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7 A Brief Overview of Computational
Models of Spatial, Temporal, and
Feature Visual Attention

George Sperling
UNIVERSITY OF CALIFORNIA, IRVINE, CA, USA

Abstract

Some representative experiments that span over fifty years of research on
visual selective attention are reviewed here. They parametrically describe
spatial attention to locations in space, temporal attention to intervals in
time, and feature attention to particular visual features. The resulting
data are accurately described by a class of lean computation models (i.e.,
few estimated parameters) in which attention is a represented as a gating
(i.e., filtering) process. The models represent plausible brain functions utiliz-
ing components that represent basic neural transformations. Spatial, tem-
poral, and feature attention are supported by parallel, independent brain
processes that combine multiplicatively in the combinations so far tested.

7.1 Introduction

The recent celebration of the remarkable lifetime achievements of Prof.
Geissler (Lachmann & Weis, 2018) was also a stimulus to review one’s
own achievements. This succinct overview of attention experiments, and
the computational models that describe them, samples more than 50 years
of working with a series of wonderful collaborators—too many to list all
as co-authors. All examples are from published articles with citations and
links to the source articles for readers who want more details.

Selective-attention tasks. The experiments and phenomena considered
here, and for which we seek understanding and an explanation, are typi-
cally said to involve visual attention. What relates these phenomena is an
instruction to subjects to selectively pay attention to some aspect of a
visual stimulus—i.e., to selectively process only a fraction of the incoming
visual information. However, the verbal instruction, while convenient, is
not critical. Similar experiments can be conducted with nonhuman animals
that are taught that a particular cue requires them to selectively respond to
particular aspects of a display.

While we understand attention as an everyday concept, in the laboratory,
when we study attention, we consider it in terms of experiments that involve



subjects. Here we consider only human subjects but, again, it is a very good
exercise to see how the same experiment could be adapted to study attention
in other species. The experiments considered here consist of trials on each of
which a subject performs a specific task. A visual attention task consists of
visual stimuli, other stimuli such as attention instructions (often called
cues) that can be presented in any modality, responses that the subject
makes, and a reward structure—i.e., feedback to the subject about the
correctness or incorrectness of the response. Ideally, the feedback includes
a specific value (called utility) that is associated with each particular stimu-
lus-response combination (see, Sperling, 1984; Sperling & Dosher, 1986).

Some characteristics of the attention experiments considered here:

(i) For a particular condition—e.g., a particular exposure duration, all
the visual stimuli are chosen randomly from the same urn of
stimuli. What distinguishes the responses is the particular attention
instruction on a trial. The experiments are designed so that any sys-
tematic differences in response can be attributed purely to different
attention instructions and utility functions.

(ii) The instructions to the subject at the beginning of a block of trials are
quickly irrelevant, what governs behavior is the reward structure—i.e.,
the utility function for each trial.

(iii) The explanation of performance is a model, for experiments after
about 1980, a computational model.

A critical note on three related uses of the word attention: The primary use
of the word attention refers to an instruction cue to the subject that indicates
“selectively attend to X” and to the feedback utility function that defines the
meaning of the cue. (A selective-attention utility function assigns high-value
rewards to correct responses made to cued stimuli— e.g., to stimuli that
occur in a cued region or stimuli that contain a cued feature—and assigns
lower values to all other stimulus-response combinations.)

A second use of attention refers to aspects of a subject’s response, as in
“he succeeded in attending to X but failed to attend to Y”. For example, in
response to an instruction to shift attention from location X to location Y,
we can talk about the space-time trajectory of “attention” just as we can
talk about the space-time trajectory of the hand in response to an instruc-
tion to move the hand from X to Y. The trajectory of attention is the
region in space-time within which stimuli are better processed in accor-
dance with an attention instruction. An explanation for moving the hand
is not that there is a hand-movement trajectory in the brain, rather that
the brain interprets the instruction, computes representations of the starting
hand position and of the intended final hand positions, computes a trajec-
tory, and implements that trajectory with various muscle commands.
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Explanations of the underlying brain processes in response to a demand to
move attention are equally complex and are considered in sections 7.5–7.8.
To foreshadow, in the computational models to be described herein, the
demand for selective attention is implemented as the selective gating of
information at various stages of processing.

There is a third use of the word attention when we talk, for example,
about attention occurring at a particular stage or stages of processing. This
is an adjectival, figurative use of attention. It is a shorthand way of saying
that the brain, or whatever system is under consideration, responds differen-
tially and selectively in response to situational demands; it does not imply any
particular mechanism for accomplishing this. For example, in a spatially cued
reaction-time task, Posner (1980) argued that the attention cue facilitated
perceptual processing of the stimulus at the cued location; random-walk the-
orists (Smith & Ratcliff, 2009) argue that reaction-time facilitation typically
occurs at a later decision stage. Brain imaging studies indicate that selective
spatial attention can modulate responses of numerous regions in all parts of
the cerebral cortex as well as in midbrain nuclei (Nobre & Kastner, 2014). It
requires a very carefully designed experiment to focus the effect of selective
attention primarily on just one particular level of processing.

