integration operation, and — indicates a unit that subtracts its left from its right input. (b) The right subunit of an ERD. (c) The
ERD of (a) with three pairs of additional temporal filters (TFy, TFg, TF3) that leave its operation essentially unchanged.

Figure 1(a) depicts the ERD; the original Reichardt detector
was similar except that it lacked the spatial filters marked SF
and that the temporal integration filter TA was restricted to
infinite time averaging. Reichardt assumed that motion
detectors are composed of two component subunits tuned to
motion in opposite directions (left and right). Subunit out-
puts cannot be directly accessed by subsequent processes, such
as decision and response processes; rather, the response of the
left subunit is subtracted from that of the right subunit to
vield the detector’s response. It follows that, if the output of
the right subunit exceeds the output of the left subunit, de-
tector response is positive, indicating rightward motion;
likewise, if the output of the left subunit exceeds the output
of the right subunit, detector response is negative, indicating
leftward motion. ;

The subunits that make up a detector share two input
channels that sample the visual field at two points in space.
The input to each subunit thus consists of the temporal lu-
minance patterns at its input points. That is, any dynamic
display can be thought of as a spatiotemporal luminance
pattern, i.e., a pattern in which luminance varies as a function
of spatial location x and of time ¢t. (We restrict the discussion
to luminance patterns that vary in only one spatial dimension,
x.) At a fixed point in space, a spatiotemporal luminance
pattern produces a temporal luminance pattern. This tem-
poral luminance pattern is a sine wave for a drifting sinusoidal
grating; for stroboscopic motion, it is a comb function.

Subunits of a Reichardt detector operate on the basis of the
delay-and-compare principle. That is, subunits detect motion

by delaying the temporal luminance pattern in one input
channel and comparing this delayed pattern with the non-
delayed pattern in the other channel. Subunit output reflects
how close this match is.

In Reichardt detectors, the delay operation is implemented
by an arbitrary, linear, time-invariant, temporal filter—the
delay filter. Such a filter does not merely delay its input; it
may alter both the phase and the amplitude of an input sine
wave. However, it does not change the basic sinusoidal wave
shape. (In general, a linear, time-invariant filter may alter
the shape of any other, nonsinusoidal wave form.) The
modulation transfer function of the delay filter is D(w); Re and
Im denote its real and imaginary parts, respectively. The
filter’s amplification factor, [D(w)], and its phase delay, 7 =
tan~! {~Im[D(w)]/Re[L (w)]}, both depend on the temporal
frequency w of the input sine wave.

The comparison operation is implemented by multiplica-
tion followed by infinite time averaging. That is, the detector
computes the correlation between the undelayed temporal
modulation pattern in one input channel and the delayed
temporal modulation pattern from the other.

Physiological basis of multiplication. The question of
whether multiplication is a plausible neural operation has
aroused much speculation, because of the variety of ways in
which multiplication can be realized. Let the direct and de-
layed inputs to the multiplier component of the Reichardt
detector be designated as x and y, respectively. While the
obvious physiological explanation of multiplication would be
a form of multiplicative interneuronal excitation, the Rei-
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chardt detector has an equivalent form in which x is multi-
plied by 1 — y instead of by y. This equivalent form derives
from shunting inhibition1.12 in which x is divided by 1 + .
Muitiplication is a reasonable approximation to various forms
of inhibition because the first term in a Taylor series expan-
sion of a variety of nonlinear combination rules contains the
product xy.1314 It follows that multiplication is quite com-
patible with current physiological knowledge.

Responses of the original Reichardt detector. For displays
with sinusoidal temporal modulation (such as drifting gratings
and counterphase gratings), the original Reichardt detector’s
response is directly proportional to sin(y), where ¢ is the
temporal phase difference between temporal modulation
patterns in the two input channels. Obviously, the response
is maximal when ¢ = 7/2.

Spatial and temporal aliasing. For any particular sine-
wave grating, the temporal phase difference between inputs
to a particular detector will depend on the distance between
its input channels and on the spatial frequency of the grating.
Because the response depends on sin(¢), an original Reichardt
detector has a spatial aliasing problem; for certain spatial
frequencies of a drifting grating, the response always signals
the wrong direction. Mathematically, note that ¢ = 2wdfAx,
where Ax denotes the distance between input channels, d
denotes the direction in which the grating drifts (+1 for
rightward motion, —1 for leftward motion), and f denotes the
spatial frequency of the grating. When the distance between
input channels is between one-half and one spatial period, the
sign of sin{¢) is opposite that of d, thus signaling the incorrect
direction of motion.

Some choices of the temporal filter TF lead to incorrect
direction responses. In Subsection 5.A we consider what
properties the spatial receptive fields and the temporal filters
must have to prevent spatial and/or temporal aliasing.

B. Elaborated Reichardt Detector

Absence of spatial and temporal aliasing. The simplifying
asssumption that the input channels to the Reichardt detector
have point-shaped spatial receptive fields may have been
appropriate for the insect facet eyes for which the original
Reichardt detector was developed, but it is clearly inappro-
priate for human vision. Even for insects, the point input
assumption was abandoned by Fermi and Reichardt.!5 First,
in the human visual system, to the extent that the detector is
meant to reflect the activity of neurons, the assumption of
point receptive fields is untenable. Second, human observers
do not have the aliasing problem of the original Reichardt
detector, discussed above. The aliasing problem is eliminated
in the elaborated Reichardt detector by substituting spa-
tial-frequency-selective receptive fields, marked SF in Fig.
1(a), for the point inputs. More generally, van Santen and
Sperling* showed how to chose spatial and temporal filters (SF
and TF) so that the sign of detector output was correct for
drifting sinusoids of any spatial and temporal frequency and
included this nonaliasing feature as an assumption of their
ERD.

Generalization of infinite time averaging; temporal linking
assumption. In the present paper, we use as our focal model
a more general version of the ERD than previously? used,
namely, a version in which the infinite time-averaging com-
ponent is replaced with an optional, arbitrary linear temporal
filter. As we shall see below, to obtain simple mathematical
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results in certain applications, some form of time averaging
(but not infinite time averaging) has to be reintroduced as an
auxiliary assumption, but there are many applications in
which even this weaker form of averaging is not needed. This
generalization brings the ERD into closer correspondence with
the visual system, and yet general properties can be proved
that obtain for wide classes of stimuli and ERD’s.

Temporal integration is essential to provide the temporal
linking assumption. That is, to generate predictions for di-
rection-discrimination experiments, we need to specify how
a time-varying output of the comparison operation is mapped
into a single real number—strength—which can be translated
into the probability of a correct direction-discrimination re-
sponse. More specifically, we require that positive values of
strength map into probabilities of seeing rightward motion
that exceed 0.5, while negative values map to probabilities of
seeing leftward motion that exceed 0.5.

The question of how much integration occurs at the level
of the detector and how much at higher levels is a difficult one
to decide; for specificity, we have chosen to let integration—
when it is needed to generate a prediction-—always take place
inside the detector. In this way the voting rule, i.e., the rule
by which outputs from multiple detectors are combined, can
be kept quite general.

Voting rule. The critical distinction between the elabo-
rated Reichardt model and the original or elaborated Rei-
chardt detector is the presence of a voting rule in the model.
To be useful, psychophysical predictions must be robust with
respect to voting rules (maximum rule, strength addition,
etc)_lG

C. Subunits of the Elaborated Reichardt Detector

The ERD, like the original Reichardt detector, assumes that
only the final response (the difference between the subunit
responses) is used. There is a good reason for ignoring re-
sponses at the subunit level, since, in general, neither the sign
nor the magnitude of these responses is meaningful. How-
ever, when we make specific assumptions about either the
temporal filter TF or about the receptive fields SF, subunit
responses may become not only better behaved but in fact
equivalent to responses at the detector level, either for a re-
stricted class of displays or for all displays. Figure 1(b) de-
picts a subunit of an ERD. Two special subunit detectors are
considered.

Variant 1. Subunits with constant /2 temporal phase
delay. Subunits whose temporal delay filter delays all tem-
poral frequencies by a quarter of a temporal cycle are called
7/2 temporal phase-delay subunits. A filter with this 7/2
phase-delay property has a modulation transfer function D{(w)
of the form —i|D(w)|. Although this filter is not realizable,
Watson and Ahumada,? who propose it, point out that there
are realizable filters that approximately have the 7/2 phase-
delay property over a large range of temporal frequencies.

Variant 2. Subunits with constant /2 receptive-field
phase difference and equal receptive-field spectral powers.
Another important special case consists of subunits whose
input receptive fields have the following property: For every
spatial frequency, the spatial positions of a sinusoidal grating
that maximize the responses of the receptive fields differ by
one quarter of a spatial cycle. These subunits will be called
/2 spatial phase shift subunits. Formally, let the receptive
fields be denoted ry, where H = left, right. Let f denote
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spatial frequency. Then the Fourier transforms, Ry, of these
receptive fields have the property that Ries(f) = —i sin(f) X
Riigni(f). Aspecial case consist of odd and even Gabor func-
tions.1718 Simple cells in monkey area 17 apparently have
the property of a 7/2 spatial phase difference.}?

D. Additional Temporal Filters

The basic behavior of the ERD does not change when more
temporal filters are added. Figure 1(c) shows an ERD that
contains three additional pairs of filters TF;, TFy, and TF3
in the input channels, in the direct paths between the input
channels and the multipliers, and after the multipliers. Itis
easy to prove that any such multifilter ERD has the same
output as an ERD with only one pair of additional filters di-
rectly in the input channels (TF;). Thus filters inside the
detector do not create more generality and can be ignored.
For mathematical convenience, except where issues of model
equivalence are discussed, we shall also ignore the additional
temporal filters in the input channels. The model depicted
in Fig. 1(a) is the basis for most of our mathematical deriva-
tions.

E. Auxiliary Assumptions
These assumptions are not an integral part of the model and
are needed only for some of the derivations (see Table 1).

(1)~ The temporal filter TA (Fig. 1) takes the special form
of temporal integration over an appropriately chosen finite

Table 1. Restrictive Auxiliary Assumptions Used in
Derivations of Principal Results®

Auxiliary
Assumption
Result T B S R

Multiplier output [Eq. (4)]
Subunit output; ERD output X
(temporal-frequency
segregation) [Egs. (7), (8)]
Equivalence of ERD and n/2 X
temporal-phase
subunit [Egs. (9), (10)]
Equivalence of ERD and n/2 X X
spatial-phase subunit
[Eqs. (11), (12), (36)-(39)] ’
Equivalence of ERD and X
elaborated W-A detector
Equivalence of ERD and Adelson-Bergen
formulation [Egs. (13)-(18)]
Response to drifting gratings [Egs. (19)-(24)]
Response to counterphase and
on-off gratings
[Eags. (25)-(27)]
General two-frame response
{Eas. (29)-(33)]
Two-frame spatial responses X
[Figs. 9-13]
Two-frame sine-wave response
[Egs. (34)-(35)}
Two-frame sine-wave response
[Appendix A}

s

I e

a T, temporal integration; B, balanced receptive fields; S, separability; R,
rigid continuous motion displays. X indicates that the assumption was
used. ’

Vol. 2, No. 2/February 1985/J. Opt. Soc. Am. A 303

interval. This window includes display onset and extends
after display termination until multiplier output has decayed
to insignificance. For periodic displays, integration is as-
sumed to extend over preciselyn (n = 1,2,...) periods. For
periodic displays, this assumption seems more reasonable than
the infinite time averaging in Reichardt’s original model and
in the earlier version of the ERD.1-4 However, for periodic
displays, averaging over one time period and infinite time
averaging are precisely equivalent.