Finally, using attention as the name of brain processes is best avoided.
Explaining selective attention (behavior) with a selective-attention brain
process sounds suspiciously like a tautology. Even in a computational
model, in which what one calls processes doesn’t affect their computations,
using the same word for inputs and also for computations or their outputs
makes it impossible to talk cogently about the model.

7.2 Spatial Attention: Iconic Memory and Partial Report

Figure 7.1 illustrates the procedure and describes results of an early atten-
tion experiment (Sperling, 1960). This was a spatial-attention experiment,
but the emphasis of the study was (1) the demonstration that more letters
were available to a partial report than were available to a whole report,
and (2) that this implied a brief visual sensory memory that mostly
decays in less than one-half second. Neisser, in his classic book Cognitive
Psychology (1967), called it “iconic memory” and this term has survived.

In the partial-report experiment of Figure 7.1, the stimuli were hand let-
tered on cards, presented in a mirror tachistoscope, and the responses were
written by the subject, unlike the computer-generated stimuli and typed
responses that are common today. Therefore, immediate feedback of the
correctness of a response was impractical. A tonal cue was the attention
instruction to selectively attend to the indicated row. The bottleneck that
required partial report and selective attention was the number of letters
that could be retained in a short-term memory—now typically called
working memory—for a sufficiently long time to enable writing them
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down. Figure 7.2 is conceptual model that represents the memory processes
involved in the iconic memory experiment.

The first component in Figure 7.2 is Visual Information Storage (VIS) in
which the visual stimulus is stored iconically—i.e., essentially a retinotopic
pixel image. The decay of information in VIS is measured by the partial
report procedure (Figure 7.1), but this procedure cannot indicate the acqui-
sition rate of VIS. Weichselgartner and Sperling (1987) measured the entire
time course, rise and fall, of conscious visual persistence (versus informa-
tion persistence) of a brief flash of a high-contrast grating. Subjects
judged the grating’s perceived contrast at the precise instant an auditory
click occurred. The derived visual persistence for a subject with unusually
long-duration persistence (700 ms from beginning-to-end) is illustrated as
a function of time above the VIS component. Even this longest VIS is not
long enough to enable the subject to locate and write the requested row
of three or four letters. Reporting the letters from a brief flash, requires a
rapid extraction from VIS before it decays, and the transfer of the attended
letters to a Visual Short-Term Memory (VSTM), which, unlike VIS, has
slow decay and is relatively immune to subsequent visual stimulation.

Figure 7.1 Selective attention to a spatial region: The partial report procedure. To
initiate a trial, the subject fixates the fixation cross shown in the far left
panel, and then presses a button. After a foreperiod of 500 ms (blank
screen, not shown), the 12 item display flashes for 50 ms. Following a
variable delay from the display offset (from !50 to +1,000 ms), a ran-
domly selected low, medium, or high pitch tone sounds to indicate the
report of only the bottom, middle, or top row. The subject writes a
four-character response, guessing if necessary, in the answer sheet illus-
trated. The right-hand ordinate of the data graph illustrates the fraction f
of correctly reported characters in the cued row as a function of the cue
delay. The left-hand ordinate is the product 12f, the number of letters
from the 12-letter stimulus available to the subject from which the des-
ignated row (a random sample of the available letters) was reported. The
bar at far right indicates the fraction of 12 letters correctly reported in a
separate block of trials in which there was no cue and the subject simply
reported as may letters as possible of the whole stimulus (whole report).
(In part after Sperling (1960), Figure 2, p. 3, and Figure 8, p. 11; APA as
publisher, adapted by permission.)
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Acoustic confusions in visual partial reports. The reason for including an
auditory component in a model of a visual memory experiment is that sub-
jects make acoustic confusions in their responses, for example between B
and D, D and T (Sperling, 1960, p. 21). In fact, some subjects can be
heard vocally rehearsing the to-be-reported items. Most subjects,
however, rehearse subvocally. Acoustic confusions in experiments with
visual displays were subsequently studied extensively by Conrad (1964)
and by Sperling and Speelman (1970) who used visual stimuli that had
either confusable or distinct acoustic representations. Sperling (1968) pro-
posed a computational model of auditory memory that accounted for the
effect of acoustic confusability in terms of the mnemonic inefficiency of
repeating the same phoneme in the different confusable items (b,c,d,g,p,t,
v,z). In a brilliant study, Scarborough (1972) demonstrated that his sub-
jects’ could store different to-be-remembered items independently in
VSTM and in ASTM.

7.3 Post-Stimulus Noise Masking to Limit Iconic Persistence,
Verification by Auditory Synchrony Judgments

To measure the rate of transfer of items from VIS to VSTM it seems logical
to simply vary the exposure duration and determine how many letters can
be extracted at each exposure duration. However, because of visual persis-
tence (iconic memory) in the VIS component, the actual duration for which

Figure 7.2 The memory processes involved in partial report (iconic memory) exper-
iments. VIS is Visual Information Storage. The curve above VIS repre-
sents “visual persistence” (versus “information” persistence). VSTM is
Visual Short-Term Memory. The representation of the contents of
VSTM as a function of time, illustrated above VSTM, has a slower
rise and lower height than VIS indicating both slower acquisition and
a smaller capacity than VIS. Verbal rehearsal of the VSTM contents con-
verts the visual contents to a representation in Auditory Short-Term
Memory (ASTM). The initial acquisition slope of the contents-versus-
time representation above the VSTM component indicates that verbal
rehearsal occurs at a slower rate than the visual scan of VIS, but
ASTM has a larger character capacity. (Adapted from Figure 6, p. 26,
in Sperling (1963), Sage Publishing, by permission.)
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information is visual available may vastly exceed the exposure duration.
To resolve this problem, a post-exposure masking field is introduced
(Figure 7.3). By having subjects on some trials adjust an auditory click to
appear simultaneous with onset of visible letters and on other trials to
appear simultaneous with termination of visible letters, Sperling (1967)
showed that a post-stimulus masking procedure produced visual displays
in which letters were visible for a duration (the interclick interval) that
very closely approximated the duration from the onset of a visual stimulus
to the onset of the post-stimulus masking field.

Figure 7.4 illustrates a detailed flow chart of the brain processes that
were conceptually outlined in Figure 7.2 to account for performance in
partial-report memory experiments.

Different partial report strategies? The early information processing
experiments described earlier have several deficiencies that were corrected
in subsequent investigations. Because of the primitive nature of the appara-
tus, no immediate feedback after a trial was possible. Therefore this is a
Type 2 (versus a Type 1)1 experiment (Sperling, 1992; Sperling, Dosher,
& Landy, 1990). For the same reason, the different tonal cue delays were
run in different blocks. This raises the possibility that a subject could
adopt a different, optimal strategy in each block of trials. A mixed list
design in which any delay can occur randomly on any trial is necessary
to ensure that the subject’s strategy mix is the same, independent of the
cue delay. Gegenfurtner and Sperling (1993) investigated this possibility
by running a partial report procedure similar to Figure 7.1 in which there
were only two cue delays: short (zero ms from stimulus onset) and long
(400, 800, or 1,000 ms, depending on the subject). In different blocks of

Figure 7.3 The post-exposure masking procedure as used to enable accurate mea-
surement of the rate of information transfer from VIS (iconic memory)
to VSTM (visual working memory). The post-exposure masking field
overwrites the contents of VIS; thereby the time from the beginning of
the stimulus exposure to the beginning of the post-exposure mask is
the maximum time for which visual information is available for transfer
to VSTM. Typically, three letters can be transferred within 50 ms. (After
Figure 3, p. 24, Sperling (1963), Sage Publishing, by permission.)
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trials, the probability of the short delay was 0, 0.1, 0.5, 0.9, 1.0. Perfor-
mance was the same in all blocks indicating that, indeed, subjects employed
the same strategy in all cue delays: Fill memory with letters from an idiosyn-
cratic set of default locations until a cue to report is heard and interpreted,
then fill memory (VSTM) with letters from the cued locations.

A third deficiency of the original iconic memory experiments was that the
estimated duration of VIS was confounded with the times to interpret the cue
and to shift attention to the cued row. The shift-time and other characteristics
of the attention shift were quantitatively measured by Shih and Sperling
(2002), described next. A fourth deficiency is that the data were not rich
enough to enable the estimation of parameters in a minimal model of perfor-
mance (e.g., Figure 7.3) in the partial report procedure. The following exper-
iments provide the data for the first computational attention model.

Figure 7.4 Outline of a possible computational model of the brain processes
involved in the partial report procedure. The visual input is a 3×4
letter-and-number stimulus matrix, that is briefly stored in VIS. The
attention cue is high, medium, or low-frequency auditory tone that is
interpreted to direct the scan process to transfer the corresponding
row to VSTM. The content of VSTM could, in principle be converted
directly into a response, however, writing the response produces
visual interference with the contents of VSTM. Therefore, the contents
of VSTM are converted into auditory images either by vocal rehearsal
(V!Sp, visual representations converted to motor movements of
speech, the listened to) or by subvocal rehearsal (Sp!A, the motor
movements of silent speech are converted to auditory images to be
stored in ASTM, which has a greater and more durable capacity for
letters than VSTM. The contents of of ASTM are either spoken
(A!Sp, auditory images converted to motor movements of speech),
or rehearsed (re-entered into ASTM via Sp!A), or converted into
written responses. The conversion of auditory images to written
letters probably involves reactivation of the letter images in VSTM
(the dotted connecting line) and then using the Visual-to-Motor conver-
sion component (V-Mot) to write letters (Text). (Adapted from
Figure 4, p. 290, Sperling (1967), Elsevier, by permission.)
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7.4 Attention Reaction Time and the Window of Attention