(2) Receptive fields are balanced, that is, their spatial
integrals are zero because their on and off areas exactly cancel
each other. Examples include differences of (appropriately
scaled) Gaussians and all antisymmetric receptive fields.

(3) Spatial and temporal filters in the input channels are
assumed to satisfy the separability hypothesis.?®?1 This
hypothesis states that the response of an input channel can
be obtained by calculating the spatial and temporal responses
of a channel separately and then multiplying them, i.e., by
correlating the (spatiotemporally modulated) input pattern
with the receptive field of a channel and then convolving the
(temporally modulated) receptive field output with the im-
pulse response function of the channel’s temporal filter.

3. RESPONSE CHARACTERISTICS OF THE
ELABORATED REICHARDT DETECTOR AND
ITS VARIANTS

A. Elahorated Reichardt Detector
Because ERD’s are composed mainly of linear filters, their
responses can best be derived by a Fourier approach.

Let c(x, t) denote the display (the input to the Reichardt
detector). We assume that c(x, t) hasa Fourier transform.
Mathematically, this means primarily that the integral
ffle(x, t)|dxdt converges or, in concrete terms, that the dis-
play is on only during a finite time interval and has a finite
spatial extent. Inpractice, of course, this must always be so.
We define the Fourier transform C(f, w) as

Cif,w) = ffc(x, t)exp[—2mi(fx + wt)]dxdt.

(Lower-case letters are used for spatiotemporal, real-valued
functions and capital letters for their Fourier transforms.)
The space-time function c(x, t).can be recovered from C(f,
w) using the standard formula for the inverse Fourier trans-
form:

elx, t) = f C(f, wexpl2mi(fx + wt)ldwdf.

For simplicity, we proceed under the assumption that any
additional temporal filters [TFy; see Fig. 1(c)] are separable
from the input spatial filters (SF’s). However, we state here
without proof that, with the exception of the two-frame results
reported in Section 5, separability is not needed for any other
results. Thus let receptive fields of an ERD ke denoted ry

and their Fourier transforms by Ry, where H = left, right. -

Then the output y o(t) of receptive field H is given by
YHolt) = fru(x)c(x, t)dx

= f f C(f, w)exp(2miwt)R*y(Hdwdf, 1)
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and the Fourier transform of yy ¢ is

Hyolw) = f C(f, R*()df. @)

Here, superscript * indicates the complex conjugate. Let the
delay filter have Fourier transform D(w). Then the output
from the delay filter is given by

yialt) = f D(w) Yar plw)exp(@miot)dw. @)

After the multiplication operation, we have

YH(t) = [ f YH,o(w)exp(Zriwt)dw]

X [J‘.D(u)YH:,O(V)exp(Zm'vt)du]- 4)

We now proceed using the auxiliary assumption of temporal
integration of yy 2(t). Suppose that two arbitrary functions,
£1(7) and g2(7), are zero for all T < Ty and 7 > T's. Thus the
window of integration is [T}, T2]. Then the time integral T/
of the product at time ¢ is given by

t
Tl (g1, g2) = legl(r)gz(r)dr ¢ =T

= [ amgmdr @2T). ©)

Using Parseval’s identities, it immediately follows that
TI (g1, 82) = f G1(@)G*s(w)dw. (6)

Applying these results to Eq. (4), 't follows that subunit output
is simply given by )

YHs = f Y*1,0(0) i o) D(w)do, )

where the Y’s denote the Fourier transforms. Finally, de-
tector output is given by

4= f (Y% ight 0(@) Y o(w)

= Y¥ep 0(@) Y o(w)] D(w)d w. (8a)

Because outputs are considered only after the observation
interval is over and the internal response y5 has been tempo-
rally integrated, both subunit outputs [Eq. (7)] and detector
output [Eq. (8a)] are time independent (see Section 4), This
is indicated by the absence of ¢ from the expressions for these
outputs in Egs. (7) and (8a).

Segregation of temporal frequencies. ERD output, y4, can
be considered as the integral over w of the responses to the
temporal frequency components of the input display, c(x, ).
Let c,p(x, t)dw denote all those Fourier components of c(x,
t) whose temporal frequencies are between wg and wp + dw.
Let y4(wo)dw denote the response to ¢,o(x, t)dwe. It is easy
to show that detector response y4(wo) to c,y(x, t) is given
by

yalwo) = [Y,0*(wo) Yi,0{wo) = Yi,0*{wo) Yr,0(wo)] D (wo).
(8b)
From Egs. (8a) and (8b) it immediately follows that y4 =
Sy 4(we)dwg; the total response is the integral of the responses
to the temporal frequency components. (The corresponding
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property for periodic displays was derived by van Santen and
Sperling.4)

B. /2 Temporal Phase-Delay Subunits
When D{(w) is of the form —i|D(w)|, Eq. (7) reduces to

YHa=—i f Y04 () i o@)| D(w)| do. ©)

Note that Yright,3 = —Yieft,3, from which it follows that
Y4 = 2Yright,3 = 2 left.3. (10)

Thus the output of a w/2 phase-delay subunit is always
equivalent to ERD output in the sense that they are directly
proportional to each other.

C. «/2Spatial Phase-Shift Subunits
For this subunit, output is given by the rather uninviting
equations

Yieft,3 = —i fffc*(f, w)

X sign(f)C (g, ©)Rrignt(f)Rrignt* (€)D(w)dwdfdg (11)
d

an
Yright,3 = +i fff C*(g, w)
X sign(H)C(f, w)Rright(8)Rright* () D (w)dwdfdg. (12)

In general, for this subunit detector, output is not equivalent
to ERD output, as will be shown in Subsection 5.A by a
counterexample. However, equivalence between subunit
output and ERD output holds for certain classes of displays,
which include the class of rigidly translating objects (see
Subsection 5.B).

D. Elaborated Watson-Ahumada Detector

A linear subunit. Watson and Ahumada® propose a motion
subunit that corresponds—in structure but not in compo-
nents—to an ERD subunit [Fig. 2(a)]. We discuss here how
a reasonable elaboration of their detector is equivalent to a
special case of the ERD.

Basically, Watson and Ahumada (W-A) replace the ERD’s
multiplier with an adder, resulting in a linear detector. To
generate direction selectivity, they cleverly use phase-inde-
pendent /2 spatial and temporal filters. Specifically, they
assume that the spatial filters SF, the receptive fields, and
temporal delay filters TF have the /2 property, independent
of frequency, with the added assumption that the temporal
filter has unit gain, that is,|D(w)] = 1 for all w. Their subunit
requires an additional pure delay filter (indicated by delay in

~ the figure), because of the basically noncausal nature of the

temporal filter; this delay can be ignored in the present dis-
cussion. For drifting sine-wave displays, the output of a W-A
subunit is zero when the display moves in the nonpreferred
direction and is a temporal sine wave with the same frequency
as the display when the display moves in the preferred di-
rection. The reason for this behavior is that sine-wave stimuli
moving in the nonpreferred direction generate temporal sine
waves within the subunit that exactly cancel each other in the
adder. This, in turn, is due to the phase invariance (as a
function of frequency) of the spatial and temporal filters.
Although the W-A subunit exhibits a form of direction se-
lectively, to convert the subunit into a motion detector re-
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C(X,f) (b) cix,t)
SF SF
'|'F,| Tﬂ
YierT.0 TF TF YRiGHT,0
DELAY | [DELAY | |DELAY | |DELAY
~ YRieHT,
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(2 (2
YierT,2 YRienT,2
TA TA
YiLeFT,3 RIGHT,3

P

Fig. 2. Watson and Ahumada’s® motion subunit and the elaborated W-A detector. (a) Their original linear subunit. SF, TF, indicate separable
spatial and temporal input filters, TF indicates linear, temporal delay filters, DELAY indicates an absolute delay inserted to simplify the de-
scription of the (noncausal) linear filters, +/— indicates that the operation is addition or subtraction according to whether the subunit signals
motion to the right or left, respectively. (b) An elaborated W-A detector that includes squaring, temporal filtering TA and the subtraction
of outputs of two mirror-image W-A subunits and is equivalent to an ERD. :

quires additional components to convert the subunit’s time-
varying output into a single real number—the motion
strength. That is, making a detector requires implementing
a linking assumption. Although the W-A subunit is linear,
it cannot be combined with a linear temporal linking as-
sumption, such as time averaging or temporal integration, as
the following example illustrates. Consider two drifting
gratings that have the same temporal and spatial frequency;
both move to the right and are 180 deg out of phase. Their
sum is identically zero. Consider a W-A subunit that is tuned
to rightward motion and an appropriate linking assumption
so that it gives positive responses to either sine wave. If the
output from this detector were transformed linearly into a
strength, then the response to this sum should be equal to the
sum of the separate responses to the component sine waves
because the subunit itself is linear. But that would imply that
the response to a zero display is positive, which is absurd. It
follows that either the temporal linking assumption must be
nonlinear or some nonlinear component must be added to the
model. The problem is that, in distinguishing the nonzero

from the zero response (preferred from nonpreferred direc-
tion), it is the magnitude (a nonlinear computation) of the
response that is critical.

Nonlinear elaborations of the Watson-Ahumada subunit.
In their original formulation, W-A5 did not provide a linking
hypothesis. Van Santen and Sperling* suggested that the
most reasonable linking assumption would be squaring fol-
lowed by temporal integration and subtraction. When a
subunit’s output is squared, temporal integration over an
integral number of cycles yields the power. (In fact, in
plotting the power spectrum of their subunit, W-A applied
precisely this squaring transformation to its time-varying
output.) Since the W-A subunit responds only to movement
in the preferred direction, we supply a mirror-image subunit
for motion in the opposite direction and subtract the oppo-
sitely tuned subunit outputs to provide the output of an
elaborated W-A detector [Fig. 2(b)]. It is easy to show that
this elaborated W-A detector is fully equivalent to an elabo-
rated Reichardt detector with w/2 temporal delay and 7/2
spatial phase-shift filters. (The proof follows the same steps
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as those used in the next section to evaluate Adelson and
Bergen’s detector.) It is really quite remarkable that a de-
tector composed of subunits based on an additive comparison
operation is equivalent to an ERD based on multiplicative
comparison. The equivalence comes about because the
squaring (multiplication) used to compute power in the ad-
ditive model ultimately results in the equivalent operations
being carried out in a different order.