This and next two sections describe the procedures for precisely measuring
shifts of attention and the brain mechanisms that implement these attention
shifts. We begin with an analogy, the grabbing response. Figure 7.5a illus-
trates an indirect procedure for measuring the reaction time of a motor
response without a clock capable of measuring short durations. A conveyor
belt is stacked with billiard balls so that each second ten balls pass an
opening that gives the subject access to the belt. Each ball has a number
painted on it. The numbers on the balls are random but the experimenter
knows the precise time at which each numbered ball is available at the aper-
ture. The subject is instructed that when a critical stimulus—e.g., the letter C,
appears on the screen he is monitoring—he is to reach in as quickly as pos-
sible to grab the earliest ball he can, and then to tell the number to the exper-
imenter. Although a numerical report may not occur until several seconds
after the grabbing response, it nevertheless indicates the particular time inter-
val during which the subject grabbed the billiard ball—i.e., the reaction time
of the grabbing response to within 1/10 second.

Attention reaction time, ART. An analogous grabbing response can be
used to measure an attention reaction time. A subject views two adjacent
streams: On the left, a stream of letters each one on top of the previous
one and, on the right, a stream of numbers, each one on top of the previous
one. A fixation point is in the middle (Figure 7.5b). The subject’s task is to
attend to the stream on the left until a target letter, C, appears and then to
switch attention to the stream on the right and attempt to report the adja-
cent numeral, typing it on a keyboard. In any case, the subject is to report
the earliest numeral that he/she was able to report after the concurrent
numeral. This is analogous to the grabbing response in Figure 7.5a although
in this case it is an attention grab of a numeral.

The rate of letter presentation was chosen to require the subject to pay full
attention to the letter stream in order to detect a target chosen, in different
blocks of trials, from among C, U, outline square. Typically, when numerals
in the numeral stream occur at 9 per second, the subject reports the third or
fourth letter after the simultaneous letter. The distribution of positions of the
reported letter defines the distribution of ART (switching attention from
monitoring the letter stream to grabbing a letter from the numeral stream)
illustrated as ART in Figure 7.5c. In other blocks of trials, the subject
merely presses a key as soon as he/she detects the target. This produces a con-
ventional motor reaction time distribution, illustrated as MRT in Figure 7.5c.
Evidently, it is possible to obtain as complete data about an “unobservable”
implicit attention reaction time as about a MRT, and for this letter “C”
detection task, ART and MRT are remarkably similar.

To specify a model, more data are better. Instead of requesting subjects
to report just the single numeral that was simultaneous with the target
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Figure 7.5 Measuring a temporal window of attention in the Attention Reaction
Time (ART) procedure: Theory, data, model. (a) The grabbing response.
Upon detecting the target “C” in a letter stream beneath the heading
“REACTION STIMULUS”, the subject grabs the first ball from the con-
veyor belt. The code on the ball indicates it’s position in the stream and
thereby the reaction time of the subject’s grabbing response. (b) A
sequence of stimuli in the attention switching-time analog to the grabbing
response. The subject fixates between two streams, letters on the left,
numerals on the right. His task is to detect the target letter (and to
report the earliest possible concurrent and subsequent four numerals
from the numeral stream. Complete feedback is given (see bottom).
(c) Reports from a preliminary set of trials in which the the target is



the letter “C” and the subject reports only one numeral. In ART, the
abscissa indicates the position of the reported numeral in the sequence
and thereby it’s time of occurrence (0 is the onset time of the numeral con-
current with target). The ordinate indicates the frequency of such reports.
In MRT (motor reaction time) the abscissa indicates the time in seconds
of a finger press, the ordinate indicates the frequency of that reaction
time. (d) Flowchart of the computational attention model. In the letter
input path, l(t) represents the luminance of the input stream of numerals
as a function of time; b(t) represents the output of a visual sensory store
that extends the visual persistence of each input numeral until it is over-
written by the subsequent numeral. In the numeral input path, δ(t) repre-
sents the occurrence of the target at time t = 0, τ, represents the time taken
to interpret the target and begin the process of opening an attention
window, the attention window function a(t) is arbitrarily chosen as a
second-order Gamma function produced by two consecutive exponential
decay filters each with time-constant α. Attention gating occurs at the ×
component where the processed input b(t) is multiplied (gated) by the
attention function a(t) to produce the attention-gated output c(t) =
a(t)b(t). (e) The attention function a(t ! τ). The dark rectangle within
a(t ! τ) illustrates the product c(t) for the fifth item i5 in the processed
13.4 items/sec input stream b(t) which is shown immediately below the
abscissa, just above the three slower streams. (d, continued). An integra-
tor computes the total area—the value vi of