Recently, W-A22 themselves have elaborated their subunit
with a different principle—frequency counting. This non-
linear operation may be efficient for velocity estimation—
indeed, it has been successfully used in computer image pro-
cessing to estimate velocity in spatially bandpass-filtered
displays.2® For efficient discrimination, however, squaring
and time averaging have seldom been surpassed, have been
proved to be theoretically optimal under many conditions, and
are the most plausible computation for the direction dis-
crimination task. It is worth noting, however, that while
ERD’s detect motion and discriminate direction of motion,
in isolation they cannot reliably estimate velocity, an issue
considered in Subsection 5.B.4.

E. Reformulation of the Elaborated Reichardt Detector:
Adelson and Bergen’s Detector

Adelson and Bergen24 propose a motion detector (A-B de-
tector), which on analysis (see below) turns out to be fully
equivalent to the elaborated Reichardt model; it performs the
same computations in a different sequence. The A-B detector
differs from the Reichardt detector [Fig. 1(a)] in the way the
functions yy o and yy ; are combined at the subunit level. In
Fig. 3, the A-B combination rule is broken down into its
arithmetic components. Formally (using double primes to
distinguish the A-B formulation from the standard ERD
formulation) y”0(t) = yuo(t) and y”g1(t) = yu (). Inthe
standard formulation, subunit output before temporal inte-
gration, yg o(t), is given by

ya2(t) = yHo(t)yni(t); (13)
in the A-B formulation, y”g 2(t) is given by
¥ u2t) = [yrot) + yu ()2 + lyarolt) — ya )2 (14)
Equation (14) can be rewrittep as
¥Ha(t) = 20y ,2(t) = yaoO)] + k(2), (15)
where k(¢) is defined as

k(t) = yright,oz(t) + yright,l2(t) + yleft,Oz(t) + yleft,lz(t)-
(16)

After temporal filtering

¥ us(t) = 2lyu 3(t) — yur a(t)] + K(t)
= 2y4(t) + K(t), a7

where K(t) is k(t) after filtering. From Eq. (17) it follows
that

¥”4l£) = ¥"rignt3(t) = ¥"test,3(t)-
= 2y4(¢) (18)

For all displays, the output y”4(¢) of the A-B detector differs
from the ERD only by a multiplicative constant. For this
reason, the formulation of A-B is appropriately called a re-
formulation of the ERD.

J. P. H. van Santen and G, Sperling

c(x,t) cix, b
SF SF
TF, TF,
YierFt,0 YRiGHT,0

TF TF

+ - - +
(2 ()2 (1?2 ()2
+ +
YierFT,2 YRieHT,2
TA TA
YieFT,3 YRiGHT,3

i
Fig.3. Adelson and Bergen’s?® motion detector. Notation as in Figs.

1and 2. We have provided the temporal filters TA. The A-B de-
tector is equivalent to an ERD {Fig. 1(c)}.

Subunits of the Adelson—Bergen formulation. The A-B
reformulation of the ERD combines the inputs [Eq. (14)] in
a more complicated way than the standard formulation. With
/2 spatial phase shift and /2 temporal phase delay filters,
A-B subunits have the following direction-selective response:
For drifting sinusoidal gratings, subunit response is zero for
movement in the nonpreferred direction (as in the W-A de-
tector model) and is equal to K(t) for movement in the pre-
ferred direction. In the standard formulation, with #/2
spatial phase shift and #/2 temporal phase delay filters,
subunit output is equivalent to detector output and is equal
in magnitude but opposite in sign for these two drifting
gratings. The nonnegativity of subunit output in the A-B
formulation is consistent with the intuitive notion that di-
rection-selective channels measure the spatiotemporal energy
in the spatiotemporal frequency spectrum of a display, a no-
tion that formed the impetus for A-B’s work.

Generalizations of the Adelson—Bergen formulation. The
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A-B formulation describes a detector that is a member of a
larger class of detectors, which A-B call spatiotemporal energy
models. These detectors have in common that y”p 2(t) is of
the form Ap2(t) + Ba(t), where Ajen(t), Bies(t), Arighe(t), and
Bighi(t) are the outputs of four spatiotemporal filters.
Equation (14) represents the special case in which Ay (t) =
yuot) + yu1(t) and By(t) = yr ot) — yg,1(t). Itisgener-
ally not possible to decompose four arbitrary functions Ay (t),
By(¢) into four functions yg j(t) under the restriction that the
latter functions share the temporal and spatial filters as
specified by the ERD. However, if one drops the latter re-
striction and allows the four functions yg ;(t) to be the outputs
from four arbitrarily chosen spatiotemporal filters, then it is
easy to show that the functions Ag(t), By(t) can always be
cast in the form of Eq. (14). Such a model would be a gener-
alized form of the ERD, in which subunits do not share re-
ceptive fields and temporal filters. Thus, if one gives the ERD
the same freedom in choosing arbitrary spatiotemporal input
filters, the resulting class of models is equivalent to the class
of spatiotemporal energy models.

F. The General Fourier Analyzer

Because it is so simple, the general Fourier analyzer (GFA)
is a kind of null hypothesis against which the more compli-
cated motion theories must be justified. The GFA assumes
that the psychophysical response to a motion display consists
of the independent responses elicited by each spatiotemporal
Fourier component of the display. For quantitative com-
parisons, it is usual to assume, additionally, that the response
amplitude of the GFA to isolated Fourier components matches
that of the system to which it is being compared, e.g., the ERD
or the visual system. The GFA definitely is not a Reichardt
variant. Nor is it even a detector until an explicit linking
assumption is made, usually that magnitude (or power) is
detected. '

The GFA is an extension to vision of Helmholtz’s model of
the cochlea,?5 which asserted that the cochlea performed a
Fourier analysis of the auditory stimulus. The virtue of the
GFA is that it is an off-the-shelf model, widely known, and
often useful. It is incomplete in that it makes no assumptions
about how responses to various components might combine
or about the spatiotemporal window within which the Fourier
analysis is performed—the same difficulties that beset it in
the auditory domain.

A Fourier analysis of the stimulus is often revealing. For
example, a checkerboard has its fundamental Fourier com-

ponents along the diagonals, not parallel to the edges of the -

checks. Ives?6 used these diagonal Fourier components as the
basis of his acuity grating, and they influence even complex
perceptual properties.2’ _

The GFA is most useful in cases in which one Fourier
component dominates the stimulus, and we will make exten-
sive use of it as a comparison reference for the ERD. The only
complication considered here for the GFA is that its magni-
tude of response to any Fourier component matches the as-
sumed magnitude of the visual system’s response to that
component viewed in isolation. Once stimuli become com-
plex, and the GFA has to be elaborated with windows and with
combination rules, it no longer is off the shelf, nor simple, nor
familiar; it is merely a general computational procedure for
analyzing motion responses in the Fourier domain.
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4. ELABORATED REICHARDT DETECTOR IN
RELATION TO MOTION DETECTORS IN
GENERAL

In this section, we consider several issues that pertain to all
motion stimuli and detectors: local versus global detection
(windowing), detectors versus models, late versus early non-
linearities, representation of one-dimensional motion versus
representation of two-dimensional spatial patterns (x-y
versus x-{ representations), receptive fields of motion de-
tectors, the Fourier representation of common stimuli, and
the relation of the general Fourier analyzer to the ERD and
other detectors under consideration.

Local versus global detection (windowing). In the spatial
domain, the ERD is local because it has receptive fields that
confine most of its input to some local area. Receptive fields
define the spatial window within which a detector detects. In
the temporal domain, the general ERD also is local in so far
as the TA filter [Fig. 1(a)] is. Under the assumption of infinite
time averaging for the TA filter, the ERD is completely global
in the temporal domain, as it is under the analogous as-
sumption that it integrates the entire response to a temporally
confined stimulus [Egq. (5)].

In contrast to the elaborated Reichardt detector, the general
Fourier analyzer does not explicitly have windows in either
the spatial or the temporal domain and therefore in the ulti-
mate global model. The GFA is applicable only to spatially
and temporally periodic and stationary displays and to other
cases where windowing can be neglected.

Models, channels, and detectors. First, because they are
local, detectors are assumed to be replicated at many locations,

i.e., to be dense in visual space. Second, in each small

neighborhood, different sizes of detectors are assumed to
occur. A class of detectors of a single size is called a spatial
frequency channel. Third, in each spatial location and for
each size, there are detectors having different primary or-
ientations; these detectors form orientation channels. Fourth,
when the assumption of infinite time averaging is relaxed,
detectors’ responses are time varying.

The algorithm for combining the information from all these
many detectors and moments in time is called a voting rule.
Typical examples are: choose the detector having the maxi-
mum output during the trial interval; add the detector outputs
according to an a priori weighting function and make the
decision according to whether the sum exceeds a criterion
value. We3 were able to show that for many stimuli the choice
between these two voting rules had no influence on the pre-
dicted psychophysical response of the elaborated Reichardt
model. In general, optimum voting rules depend on the na-
ture of noise in the model. In this paper, it will usually be
possible to evaluate detectors without invoking voting rules.
Voting rules, however, are central to perceptual theories of
motion.

One-dimensional motion stimuli. In general, a monocular,
achromatic motion stimulus is three dimensional. It isrep-
resented as a luminance c(x, v, ¢) that is a function of two
spatial dimensions (x, y) and time (t). Here, however, we
confine ourselves to motion stimuli that are functions of x and
¢t only and do not vary in the y direction. For example, such
stimuli are vertically oriented gratings or patterns; and ERD’s
are assumed to be oriented optimally for detecting these
gratings. (Orientation selectivity, that is, off-angle detection
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Fig.4. (a) Artist’s rendition of a single frame of a one-dimensional drifting sinusoidal grating. The various shadings represent stimulus intensities.
The arrow indicates the direction of movement. (b) Two-dimensional (x, t) representation of (a). The horizontal dimension x represents the
instantaneous spatial luminance pattern. The vertical dimension represents time, The slope inversely indicates the speed of movement. (b)
Also can be interpreted as a static, diagonally oriented grating in two dimensions, that is, a grating pattern in (x, y) space. (c) A linear, u, v
separable, receptive field (approximation to a simple cell in cortical area 17 that receives (b) as an input (spatial interpretation). The + and
— symbols are a conventional notation used to indicate areas in which the response to a point of light is positive and negative, respectively. The
receptive field is oriented along its primary axes u, v, and the local responsivity of the field (its impulse response) is indicated in the cross-sectional
graphs, u, v. (d) Transformation of (b) via(c) onto a receptor field. The small square dxdy indicates the physical area occupied by a receptor
located at x, y (spatial interpretation). Inthe motion interpretation, the vertical slit represents the physical domain of a motion receptor, that

is, a motion receptor at location x responds to inputs from all times ¢.

by motion detectors, is a complicated issue that is beyond the
scope of the present treatment.) Figure 4(a) illustrates a
static view of a drifting sinusoidal grating; Fig. 4(b) illustrates
the representation of the drifting sinusoid as a function of x
and t.

Receptive fields; (x, y) versus (x,t). Itis obvious from Fig.
4 that the one-dimensional, drifting sinusoidal grating de-
scribed as a function of x and ¢ has the same representation
as a static two-dimensional sinusoidal grating described asa
function of x and y.5.6:2829 Tt is instructive to consider the
similarities and differences between methods of detecting
these two stimuli, ¢(x, y) and ¢(x, ¢). ~

For detection of static x, y gratings, it is assumed that there
are receptors with receptive fields of various sizes and orien-
tations and that the receptors with the largest responses detect
the grating or contribute most heavily to a weighted-detection
response.30-32 Each kind of receptor (a particular orientation
and size) exists in many points within the visual field, and the
stimulus is represented on a field of these receptors. Ifitis
assumed that the receptors are approximately linear, at least
in their responses to low-contrast, near-threshold stimuli, then
the receptor can be regarded as a linear operator, and the
transformation from stimulus field to receptor field is easily
computed [Fig. 4(c)]. An especially useful property of linear
systems is that input sine waves are transformed to output
sine waves differing only in phase and amplitude but not in

frequency. Thus we know immediately that a stimulus x, y
sinusoidal pattern [Fig. 4(b)] also is represented in any linear
receptor field as a sinusoidal pattern, as illustrated in Fig.
4(d).

When the stimulus pattern in Fig. 4(b) is interpreted as a
spatial x, y pattern, every point x, y in the receptor field of Fig.
4(d) represents the magnitude of response of a receptor lo-
cated at x, y. When the pattern is interpreted as an x, ¢
drifting grating, the point x, £ in the receptor field represents
the output at time ¢ of the receptor located at point x. Dif-
ferent orientations in x, ¥ correspond to different velocities
and left-right directionsin x,¢.

Every small area dxdy in the x, y receptor field of Fig. 4(d)
represents a different receptor. When interpreted as an x,
t field, only x locations represent receptors; physically, a
motion receptor occupies a whole vertical slit (dx). A sin-
gle-motion receptor transmits signals about all times t.
Physically, the structures of the x, y and x, ¢ fields are quite
different. Functionally, they are quite similar. There are
inevitable asymmetries between x, y and x, ¢ because past and
future are not so symmetrical as left and right or up and down.
A motion receptor can respond only to past inputs; a spatial
receptor can respond to inputs either above or below its central
location. With respect to the set of receptors in physical x,
¥, the x and y dimensions are essentially symmetrical and
arbitrary (i.e., they can be freely rotated). With respect to




J. P. H. van Santen and G. Sperling

motion receptors, the x, ¢ dimensions are completely con-
strained and unsymmetrical. These asymmetries can be
large, or they can be quite minimal; they depend on the spe-
cific nature of the x, y and x, t receptive fields. Thus, even
though the physical natures of the x, y and x, t receptors are
essentially different, the formal descriptions of their trans-
formations are equivalent.

Throughout this section, we have been careful to refer to
linear operators as receptors. When it comes to detection, a
nonlinear operation, the same arguments transpose perfectly.
Physically, the detection of patterns in x, y involves quite
different structures than does the detection of patterns in x,
t; formally, the detection operations can be equivalent.

Early and late nonlinear detectors. A linear system is one
in which superposition (and certain other technical condi-
tions) obtain. Superposition holds if and only if for every
choice of two inputs, a, b (with corresponding outputs, A, B),
the combined input a + b produces an output of exactly A +
B. On the other hand, directionally selective motion detectors
are inherently nonlinear (see Subsection 3.D). For any mo-
tion detector, even when the detector output is a continuously
graded confidence level (rather than the intrinsically non-
linear categorical yes/no response), there are profound
physical and logical reasons for detector nonlinearity.

The simplest kind of detector is one that is describable as
a linear system right up to the last stage—a decision stage that,
typically, computes the power of its input and/or determines
whether it exceeds a criterion value.33 This is a late nonlinear
detector. A Reichardt detector becomes nonlinear at the
point at which the left and right inputs are multiplied-—an
earlier nonlinearity. However, the elaborated W-A detector,
which performs an equivalent overall computation to the
ERD, is late nonlinear. A late-nonlinear motion detector
allows one to regard the linear transformation carried out by
the motion detector in x, ¢ as being analogous to the linear
receptive-field transformation carried out by the spatial de-
tector in x, ¥ (as in Fig. 4).

Nonlinear systems {(such as the ERD) do not have transfer
functions (linear receptive fields). But, because the ERD (for
certain choices of its filters) has a late-nonlinear dual, the
elaborated W-A model, one may reasonably ask: ‘What is its
receptive field? The answer is that the ERD’s receptive field
in x, t looks remarkably like the x, y receptive fields typically
proposed for spatial detectors [Fig. 4(c)]. Different orienta-
tions of x, y receptive fields indicate optimal sensitivity to
gratings with the corresponding orientations. Similarly,
different orientations of the receptive field in x, ¢ indicate
optimal sensitivity to motion with the corresponding speeds
and left-right directions. The receptive field of the ERD’s
late-nonlinear dual is computed before the last stage of tem-
poral filtering, time averaging [TA, Fig. 2(b)]. Time averaging
would stretch the receptive field vertically in Fig. 4, However,
since time averaging is preceded by a nonlinear operation—
squaring—the receptive field concept is no longer applicable
at this stage.

Fourier representations.of commonly occurring functions.
What does it mean that receptive fields of spatial mechanisms
in x, y are so similar to receptive fields of one-dimensional
motion mechanisms in x, t? Both receptive fields are de-
signed to discover patterns, and these patterns are quite well
described in terms of narrow bands of Fourier components.
In both x, ¥ pattern detection and x, ¢ motion detection, a
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major component of detection reduces to frequency analy-

sis—the discovery and detection of Fourier components. In
fact, the ERD’s remarkable property of segregating temporal
frequencies [Eqs. (8a) and (8b)] implies that it detects any two
or more sine-wave patterns in x, ¢ independently unless they
happen to have the same temporal frequency. Therefore, it
is useful at this point to consider the frequency analysis of the
stimuli that will be used to test the ERD and its variants.

Figure 5 illustrates some two-dimensional functions, which
can be interpreted as either x, y or x, t, and their Fourier
transforms; the x, t interpretation is used here. Luminance
cannot take negative values; therefore all contrast functions
are added to an unchanging, uniform background. A uniform,
unchanging field has zero spatial and temporal frequency;
there its transform is a point at the origin in the middle of the
panel. Because the transformation from a function to its
Fourier transform is linear, the transform of any sum of
functions is simply the sum of the transforms of the compo-
nents. Thus every transform panel of Fig. 5 has a point at the
origin representing the uniform background.

Functions a—e in Fig. 5 are periodic; one period of an infinite
two-dimensional mosaic is shown. For specificity, the dis-
played area can be regarded as representing 1 deg of visual
angle (dva) X 1sec. Panel aillustrates a right-drifting sinu-
soid. The period of ¢(x, £) contains four cycles in x and one
cycle in ¢t [shown in C(f, w)] and indicates a velocity [slope of
C(f, w)] of (1 cycle/sec)/(4 cycles/dva) = 0.25 dva/sec. Panel
b illustrates a right-drifting sinusoid with double the spatial
frequency and double the temporal frequency of a, and hence
the same velocity. Panel c illustrates spatially uniform flicker;
the spatial frequency is zero, the temporal frequency is 8 Hz.
Rotating panel ¢ 90 deg would yield a vertical sinusoid whose
Fourier transform also would be rotated 90 deg, corresponding
to a spatial frequency of 8 cycles/dva. Panel d illustrates a
left-moving sinusoid, velocity 0.5 dva/sec.

The axes of the transforms in panels a-d are perpendicular
to the stripes in ¢(x, t), which is generally true for moving
patterns. Every pair of points in C(f, ) that is symmetrically
disposed around the origin represents a drifting sinusoidal
component of ¢(x, £). Panel e illustrates a multiplicity of
components in a sampled (stroboscopic) motion display de-
rived from d by briefly flashing the moving sinusoid eight
times in each cycle. The motion path is ambiguous; three
possible paths are shown. The Fourier transform also rep-
resents these paths; only the first three of many possible paths
are shown. Note the perpendicularity of the motion path and
the axis of the corresponding pair of points in the Fourier
transform.

The functions in panels f-j are not periodic in x; they are
spatially confined; what is shown is all that is nonzero in x.
Panel f illustrates a continuously present, stationary single
line; its transform is a line rotated 90 deg. Panel g shows a
continuously present, stationary random bar pattern. Its
transform is restricted to C(f, 0), but owing to c(x, ¢)’s limited
spatial extent, C(f, 0) it is not a constant but represents the
statistical properties of c(x, t).

The functions in h-j are spatial and temporally confined.
Panel h shows a briefly flashed sinusoidal grating pattern. Its
transform is not completely uniform in the vertical dimension
because of the significantly nonzero duration of the flash. C(f,
) is not confined to just two spatial locations (+4 cycles/dva)
because of the restricted spatial extent of ¢(x, t). Paneliil-
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Fig. 5. Examples of two-dimensional functions considered in this paper and their Fourier transforms. For the functions ¢(x, t), the horizontal
dimension is x, the vertical is ¢, and the shading indicates the value of c(x, t). For the Fourier transforms C(f, w), the horizontal dimension
is spatial frequency f; the vertical dimension is temporal frequency w; the shading indicates the magnitude of the complex number C(f, w). The
one-dimensional motion interpretation (x, t) rather than the two-dimensional space (¢, y) interpretation is used in the following descriptions.
Functions (a) to (e) are periodic; one period of an infinite two-dimensional mosaic is shown. (a) Right-drifting sinusoid. (b) Right-drifting
sinusoid with double the spatial frequency and double the temporal frequency of (a) and hence the same velocity. (c) Spatially uniform, stationary
flicker. (d) Left-moving sinusoid. (e) A sampled (stroboscopic) motion display derived from (d). The motion path is ambiguous; three possible
paths (1, 2, 3) and their transforms are shown. The contrast functions (fj) are not periodic in x but are spatially confined to the x interval shown;
functions (h-j) are also temporally confined. (f) Continuously present, stationary single line. (g) Continuously present, stationary random
bar pattern. (h) A briefly flashed sinusoidal grating pattern. (i) A two-flash presentation of a random bar pattern moved to the right. () A
two-flash presentation of a sinusoidal grating pattern moved to the right.
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lustrates a two-flash presentation of a random bar pattern in
which the second flash is moved to the right of the first. The
arrows (1) indicate the x, ¢ movement and the many Fourier
components consistent with this movement direction; in-
consistent components are also apparent. Panel j illustrates
a two-flash presentation of a sinusoidal grating pattern moved
to the right; 1 (right) and 2 (left) represent the two most
prominent movement interpretations and their Fourier
transforms.