R
ci(t) for each item i; a nor-

mally distributed noise sample εi,T with mean zero and standard deviation
σ is added to every item vi on every trial T. Items are then output in order
of vi, the item with the largest value vi is first. (f) The response data for
subject AR. The target for these data was the “outline square”
(a square surrounding whatever letter occurred at time 0), it is shown
to the right of the numeral presentation-rate in each panel. Ordinate:
pr(i), the proportion of reports of items at stimulus position i shown as
a function of stimulus position i (abscissa) for each of the four response
positions r (curve parameter). The larger-font numeral under the abscissa
indicates the strongest stimulus position (max vi). The presentation rate
(number of numerals per second) of items in the to-be-reported stream
is indicated in each panel. The right column of four panels represents
the output of the three-parameter model in (d). (g) Outcomes of the iBj
paired comparisons. When a stimulus item from position i is reported
in an earlier response position than an item from position j, it wins a
paired comparison competition. The results of all possible data competi-
tions are shown. The abscissa is i, the ordinate is iBj, the fraction of time i
was reported before j, the curve parameter is j. The top curve is the stron-
gest stimulus position in that condition, followed in strength-order by the
other positions. Insofar as the curves are laminar (don’t cross) a strength
model describes the data. ((a) is adapted from Figure 2.34, p. 2-57 in
Sperling and Dosher (1986), Wiley, by permission; (c) is adapted from
Figure 17.1, p. 351 in Sperling and Reeves, (1980); (b) is adapted
from Figure 1, p. 182, (d) and (e) are adapted from Figure 15 p. 195,
(f) and (g) are adapted from Figures 16 and 17, p. 197, all in Reeves
and Sperling (1986), APA as publisher, by permission.)



letter, in subsequent sessions, subjects were requested to report the four most
contemporaneous numerals in their correct order. Subsequently, the subject’s
four-numeral response was shown to on the display screen as it was pro-
duced, followed by a display of the most relevant six-numeral stimulus
sequence, thereby giving the subject complete feedback (Figure 7.5b). In a
block of trials, numerals were presented at just one of the four rates tested
(shown in panel inserts Figure 7.5f).

Figure 7.5f shows the complete results of the four-item report procedure,
the distribution of times of occurrence of the numerals reported in the first,
second, third, and fourth response position for subject AR with the target
“outline square.” According to the model (Figure 7.5d) detection time τ
for the outline square was 222 msec, whereas τ for the “C” target data
in Figure 7.5c) was 265 msec. The first numeral reported has the same dis-
tribution as when the subject reports just one (not shown). At the slowest
numeral rate, 4.6 items/sec, the subject reports the numeral occurring
immediately after the simultaneous-to-target numeral on about 80% of
the trials and the next-occurring numeral on the remaining trials. In the
second response position, the subject reports the +2 numeral on about
70% of the trials. Subsequent response positions have a greater spread of
reports. In blocks with faster numeral streams, the initially reported
numeral occurs later and later in the stream and the distribution of
reports becomes more variable, ultimately becoming quite chaotic at
numeral rates of 13.4/sec. The right-hand set of graphs in Figure 7.5f rep-
resents the output of the three-parameter model (Figure 7.5d) that was pre-
sented with the same display sequences as the subject.

No order information within an attention glimpse: The method of paired
comparisons. The subject was asked to report items in order of their occur-
rence in the stimulus. Does the subject have any knowledge of the true order
in which reported items actually occurred in addition to simply their
strength in memory? Using the method of paired comparisons, this
section shows that the answer to this question is “no”.

Strength in the model is determined simply by the probability of an item
appearing somewhere in the response, it is unconcerned with it’s order in
the response. Consider two response items taken from two stimulus posi-
tions of equal strength, one from an early position (i.e., before the position
of maximum strength) and the other from a later position. Is there a ten-
dency for the earlier-occurring item to be written in the response before
the later occurring item? A powerful, independent analysis of order infor-
mation in the data was undertaken with the method of paired comparisons,
a method that is widely used, for example, to compare the relative strengths
of chess or tennis players. Let i and j be the stimulus positions of two
numerals that appear in a subject’s four-item report. If the numeral repre-
senting position i appears before the numeral representing position j in
the subject’s report, i wins that particular competition and we say iBj
(i before j) on that trial. There are six competitions in each four-item
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response. All the possible competitions in all the responses in a condition
yield a set of iBj outcomes, the fraction of times the item in position i
was reported before the item in position j in that particular condition
(i.e., numeral rate and particular target). As item strength is measured by
the probability of an item appearing in the response, and order strength
is measured between items when both appear in the response, these two
measures could in principle yield two quite different strength orders.