5. DERIVATIONS OF ELABORATED
REICHARDT DETECTOR AND SUBUNIT
RESPONSES TO STANDARD DISPLAYS

In this section, we use the general results obtained in previous
sections to investigate the response of the ERD and two sub-
unit variants to four important classes of displays: (1) simple
drifting sine-wave gratings; (2) combinations of sine waves,
such as counterphase and on—off gratings; (3) two-frame
motion; and (4) rigid translations.

A. Gratings with Sinusoidal Temporal Modulation

The results below are based on the auxiliary assumption of
temporal integration over a suitably chosen temporal interval
(see Subsection 2.E). In terms of appropriate experiments
to test these predictions, this means that one should present
at least several temporal cycles of a display, viewed or tem-
porally windowed in such a way that the psychophysical re-
sponse is determined by the maximum modulation presented
and not by the manner of onset or termination of the dis-
play.

1. Responses to Drifting Sinusoidal Gratings

A drifting sinusoidal grating is defined as

c(x,t)=Lo+m cos(2rfox + 2mwwedt). (19)

Here, the average luminance is Ly, the modulation amplitude
is m, the temporal frequency is wy = 0, the spatial frequency
is fo 2 0, and the direction of movementis d(—1,1). Without
loss of generality, L¢ can be ignored.

For computing ERD responses to sinusoids, it is more
convenient to switch to polar notation. As before, for any
G(w) we define its magnitude as |G(w) = {Im?[G(w)] +
Re?[G(w)]}/2 and its phase as 7, = tan~Y~Im[G(w)]/
Re[G(w)}. »

Let 7w Pleft fo a0 Pright £, denote the phase angles of D(wp),
Riese(fo), and Ryigne(fo), respectively. Subunit output is given
by

yu.3 = m3D(wo)|| R (foll Rer (fo)l
X co8[7 o — d(pa,fo — PH f0)]- (20)

Obviously, ‘yleft,:} = ~Y¥right,3 for both subunit variants 1 and
. 2. Finally, ERD output y, can be written as

¥4 = mYD(wo)l| Riest(foll| Rrigne(folld
X 8in(7 up)Sin(Pright,fo — Pleft,fo) (21)

This is a direct generalization of Eqgs. (13) and (15) in Ref.
4,

Nonaliasing. The conditions for nonaliasing of an ERD
are easily derived from Eq. (21). Nonaliasing requires, for all
Wo and f 0

| D{wp)|d sin{r,y) =0 (22)
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Fig. 6. Frequency responses of an ERD. (a) Impulse response
function of the temporal delay filter (TF, Fig. 1), a first-order low-pass
filter with time constant of 1 Hz. (b) Spatial filters (left and right
receptive fields) of the ERD. The abscissa indicates the spatial lo-
cation of a line stimulus input; the horizontal line indicates zero re-
sponse; the ordinate indicates output amplitude in response to this
stimulus. The one-dimensional receptive fields are even Gabor
functions, separated by one-quarter cycle.of the optimal spatial fre-
quency for the individual receptive fields {Eq. (24)]. (c) Response
of this ERD to drifting sinusoidal gratings as a function of their spatial
and temporal frequency. Two contour lines are shown, representing
the 50 and 1% contours of the absolute value of the response relative
to the maximum response. The locations where the actual maxima
occur are indicated by the centers of the + and —signs. These signs
also indicate the sign of ERD output within each quadrant.

and
| R1efe(folll Rrignt(fo)|sin(pright.fo — Plettfo) 2 0. (23)

Conditions (22) and (23) are easy to satisfy. When the
temporal filter has a 7/2 delay, condition (22) always is sat-
isfied, and when a detector has receptive fields with a /2
phase shift, condition (23) always is satisfied. However, w/2
phase shifts are sufficient, not necessary. There is a wide
range of temporal and spatial filters that an ERD can have and
still function properly. In fact, the great advantage of the
ERD over detectors composed of only a single subunit is
precisely the ERD’s ability to perform well without narrow
constraints on its filters.

Figure 6 illustrates responses of a nonaliasing ERD with
simple (nonoptimal) filters. The temporal filter is a first-
order low-pass filter with impulse response function TF(t) =
e~t [Fig. 6(b)]. This type of filter does not have the /2
temporal phase-delay property. Its phase delay is always
positive and increases asymptotically to 7/2.

The receptive field filters are two displaced, symmetric
“Mexican-hat” functions given by
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H = left, right.
(24)

ra(x) = W(x — xp)eos[(x — x)fol

The weighting function W is Gaussian, W(x) = exp(—x2/4¢2),
where 0 = 1.41, Xjet = —7/2, Xright = /2, and fo = 1. These
displaced, but otherwise identical, receptive fields do not have
the /2 spatial-phase-shift property. In fact, the phase shift
is directly proportional to spatial frequency and thus varies
between zero and infinity. It should be noted, however, that
at the spatial frequency that maximizes the individual re-
ceptive field responses the phase shift is approximately
/2.

Figure 6(c) shows contour plots of those spatial and tem-
poral frequencies at which the absolute value of the response
l¥4 is 1 and 50% from the peak response amplitude. Figure
6(c) shows that despite the casually selected spatial and
temporal filters, the detector behaves properly, giving sig-
nificant responses that always have the correct sign (no ali-
asing). Other filter choices yield comparably efficient
ERD’s.

Figure 6 represents the response|y | of the ERD. Ifit were
desired only to represent response amplitude, Fig. 6 could
have been drawn in a single quadrant. An alternative inter-
pretation of Fig. 6 is as representing the magnitude of the
Fourier transform of a linear system that exhibits precisely
the same magnitude of response to Fourier components as
does the ERD. The original, unelaborated W-A model {before
squaring and time averaging [Fig. 2(a)]} is one such ERD dual.
Assuming a particular dual uniquely constrains the other
quadrants of the Fourier transform (except for sign). Other
motion detectors (such as a GFA) may also have the same
response magnitudes, and they may or may not exhibit the
same phase relations as the ERD dual. Without other con-
straints, the response data of Fig. 6(c) do not imply a uniqu
motion detector. :

The representation in Figure 6(c) of ERD response mag-
nitude enables one to compute ERD responses graphically to
more complex stimuli. For example, a simple sinusoid trav-
eling to the left is represented by symmetric points in quad-
rants 1 and 3. The ERD response in both of these quadrants
is positive, the response to these points add [Eqgs. (8)], and so
the ERD’s response is positive. A simple sinusoid traveling
to the right is represented by points in quadrants 2 and 4; re-
sponses in both of these quadrants are negative; therefore the
ERD’s response is negative. When two stimuli are presented
simultaneously, and their temporal frequencies are different,
the responses simply add; for movements in opposite direc-
tions, the responses cancel completely with appropriately
balanced stimuli. The property that all responses in quad-

Table 2. Response of the Elaborated Reichardt
Detector to Combinations of Drifting Sinusoids asa
Function of Their Differences in Spatial and/or
Temporal Frequency®

Spatial Frequency
Temporal Frequency Different Same
Different iy
Same iy d

4 i, indicates independent combination with an ERD of component’s powers
according to a sum rule. i, indicates independent combination hetween dif-
ferent-sized ERD’s according to an arbitrary voting rule. d indicates depen-
dent, nonlinear combination within an ERD.

d. P. H. van Santen and G. Sperling

Fig.7. The range of responses to combinations of drifting sinusoids
of: the GFA (with arbitrary combination rules), the ERD, and two
ERD subunits (V1 = 7/2 temporal phase-delay subunit; V2 = #/2
spatial phase-shift subunit).

rants 1 and 3 have signs opposite all responses in quadrants
2 and 4 is a graphic representation of the fact that this ERD
is nonaliasing, that is, it classifies every simple, drifting si-
nusoidal grating correctly with respect to left-right direction
of motion.

Combindtion properties of the elaborated Reichardt de-
tector. Drifting sinusoids are too simple for critical tests of
motion detectors; stimuli composed of combinations of two
or more drifting sinusoids are needed. Three kinds of si-
nusoidal grating combinations are significant for the ERD (see

_ Table 2).

(1) When drifting gratings have different temporal
frequencies, the ERD has a remarkable additivity property:
The response of the ERD (and its variants) to a stimulus that
is the sum of sinusoids is simply the sum of the ERD’s re-
sponses to the isolated components. This is independent
combination according to a sum rule.

(2) Independent combination still results when compo-
nents of a compound drifting grating have the same temporal
frequency but widely different spatial frequencies. Because
of the spatial-frequency selectivity of the ERD, the component
gratings stimulate different ERD’s and therefore still combine
independently according to the voting rule for combining
independent detector responses. In cases 1 and 2, ERD’s
behave essentially like the simplest of general Fourier ana-
lyzers—independent responses to the component stimuli.
One powerful criterion for independent combination is phase
independence—the response is the same independent of the
phases between stimulus components. ’

(8) When both temporal and spatial frequencies of com-
ponent grating are similar, the ERD predicts profound
dependencies. However, that is just where the windowing
assumptions of the ERD become important. Nearby
frequencies (space or time) imply beats, i.e., quite different
things happen locally (during brief intervals or within spatial
neighborhoods), and only with infinite temporal windows do
these beat episodes disappear (into perfect frequency analy-
sis). We show in Sec. 5.B.3 that the particular way in which
spatial components interact perceptually is uniquely predicted
by the ERD (and its variants). However we do not deal here
with temporal frequency resolution (e.g., temporal beats).

The GFA does not distinguish stimuli with beats from any
other stimuli. Failures of frequency resolution (beats) require
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elaboration of a GFA; any particular set of phase relations
would not be an obvious extension of a GFA.

Comparison of the responses of the elaborated Reichardt
detector and the two subunit variants to combinations of
sinusoids. The relations among the various detectors under
consideration is best illustrated by a Venn diagram (Fig. 7).
Each point represents an input-output pair, that is, a par-
ticular kind of response of a detector to an input consisting,
for specificity, of a pair of sinusoids. The enclosed areas
represent the range of achievable input—output pairs (over the
range of parameters) for each of four kinds of detectors: GFA,
ERD, Variant 1 (ERD subunit with 7/2 temporal-phase-shift
filters), and Variant 2 (ERD subunit with /2 spatial-phase-
shift filters). For the GFA, any voting rule (not merely ad-
dition) is admissible for combining Fourier components, so
this GFA is the most general model. The ERD, which com-
bines components as described in the previous section (and
in Table 2) is much more specific. Variant 1 is always
equivalent to a full ERD. Variant 2 is equivalent to an ERD
for stimuli in which each temporal frequency is associated with
at most one spatial frequency but can give slightly different
responses to other complex stimuli.