The iBj data are shown for one target (outline square), one subject, and
all numeral rates in Figure 7.5g. The iBj model predictions are derived from
the same Monte Carlo trials that were used to generate the serial position
predictions. Within measurement error, the iBj curves in Figure 7.5g are
laminar (don’t cross) which means that a order-strength model can describe
the data. The derived order-strength is not significantly different from item-
strength, a single value of strength predicts both sets of data.

Extreme efficiency of the computational attention model. The model
shown in Figure 7.5d and 7.5e has only three parameters (detection-
interpretation time of the target τ = 222 ms, width of the attention
window a

ffiffiffi
2

p
= 188 ms, and σ, the added noise that describes how

much strength values must differ in order to produce a reliable difference
in order of report. There are 112 data points in the serial position graphs
plus 84 iBj data points yielding 196 data points for target outline square.
The data points for the other targets (C, U) are modeled by just one addi-
tional parameter τ, the detection-interpretation time for each target.
These two additional two parameters form a five-parameter model that
accounts 83% of the variance in 3 targets × 196 data per target = 583
data points. The two other subjects in this extensive experiment require
two more data points corresponding to detection times that vary with
the presentation rate of the to-be-reported stream. Predictions of their
data were equally good. While none of these predictions is perfect, the
predictions demonstrate that a very simple window-of-attention model
efficiently captures the essence of this huge data set.

Summary: Subjects were required to detect a target at location A and
then to switch attention to location B and report the concurrent or earliest
following events at B. The model of an attention glimpse that accounts for
their performance is equivalent to (1) the subject takes a mental photo of a
rapid stream of letters with a shutter (like the Compur Rapid camera
shutter) that opens and closes to admit light in proportion to the value of
the attention window a(t); subsequently (2) the subject reports the letters
in order of their intensity in the recorded image. The shutter begins to
open access to VSTM about 1/4 sec after the cue and then closes gradually
for a net exposure duration of about 1/3 sec. The subject has no knowledge
of of the order of events in the input sequence other than their strength in
the remembered image.

Although the window-of-attention seems like a simple concept, accord-
ing to Sperling and Weichselgartner (1995), the attention window actually
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is generated by three consecutive processes (Figure 7.6). The first attention
process is searching for the attention-shift target in the cue stream. Detect-
ing the target initiates the second attention process which is opening a
window to admit information to VSTM. The third process is closing the
attention window and preparing a motor response. The right side of
Figure 7.6 illustrates how a series of intended attentions states
(Figure 7.6a) is implemented (Figure 7.6b, c) and can be expressed in a
simple equation (Figure 7.6d).

7.5 Movements of the Spotlight of Spatial Attention:
Continuous or Discrete?

The previous section described the “movement” of subject’s attention (from
location A where a target was detected in a letter stream to location B where
items were grabbed from a numeral stream. This was modeled as a gate

Figure 7.6 Constructing a single attention window and a sequence of attention
windows. A0 is the initial attention state (alertness for the cue to
switch attention) which is initiated at time t0, the start of the trial.
The attention cue occurs at time ta; it is detected at time t1 at which
time the attention window begins to open to initiate the attention
state A1 and thereby to terminate A0. Very shortly afterward, attention
state A2 begins, closing the attention window thereby terminating A1.
The preparation of the attention-captured items for response output
begins in A2. (a) A sequence of intended attention states i, (!1,i,+1)
that have intended time-course Ei(t) and spatial distribution fi(x,y).
(b) The achieved (versus intended) time course of attention states is re-
presented by a cumulative probability distribution Gi. (c) Each new Gi+1

terminates the previous Gi thereby producing the sequence of attention
states shown in (c). (d) A simple expression represents the sequence of
visual attention states from birth to death: fi(x,y) represents the spatial
distribution of visual attention in attention state i, (Gi !Gi+1) represents
its time course. (Reproduced from Figures 2 and 3, pp. 505 and 507, in
Sperling and Weichselgartner (1995), APA as publisher, by permission.)
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opening to enable items to enter memory, but the process by which attention
moved from A to B was not explicitly considered. The movement of attention
could have been modeled as an attention spotlight in which stimulus infor-
mation is available only from locations illuminated by the spotlight. The
spotlight is initially pointed at A until a target is detected then continuously
moved to B without turning off during movement, but turning off 1/3 sec
after reaching B to prevent memory overload. Figure 7.7a illustrates this con-
tinuous spotlight model. In the Reeves and Sperling (1986) attention window
experiment (Figure 7.5), attention was implicitly modeled as a pair of non-
moving spotlights in which spotlight-1 was pointed at A to illuminate the
search array. Once a target was detected, spotlight-1 turned off and spot-
light-2 aimed at location B turned on with the time course of the gating-
attention function to enable items to enter memory (Figure 7.7b). This
experiment does not discriminate between the two models.

In a subsequent study that used the difference between MRTs and ARTs
to measure the duration of attention shifts as a function of the distance tra-
versed, Sperling and Weichselgartner (1995), found that the time course of
attention shifts was independent of the distance traversed. Independence of
distance suggests discrete versus continuous movement of attention.
However, Shulman, Remington, and Mclean (1979) had data that indicated
attention moved like a continuous spotlight. So, Sperling and Weichselgart-
ner (1995) undertook a reanalysis of the conflicting data.

Figure 7.7a, c shows the formal representation of the continuous spot-
light model; (Figure 7.7b, d) shows the discrete (sometimes called quantal)
spotlight model. The lower part Figure 7.7 deals with the Posner-style
experiment by three of his associates, Shulman et al. (1979). Subjects
are required to respond as quickly as possible to the flash of a spot of
light that can occur in one of four possible locations (Figure 7.7e). Prior
to a light flash (with a foreperiod, t), an arrow is shown that indicates
the location of the flash with the probabilities shown in Figure 7.7e.
Trials with the left-pointing arrow are interleaved with symmetrical
trials with a right-pointing arrow (not shown). The combined data, the
facilitation (speed-up) of the RTs due to the four cues are shown in
Figure 7.7g as if all arrows pointed left. For very brief foreperiods,
there is no benefit of the arrow cue; all flash locations produce approxi-
mately the same RT. That is the control condition. As the foreperiod
t increases, there is a benefit 4RT—i.e., a reduced RT relative to the
control condition. Figure 7.7g shows the 4RT (reduction in mean RT is
graphed upward) as a function time for the four locations. Although the
leftmost point occurs with probability 0.7, the greatest 4RT occurs at
the intermediate-left point. The authors interpreted this as indicating
that attention moves in the direction of the arrow but never reaches the
far location. Interestingly, there is an RT benefit even when the arrow
points left and the far right location flashes—i.e., where an RT “cost” is
expected.
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Figure 7.7 Continuous versus discrete shifts of spatial attention. (a) Continuous
spotlight controlled by a worker. (b) Pre-aimed spotlights, typically con-
trolled by a computer program. (c) A space-time plot showing light
intensity in one spatial dimension, x, as a function of time, t, as the spot-
light is moved by a human controller from location A1 to A2. (d) A dis-
crete (quantal) spotlight. A space-time plot showing light intensity in x, t
when a spotlight pointed at A1 is turned off simultaneously with the
turn-on of a spotlight pointed at location A2. Because spotlights have
thermal inertial, although the power turnoff is instantaneous, the light
at A1 fades out slowly; similarly, the light at A2 turns on gradually in
a fraction of a second, not instantaneously. (e) Schematic illustration
of four conditions in the go/no-go reaction-time experiment of
Shulman, Remington, and Mclean (1979). In each condition, a central
arrow (attention cue) was presented t ms before the flash of a spot of
light (the white dot) that occurred at one of four location with the indi-
cated probability (i.e., 0.7, 0.1, 0.1, 0.1). The subject’s task was to press
a button as quickly as possible upon detecting the light. (f) The tempo-
ral, t, and spatial x attention functions of Sperling and Weichselgartner
(1995) to account for the RT data. The vertical axes are 4RT, the
speedup (facilitation) of RT in the attention-cued condition (relative
to a control condition) due to temporal t and spatial x facilitation.
The horizontal axes are t, the time from the arrow attention-cue to
the stimulus flash, and space x (the four possible flash locations).
(g) The observed 4RT as function of x, t. (h) The 4RT predicted as



7.6 Spatial and Temporal Attention Combine Independently

Sperling and Weichselgartner (1995) propose a formal model for Shulman
et al.’s RT facilitation: The observed RT facilitation 4RT is the product of
a spatial attention function and a temporal attention function (Figure 7.7f).
The moving spotlight model requires that there be a diagonal portion
of 4RT(x,t) in the 3-D representation of RT facilitation—e.g., as in
Figure 7.7c. The quantal spotlight theory as implemented by the product
of a spatial-attention function and a temporal attention function requires
that all ridges be parallel to one of the axes, as indeed they are. When
the RT facilitation data are plotted in 3-D, it is obvious that attention
facilitation by the arrow cue has a spatial and a temporal component
that act independently. The lack of a diagonal ridge in the 3-D RT
facilitation plot together with the ridges perfectly parallel to the axes is
unambiguous confirmation of a discrete attention-movement model for
data that, without a formal model, were originally incorrectly interpreted
as supporting a continuous attention-movement model.