2. Counterphase and On-Off Gratings
An extended counterphase grating is described by

e(x, t) = Lo+ m cos(2mwgt)cos(27fox). (25)

Ignoring Lo, the Fourier transform of ¢ is

Clf,w)=m, f[=z=%fo andw==wp

=0, elsewhere (26)

The counterphase grating and its Fourier transform are
illustrated in Figs. 8(a), 8(b), and 8(d). Because of the sym-
metry of the Fourier transform of the counterphase grat-
ing—one point falls in each of the four quadrants of the ERD
cloverleaf (Fig. 6)—it immediately suggests that the ERD
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Tesponse will be zero, as in the case of two sine waves moving
in opposite directions. This is easily proved In polar nota-
tion, subunit output is

yu,3 =m3D(wo)l| Riese(foll
X ¢08(7 o) c08(piett,f) 08 (Pright.fo)- 27

Obviously, Yieft,3 = Yright,3 80 Y4 is always zero.

Equation (27) is an example of a case in which the output
from a w/2 spatial-phase-shift subunit (Variant 2) is not
equivalent to ERD output (Subsection 3.C). When the dif-
ference between pright,foand pieft.fois 7/2 (dnd ERD outputis
zero), the product cos(piest f,)c08(Pright.fo) (Which determines
subunit output) is generally nonzero. For counterphase
gratings, the response of /2 spatial subunits may or may not
be zero; ERD response always is zero.

An on-off temporally modulated spatial grating is defined
by Eq. (28) and illustrated by Figs. 8(a), 8(c), and 8(e).

c(x,t) = Lo + m|cos(2mwet) + 1]cos(2mdfox). (28)

This on—off display is equivalent to a counterphase display
plus a stationary sinusoidal grating. Since an ERD has zero
response to stationary stimuli, the ERD response to-the on—off
modulated grating will be the same as to the counterphase
grating, i.e., zero. Analytically, it is easy to show that the
counterphase Eq. (27) also describes subunit responses to
on-off gratings.

3. No Spatial Frequency Doubling

Kulikowski®® and Murray et al.10 studied the effects of the
type of temporal modulation (drifting versus counterphase
versus on—off) on the highest resolvable spatial frequency of
these gratings (resolution limit). They concluded that, for
a range of experimental conditions, the resolution limit is twice
as high for on—off gratings as for counterphase gratings, a

phenomenon they called spatial-frequency doubling. They

assert that “[the property of the Reichardt detector that] . ..

Fig. 8. Fourier representations of counterphase and on-off gratings. (a) Freeze-frame x, y representation of a grating. (b) Counterphase
grating; temporal modulation of luminance (ordinate) of adjacent bars around a mean luminance L as a function of time (abscissa). Ordinate:
luminance;. abscissa, time. (c) On—off modulated grating. (d) Fourier transform of counterphase and (e) on—off modulated grating. Note
that these two stimuli differ only by the presence of a static sinusoidal grating shown in (e).
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signals of two adjacent inputs are cross-correlated . . . [leads
to] . .. halving of the spatial resolving power . . . [p. 151].” 10
We now demonstrate that this assertion is incorrect.
On-off and counterphase grating stimuli differ only in the
presence of a stationary grating (Fig. 3), and the ERD does not
respond to stationary stimuli of any kind nor do they affect
the ERD’s responses to moving stimuli. Therefore finding
different responses to on-off and counterphase gratings
cannot be explained by any reasonable version of the ERD.
In particular, as noted above, detector output to both display
types is zero. Second, if one allows for the possibility that
observations in these experiments are mediated by subunits,
we have just shown that at the subunit level the responses to
the two display types are identical. Third, if one allows for
the possibility that appears to be implicit in the claims by
Kulikowski and his co-workers, namely, that responses to
on-off gratings are made at the input channel level while re-
sponses to counterphase gratings are made at the subunit
level, the ERD still makes no predictions about resolution

limit ratios. The reason is that subunit output depends on .

the receptive field distance and receptive field shapes,
whereas, obviously, responses at the input channel level de-
pend only on receptive field shape. Thus changes in receptive
field distance have an effect on the subunit response to
counterphase gratings but not on the input channel response
to on—off gratings. Hence there can be no a priori relation-
ship between these two response. To put it simply, because
the ERD calculates a temporal, not a spatial, cross correlation,
spatial-frequency doubling cannot be explained by the ERD.

B. Two-Frame Displays

Historically, apparent motion has been most studied with
displays consisting of two successively flashed frames. Most
work on random-dot motion employs this two-frame para-
digm, - Since it is widely assumed that, under proper spa-
tiotemporal conditions, two-frame displays are processed
primarily by simple, low-level motion detectors,34 it is im-
portant to establish that the ERD applies to the psychophysics
of two-frame displays. We first derive some general results
for multiple-frame displays, then specialize these results to
two-frame displays, and finally consider some particular
two-frame displays.

A multiple-frame display c(x, t) has the general form

clx, t) = _IZVZI cj(x)m;(t). (29)
j=

Here, cj(x) is the picture presented as the jth frame, and m;(t)
denotes the intensity time course of that frame. For example,
the same frame may flash four times at intervals of 20 msec,
or it may be illuminated continuously for 80 msec. In the first
case, m;(t) is a comb with four 20-msec teeth; in the second
case, m;(t) takes on a constant value during an 80-msec in-
terval and is zero outside of this interval.

The Fourier transform of a multiframe display c(x, t) is

given by the sum of the transforms of the N-component dis-

plays:

C(.0) = £ CiIM;(). (30)
P!

- Here, Cj and M, ; are the Fourier transforms of ¢j and mj, re-

spectively [Eq. (1a)]. We introduce the following term, which

dJ. P, H. van Santen and G. Sperling

is useful for understanding multiple-frame motion. Analo-
gously to Eqs. (1) and (2), let

rHje(x) = fcj(x’)ry(x’ — x)dx’ (81a)

= fcinRur ey, (31b)
In words, ry,;,. denotes the response magnitude of receptive
field H at location x for frame c;; it is the spatial component
of yno. The second equality (31b) follows from the standard
Parseval identities for Fourier transforms. We will omit the
subscript ¢ when this does not lead to misinterpretations.

To derive a general equation for ERD output y, in response
to multiframe displays, we substitute the particular form of
input display [Eq. (31b)] into the defining equations for the
ERD, Eqs. (3b) and (8a), simplify, and obtain

yalx)= ¥

) [Rright,j (*)Rieft () = Rright,n (*)Riegy j(x)]
1<j<k<N

X {fD(w)[Mj*(w)Mk(w) - Mk*(w)Mj(“-;)]dw} - (32

Because of the concern with an ERD’s response as a function
of its spatial location x within the display, y, is here explicitly
written as a function of x. The expression [Rright,j(x)Rieft k(x)
= Riight kix)Riett jix)] occurs sufficiently often to deserve a
symbol of its own, which will be A;;(x), referring to the fact
that the expression is a (2 X 2) determinant.

What is astonishing about the ERD’s response to multi-
frame displays [Eq. (32)] is the full separability of ERD output
as a sum of products of spatial (x) and temporal (w) factors.
The spatial factors, which depend only on the spatial char-
acteristics .of the display and the ERD parameters, are all
grouped into one term, and the temporal factors are grouped
into a second term. Separability has important implications
for experimental tests of the ERD. For example, whenever
the temporal parameters of different displays are held con-
stant [i.e., all displays have the same intensity time functions
m;(¢)], differences in ERD responses to these displays depend
only on differences in the factors A ik (x). For two-frame
displays, Eq. (32) reduces to

ya(x) = Apa(x) f D (@) [My*(w)Ma(w)

~ Ma*(w)M1(w)]dw. (33)

In the remainder of this section, we derive two-frame pre-
dictions based on A;3(x) in Eq. (33), and we examine new
experimental evidence for them. We first consider spatial
random bar patterns, then composite sine waves, and finally
simple sine waves.

1. Elaborated Reichardt Detector (ERD) Computations
and Psychophysical Observations of Two-Frame Random-
Bar Patterns: Size-Specific ERD Channels Resolve the
Correspondence Problem

A typical two-frame random-bar motion stimulus is illustrated
in Fig. 9. Both frames may be regarded as extended stimuli
that are viewed through a fixed, stationary window; the second
frame is the same as the first frame, except for a rigid right-
ward displacement. The lower part of Fig. 9 depicts values
of the term A;2(x) as a function of x-axis location; the different
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Fig.9. The response to two-frame random bar motion of ERD’s with
the same spatial filters as in Fig. 6. A representative display (frames
1,2) is shown at the top of the figure. Average distance between bars
is 2.5 min of visual angle (mva). The between-frame displacement
is 6 mva rightward. ERD responses are given as a function of their
x location; up indicates rightward response (R), and down indicates
leftward response (L). Zero-response reference lines are drawn for
each detector size to highlight the sign—the indicated direction—of
detector outputs. Incorrect direction responses (leftward) are indi-
cated by dark shading. Different lines represent different sizes of
proportionally scaled ERD’s; the label indicates their size in terms
of the distance Ax between their receptive field centers.

functions represent ERD’s of different sizes. When the
output of an ERD of a given size is below the reference line for
that size, the ERD indicates leftward motion, and rightward
motion otherwise. This computation uses detectors with the
spatial receptive fields illustrated in Fig. 6(a) and described
by Eqgs. (24).

The results from the computation of two-frame bar motion
in typical displays show the following. The smallest ERD’s
(Ax = 2 mva) do not consistently indicate a particular direc-
tion of motion. Larger ERD’s (Ax = 4,6, 8 mva) consistently
indicate motion correctly. These output patterns are.con-
sistent with the perceptions of these two-frame random bar
displays. For the display of Fig. 9, observers perceive a
multitude of bars that jump in both directions, while at the
same time one observing a patternless, rightward undercur-
rent.

With the assistance of David H. Parish in our laboratory at
New York University, we made related theoretical and psy-
chophysical observations using bandpass-filtered random-bar
stimuli. (1) We verified that ERD’s indeed are selectively
activated by input stimuli whose passbands correspond to the
sizes of their receptive fields; (2) the perceived ambiguity or
nonambiguity of the bandpass-filtered two-frame displays
corresponded to the computed ERD responses in the activated
pband. There was good agreement between the ERD re-
sponses and our perceptual observations. Others35:36 have
found similarly expected results with bandpass filtered motion
stimuli.

In attempting to arrive at a simple algorithm for computing
the motion in a two-frame random-bar display, it is not ob-
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vious which particular bar in frame 2 should be taken to cor-
respond to a given bar in frame 1, especially when there is
some noise or deformation in the second frame. This is the
correspondence problem. The two-frame random-bar sim-
ulation of the ERD shows that an analysis, based on calcu-
lating the term A;s(x) resolves—or at least vastly simpli-
fies—the correspondence problem for these patterns. It
should be emphasized that the frame-to-frame displacement
of six units is three times the average interbar distance, thus
making it all but impossible to apply a nearest-neighbor al-
gorithm.

A two-dimensional spatiotemporal Fourier analysis of the
two-frame random bar display [Fig. 5(1)] clearly shows the
characteristic spectrum of sampled rigid motion. These are
the Fourier components detected by the ERD in its resolution
of the direction of motion. But the ERD’s do not need to
make use of the fact that, in this display, motion consists of
rigid displacement. As we shall see below, the ERD is indif-
ferent to object rigidity insofar as computing its output is
concerned. ’

2. Elaborated Reichardt Detector Computations and
Psychophysical Observations of Double-Composite Sine-
Wave Patterns: Rigid versus Nonrigid Motion

Figures 10 and 11 illustrate displays that each consist of two
sine-wave components with spatial frequencies of f and 3f,
where f = 0.75 cycle/dva. Both figures illustrate the same
location X size computations for ERD responses to these
displays as Fig. 9 showed for responses to random-bar pat-
terns.

DETECTOR OUTPUT
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" LOCATION (mvQ)

Fig. 10. Two-frame two-component sinusoidal stimuli in rigid mo-
tion. The two frames are shown at top; they consist of superimposed
sine waves whose spatial frequencies have a ratio of 3:1. The dis-
placement is /4 of the lower frequency, resulting in a rigid dis-
placement of the entire pattern. Responsesasa function of spatial
location x and ERD size Ax (left-center to right-center distance of
scaled receptive fields) are shown for ERD’s with the same parameters
asin Figs. 6 and 9. Despite the rigid displacement, small ERD’s (Ax
< 4 mva) indicate leftward motion, and large ERD’s (Ax = 6 mva)
indicate rightward motion, resulting in an ambiguous overall re-
sponse.
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Fig.11. Two-frame nonrigid motion. Same as Fig. 10, except that
sine-wave components are each displaced by one quarter of their re-
spective cycles. In this nonrigid displacement, the luminance pattern
itself changes from a peaks-subtract to a peaks-add pattern. Nev-
ertheless, ERD’s of all sizes correctly indicate rightward motion.

In the displays of Fig. 10, both sinuscidal components are
displaced, between frames, by the same amount of f7/2 rad,
i.e., by one quarter of the spatial cycle of the f component.
This results in rigid motion. However, the ERD’s give con-
flicting outputs. Small detectors tuned to the 38f component
indicate leftward motion; large detectors tuned to the f com-
ponent indicate rightward motion. In Fig. 11, the same
sine-wave components are used. However, this time the
components are each displaced by one quarter of their re-
spective spatial cycles, i.e., by f7/2 and fr/6 rad. This results
in nonrigid motion. All detectors indicate the same direction
of motion, even though the spatial pattern changes entirely
from frame 1 to frame 2 (from a peaks-subtract pattern to a
peaks-add pattern). Informal psychophysical observations
showed that the rigid display is indeed perceived as ambigu-
ous, with different parts of the display moving in different
directions, while the nonrigid display appears to have a con-
sistent direction of motion and, if anything, looks rigid.

The f + 3f demonstrations show that the ERD is not in-
herently sensitive to object rigidity. The predictive success
of the random-bar and the f + 3f simulations make it seem as
though the ERD decomposes a display into its spatial sine-
wave components. In particular, computations of ERD re-
sponses to two-frame random bar patterns (organized into
size-specific channels) suggest the feasibility of simple spatial
frequency analysis as a solution to the correspondence prob-
lem. Even though in this case spatial analysis does seem to
suffice, we have demonstrated previously,? and shall dem-
onstrate again below, that spatial-frequency analysis, by itself,
fails to predict motion responses; spatiotemporal analysis is
required. Specifically, we* demonstrated displays in which
the ERD correctly predicted the direction of perceived motion,
and a detector that tracks sinusoidal components from frame
to frame made incorrect predictions. The ERD does indeed
perform a spatiotemporal-frequency analysis of a x, ¢ stimulus
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display but only when the temporal-frequency components
are different or, if not, when the spatial-frequency components
are sufficiently different to stimulate nonoverlapping ERD
populations (see Table 2).

3. Elaborated Reichardt Detector (ERD) Computations
and Psychophysical Observations of Triple-Composite
Sine-Wave Patterns: The ERD Does Not Perform Spatial
Sine-Wave Analysis

Figures 12 and 13 show the results of computations for dis-
plays consisting of three sine-wave components, having spatial
frequencies of 2f, 3f, and 4f and amplitudes of 0.5, 1.0, and 0.5.
These three components can be combined in two ways. The
first, in Fig. 11, results in an amplitude-modulated grating
with a carrier grating of frequency 3f and a modulation fre-
quency f. The second, in Fig. 12, differs from an amplitude-
modulated grating only in that the 4f component is phase
shifted by =, or, equivalently, is sign reversed. The resulting
pattern is usually called a quasi-frequency-modulated grating.
In both displays, the displacement is rigid and identical
(slightly smaller than one half of the cycle of the central 3f
component). Yet the pattern of detector outputs is quite
different for the two displays. The quasi-frequency-modu-
lated grating gives rise to conflicting detector outputs in most
sizes of channels; the amplitude-modulated grating does not.
Again, these patterns of detector outputs are consistent with
informal psychophysical observations.

The triple-component computations show that, even
though the ERD is indifferent about the preservation of some
local detail as exemplified in the rigid/nonrigid display sim-
ulations, it does not invariably perform a global spatiotem-
poral sine-wave analysis of the display (like the GFA). Phase
relations between spatiotemporal-frequency components are
critical, both for the ERD’s and for perception, indicating that
the component spatial frequencies in these displays are not
perceived independently by ERD’s or the visual system. (Of
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Fig. 12. Two-frame, three-component sinusoids in an amplitude-
modulated grating displaced rigidly in the right. Parameters as in
Figs. 6 and 9; ERD’s of all sizes and at all locations have nonnegative
responses, indicating unambiguous rightward motion.
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Fig. 13. Two-frame, three-component sinusoids in a quasi-fre-
quency-modulated grating displaced rigidly to the right. Although
this grating contains exactly the same spatial sine-wave components
with the same respective amplitudes as in Fig. 12, ERD responses are
quite different. Except for the largest size (Ax = 16 mva), all de-
tectors have outputs of diferent signs depending on location, indi-
cating an ambiguous overall response.

course, the observed phase dependencies could be incorpo-
rated into the voting-combination rules of an elaborated GFA,
but this would merely be an ad hoc translation of ERD time-
domain computations to the frequency domain.)

Conclusions for location X size computations. Taken
together, these computations can be interpreted to mean that,
in two-frame displays, the ERD’s perform a form of primitive
feature matching, where the features are defined in terms of
whatever happens to match the spatial receptive fields. This
matching procedure is sufficiently sophisticated to resolve the
correspondence problem in the same way as the visual system
for the classes of displays considered here.

4. Two-Frame Sine-Wave Displays

Two-frame motion of spatial sinusoids was illustrated in Fig.
5(j). Some new predictions-can be derived analytically for
these displays. Let ¢(x, t) be a two-frame sine-wave display,
that is,

c(x,t) = [Lo + Ay sin(27fx — @1]m.(t)
+ [Lo + Az sin(27fx — @o)lma(t).  (34)

It can be shown that the term A;»(x) is given by

Aja(x) = A1A; sin(p; — ¢2)
= A1A4 sin(p). (35)

Here, ¢ is the spatial phase difference between the two frames.
Equation (35) assumes balanced receptive fields; Appendix
A derives predictions when the assumption is not made.

In Eq. (35), the dependence of ERD output on location x
has disappeared; ERD output depends only on the product
of the modulation amplitudes and the sine of the phase shift.
This is an extremely powerful prediction, because it must hold
no matter what shapes the receptive fields have or what
temporal filters the ERD has.
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Logically speaking, for rightward motion, 0 <¢; — ¢z <,
while for leftward motion, 0 < ¢3 — ¢1 < 7. That is, for
two-frame sine-wave displays it makes sense to define the
direction of motion as that corresponding to the shortest phase
shift. Since the sign of ERD output indicates direction of
motion, Eq. (35) shows that A;» always indicates the correct
direction.

Equivalence for ERD’s of w/2 + ¢ in two-frame sinusoids.
Equation (35) implies several powerful, testable predictions.
First, ERD output is identical for any two values of ¢ that are
gymmetric around 7/2, such as 4/15w (48 deg) and 11/157 (132
deg), and is maximal when ¢ = 7/2. Again, this is true for any
receptive fields. In particular, it is not necessary for this
prediction that spatial receptive fields be shifted by 7/2, as
in subunit Variant 2. Thus all ERD’s of all sizes have pre-
cisely the same response to these widely different displays.

A strong implication of Eq. (36) is that, provided their
phases are symmetric around 7/2, no ERD can distinguish
between two two-frame motion displays that differ in velocity
even by an order of magnitude. This prediction does not carry
over to visual perception. For example, the 48- and 132-deg
spatial-phase-shift displays described above are perceptually
quite different, with the large phase shift giving rise to a
clearly visible change and the small phase shift giving the
impression of hardly any change at all. Thus velocity dis-
crimination in this experiment cannot be based entirely on
temporally integrated outputs from an ERD but must involve
other computations, possibly in other channels or possibly in
direct access to output of a kind of subunit that differs from
ERD outputs in these two-frame displays. (When subunit
filters are the special 7/2 filters, then subunits are equivalent
or almost so to ERD’s; when filters are not so chosen, subunit
output is generally not very meaningful. Velocity discrimi-
nation is inherently difficult for ERD’s.)

In formal psychophysical tests of the symmetry prediction
with respect to direction (not velocity) discrimination, four
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Fig. 14. Data from a two-frame direction-discrimination experiment
with sinusoidal grating stimuli. The coordinates represent contrast
thresholds for 71% correct direction discrimination with frame-to-
frame displacements of 48 and 132 deg. The straight line represents
exactly equal thresholds. Data for four subjects are shown; each point
represents 2 X 500 trials in an interleaved-staircases procedure.
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subjects viewed displays 1 X 2 deg in viewing angle. Two
frames were exposed consecutively, each for 80 msec.
Threshold contrasts for left-right motion discrimination were
determined by interleaved up—down staircases. Figure 14
shows typical results for one experiment with spatial sinu-
soids, 1.5 cycle per degree of which were shifted either 48 or
132 deg between frames. Statistically equal contrast
thresholds for motion-direction discrimination were observed
with spatial phase shifts between frames of 7/2 — ¢ and /2
+ ¢, as predicted.? Even though the 48- and 132-deg displays
appear to move slowly and rapidly, respectively, motion-di-
rection discrimination is the same for both. The same sym-
metry in motion-direction discrimination was observed with
other spatial frequencies and phase shifts and with Gaussian
as well as square spatially windowed presentations. Similar
symmetry between 7/2 — ¢ and 7/2 + ¢ was reported by
Nakayama and Silverman,3” who also present compelling data
to support their contention that (1) motion-direction dis-
crimination and (2) the detection of moving stimuli (by their
subjects) involve radically different computations. The
identical response of ERD’s to two-frame sinusoids with dif-
ferent velocities suggest a third computation that is yet to be
discovered.

Three more two-frame sinusoid predictions. Second, with
the appropriate linking assumptions?6 it follows that contrast
threshold should depend on the square root of the reciprocal
of sin(¢). Here, contrast threshold is defined as the value of
A (A; = A,) at which criterion performance is reached. The
difficulty in testing this prediction is that the response of the
human motion discrimination system to contrast amplitude
saturates when contrast reaches only 2%.37 This extreme
saturation of responses to contrast makes testing quantitative
predictions based on different contrast responses extremely
problematical.

Third, it should not make a difference whether the ampli-
tude of the first frame exceeds that of the second or vice versa,
as long as the product of the amplitudes remains constant.
This prediction carries over into psychophysical predictions
without special linking assumptions and is borne out by our
psychophysical observations.

Fourth, more generally, when ¢ is fixed, and A; and A are
covaried such that their product remains constant, ERD
output remains constant. Again, with appropriate linking
assumptions,’® it follows that this constant-product rule
should also be found psychophysically. Again, the nonlin-
earity of the motion system’s contrast response makes testing
this prediction problematical.

C. Rigid, Continuous Motion

There is a paradox in the ERD vis a vis object rigidity. The
previous section ‘presents a situation in which an array of
ERD’s detects direction of motion better in a nonrigid than
in a rigid but otherwise identical display. However, for rigid,
continuous translations, subunits are well behaved in that
less-restrictive assumptions about the filters have to be made
to achieve equivalence between subunits and the ERD
(Subsections 3.B and 3.C). Specifically, for rigid displays the
# /2 spatial phase-delay subunit is always equivalent to a full
ERD.

Let ¢(x, t) be a rigid display, i.e.,

clx, t) = y(x — vt). (36)

J. P. H. van Santen and G. Sperling

Here, v is velocity and y(x) is the rigidly displacing spatial
pattern. The Fourier transform is given by

C(f, w) = T(NO(f + w), 37

where I'(f) is the Fourier transform of y(x). It can be shown
that

Yieft,3 = =i fr*(f)Sin(f)P(f)Rright(f)R *right (ND(—fo)df

= = Yright,3 (38)

The same result can be shown for the larger class of displays
whose Fourier transforms are of the form

C(f,w) = T'(HOlf + H(w)], (39)

where H(w) is the transform of an arbitrary movement func-
tion. For rigid displays, H(w) = w/v. This class includes
objects that undergo smooth shape transformations during
motion.

Equations (38) and (39) indicate that 7/2 spatial-phase-
shift subunits of the ERD are equivalent to the ERD with
respect to rigid displacements of arbitrary spatial patterns and
suggest that the full ERD, which tends to cancel out defects
of its subunits, would be well behaved even if the spatial and
temporal filters did not exactly satisfy the m/2 temporal and
spatial phase conditions of the subunits [Variants 1 and 2, Egs.
(2.1) and (2.2)].

6. CONCLUSIONS

This paper provides new results on some variants of the
elaborated Reichardt model. We have taken as our focal
model a slightly more general version than that of van Santen
and Sperling? in which infinite time averaging is replaced by
arbitrary temporal filtering. For certain applications, we
introduced one or more of the following auxiliary assumptions;
finite temporal integration—a weaker assumption than infi-
nite time averaging—net balancedness of excitatory and in-
hibitory areas of receptive fields, and separability of spatial
and temporal input filters. Although the linear components
of a model for one-dimensional motion perceptionin x, t are
remarkably similar to the corresponding operations for pat-
tern perception in x, y, the physical detectors are essentially
different because a motion detector at location x must be
concerned with events at all times ¢, whereas a pattern de-
tector’s interests are localized in both x and y.

A. Summary of Results

The following theoretical results concerning the elaborated
Reichardt detector’s response to one-dimensional movement
in x, t were derived: ‘

1. Under the assumption of temporal integration, subunit
output is equivalent to detector output (1) for all displays
when the temporal filter delays all temporal frequencies by
#/2 or (2) for rigid object displays with arbitrary motion tra-
jectory when the spatial filters have a constant spatial phase
difference of 7 /2.

2. The W-A detector,” when elaborated into a Rei-
chardt-type opponent scheme, is equivalent to a special case
of the ERD.

3. For any choice of spatial and temporal filters, output
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from' the substantially more complicated Adelson-Bergen
(A-B) detector?* is equivalent to output from the ERD. At
the subunit level, provided that both the temporal delay and
spatial receptive field filters have the 7/2 property, A-B out-
puts differ from ERD outputs by an additive constant, K.
The presence of K in the A-B variant guarantees nonnegati-
vity of subunit output, while the absence of K in the ERD
guarantees that the sign of subunit output indicates whether
motion is to the left or to the right.

4. A wide variety of temporal and spatial filters suffices
to guarantee that the temporally integrated ERD output will
indicate the correct direction of motion for a drifting grating
of any spatial or temporal frequency (nonaliasing).

5. For two-frame displays, temporal and spatial factors
are completely separable in the ERD output. Holding tem-
poral display parameters constant, ERD outputs depend
simply on Ays(x), the 2 X 2 determinant formed from the
magnitudes of spatial responses the two input channels to each
of the frames, at each spatial location x. Analysis of Ajo(x)
for two-frame displays and comparing this with visual re-
sponses shows that

(a) For two-frame random bar patterns, the ERD solves
the correspondence problem similarly to the way the visual
system does. The ERD performs neither individual bar
feature matching nor spatial sine-wave component matching.
Rather, it matches local patterns that have shapes similar to
its input receptive fields.

(b) For two-frame double-sinusoid motion, the ERD
has a larger output when each sinusoidal component moves
separately, nonrigidly, for its own optimal distance than when
the components move together rigidly.

(¢) For two-frame, triple-sinuosid rigid motion, the
phase relations between the sinusoids are critical in deter-
mining ERD response (and visual) responses, indicating the
essential nonlinearity of this motion computation.

(d) For two-frame sine-wave displays, output ERD’s
with balanced receptive fields are independent of spatial lo-
cation x and given by the product of the frame contrast am-
plitudes and the sine of the displacement angle. Equal con-
trast thresholds were predicted for detection of a slow move-
ment (displacement = 7/2 — ¢) and the symmetric fast
movement (displacement = 7/2 + ¢), 0 < ¢ < #/2. Similarly,
when unequal contrast amplitudes were assigned to the first
and second frames, equal thresholds were predicted inde-
pendent of the assignment. Both predictions were psycho-
physically confirmed.

B. Some Remaining Issues

First, the ERD does not explain certain phenomena that
might appear to be within its scope, notably the reported
doubling of threshold contrast in counterphase as compared
with drifting gratings.383? These are phenomena that involve
detection of motion stimuli, not discrimination of their di-
rection; the relation between detection and discrimination
mechanisms still needs to be clarified. Second, an ERD does
not compute the velocity of a display; velocity discrimination
requires other information than is computable even from ar-
rays of ERD outputs. Third, Nakayama and Silverman3’
observe a compressive nonlinearity in the input channels to
motion detectors that complicates the mathematics and
testing of ERD’s and other theories. Fourth, the connection
of the ERD with recordings made from direction-selective
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single cells has not been treated here because it is quite un-
clear. Finally, the ERD has been elaborated only for tasks
in which observers were required to report a single direction
of motion over a temporal interval. To deal with time-varying
changes in motion during the observation interval requires
further elaboration. In spite of its limitations, our results
establish the ERD is at once the simplest and the most pow-
erful of the mechanisms proposed for the human discrimi-
nation of direction of motion.

APPENDIX A: TWO-FRAME SINE-WAVE
RESPONSE OF ELABORATED REICHARDT
DETECTORS WITH UNBALANCED RECEPTIVE
FIELDS

This appendix outlines the implications of unbalanced re-
ceptive fields on the response of ERD’s to two-frame sine-
wave displays. An unbalanced receptive field is one that has
a nonzero output [Eq. (1)] in response to spatially uniform
illumination. A two-frame sine-wave display is defined by
Eq. (34):

c(x,t) = [Lo + Ay sin(@7fx — @1)]mi(t)
+ [Lo + Az 8in(27fx — @2)lmalt), (Al

We simplify the discussion by assuming that A; = A; = A.
Also, we assume that the left and right receptive fields are
equally unbalanced: U = f rien(x”)dx’ = § reigne(x/)dx’.
Without loss of generality, we let ¢; = 0and p2 =¢. Letx
denote ERD location. It can be shown that Eq. (35) now be-
comes -

App(x) = aA2sin(p) + BLoUA(L — cos ©)12 cos(x — ).
(A2)

Here, , 3, and vy are factors that depend on spatial frequency
f and on receptive field parameters but not on x or ¢.

Equation (A2) has the following consequences. First,
the value of A;o(x) varies with location, x. A;9(x) varies sin-
usoidally with x around a mean value of aA? sin(¢), which is
the (location-independent) response for ERD’s with balanced
receptive fields [Eq. (35)].

Second, the effect of the spatial variation of ERD output
on psychophysical responses depends on how responses are
combined spatially. Specifically, the contribution from the
spatially varying component may vanish if the combination
rule weighs peaks and troughs equally. This happens, for
example, if responses are integrated with respect to x. Onthe
other hand, if there is no exact cancellation of peaks and
troughs, then the spatial variation does have an influence. An
example is given by the maximum rule, in which case the
combined response becomes

Az = aA2sin ¢ + BLoUA(1 — cos ¢)'2, (A3)

Third, if the spatially varying component had an effect, the
effect would be (1) to introduce an asymmetry in the depen-
dency on ¢ and (2) to complicate the relation between A and
¢. As was mentioned in Section 5, Nakayama and Silver-
man3? and the present authors have no systematic departures
from symmetry of psychophysical responses around 7/2 £ ¢.
However, in these same experiments, significant departures
were found from the rule that contrast threshold should de-
pend on the square root of the reciprocal of sin(p); the ob-
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served relationship was somewhere between square root and
linear. The spatially varying component of the response
cannot account for failure of the inverse-square-root predic-
tion since a large spatially varying component would be ex-
pected to cause a significant symmetry between w/2 £ ¢.

The probable cause of the failure of the inverse-square-root
prediction is that motion receptors may have a nonlinear
contrast response. Is a nonlinear contrast response com-
patible with an ERD response that is symmetric in ¢ around
/2?7 1t can be shown that when the intensity transduction
nonlinearity is antisymmetric—transduces positive and
negative inputs with equal gains but opposite signs—and
when ERD responses are spatially integrated by the voting
rule of the model, then the ERD response is symmetric in ¢.
Thus, one can construct an ERD system that has precisely the
observed relationship between ¢ and A.
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