A curious aspect of the data is the decline of temporal facilitation at the
longest interval. This probably occurs because there are six equally likely
foreperiods and a 0.15 proportion of catch trials with no light flash. When
the target light flash has not occurred by the time the sixth longest foreperiod
has passed, the probability of a catch trial has increased from 0.15 at the start
of the trial to > 0.51 during the sixth foreperiod; this hazard naturally makes
observers cautious, and consequently slower at the sixth foreperiod.

Neural implementation of the quantal attention model (Figure 7.8). In the
course of practice for an attention experiment, and in the course of real-life
experience, a subject learns to respond to a particular cue with a particular
state of attention, here instantiated as a set of weights that selectively
control the transmission of information between two levels of neural process-
ing, analogous to the attention gate in Figure 7.5d. In a spatial attention
experiment, each to-be-attended location corresponds to locations illuminated
by a spotlight or combination of spotlights illustrated in Figure 7.7b. During
practice trials, the subject learns the appropriate distribution of spatial pro-
cessing resources for each attention cue. Learning consists of creating a cue-
dependent set of weights—i.e., a template of weights αi in Figure 7.8, that
controls the transmission of neural signals between two levels of processing.

We know from anatomy that all sensory pathways from the midbrain
and higher, are two-way—there are as many neurons that transmit in the
reverse as in the forward direction. From fMRI observations, we learn

the product of the spatial and temporal RT attention functions shown in
(f). (Panels (a), (b), (e) Copyright G. Sperling, by permission; other
panels from Figures 1, 4, 5, pp. 504, 510, 511 in Sperling and Weichsel-
gartner (1995), APA as publisher, by permission; colored version of this
chapter: http://www.sowi.uni-kl.de/lachmann/sperling.pdf).
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that these neural feedback pathways are indeed used, that attention-driven
signals from the frontal lobes exert effects all the way to the midbrain. So,
even in experiments designed to focus on one particular level of processing,
neurons at many levels are likely to be involved. The representations in
Figure 7.8, and in the various attention models considered here, are concep-
tual simplifications of more complex brain processes.

7.7 Two Consecutive Attention Events

The examples up to this point have been concerned with a single attention
glimpse. What happens when the subject reports from two successive atten-
tion events? In the case considered here, the subject is instructed to attend to
a single event but is unable to gather the required information from that
event and so is implicitly required in a report from two consecutive attention

Figure 7.8 Learned templates αi for the control of attention as represented in a
neural network architecture. The attention weight of each item in a tem-
plate (indicated by the gray area) determines the amount of control
signal passed to the gates (triangles) between neural process(n) and
process(n + 1). An Attention Control Process implements the changeover
from one learned template αi to another αj with a time course as defined
in Figure 7.7f. Whereas in a cleverly designed experiment, control may
be exerted primarily at a single level of processing, in most situations,
many levels simultaneously come under attention control. (Reproduced
from Figure 14, p. 527 in Sperling and Weichselgartner (1995), APA as
publisher, by permission.)
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events. Figure 7.9 shows the procedure and data from Weichselgartner and
Sperling (1987) who’s subjects viewed a rapid stream of digits and were
required to report a target numeral and the next three numerals from the
stream—i.e., to report four items. Targets were either a numeral surrounded
by an outline square or a numeral that was brighter than the others. The his-
togram of reported digits’ times of occurrence is clearly bimodal. The first
mode consists of the target and the following item, the second mode is virtu-
ally the same as in the Reeves and Sperling (1986) attention reaction time
experiment, consisting of items clustered around 300–400 ms after the
outline square target, and 400–500 ms following the highlighted numeral
target. As shown in Figure 7.9b, this subject was able to perfectly identify
to which attention glimpse (one or two) the reported item occurred. These
data inspired the attention blink experiments (e.g., Raymond, Shapiro, &
Arnell, 1992) that investigate the circumstances under which subjects can
and cannot report items that follow closely in a rapid stream (RSVP).

7.8 Tracing the Dynamic Trajectory of an Attention Shift

Donald Glaser who shared an office with my undergraduate adviser (Cy
Levinthal) was awarded a Nobel prize for inventing the bubble chamber,
a significant improvement over the Wilson Cloud Chamber for tracing

Figure 7.9 Successive attention glimpses. Top: A rapid stream of items (10/sec) from
which a subject attempts to report the indicated target item (“2” sur-
rounded by an outline square in (a), “8” highlighted relative to other
items in (b)) plus the next three items. (a,b) The abscissa represents the
time t of occurrence of items. The target item occurs at t = 0. The ordi-
nate indicates the probability of report of items occurring at time t. The
symbols indicating the response positions of the four reported items
within the response are indicated in the insert; the solid curve connecting
filled squares is the cumulative sum of all reported items. Individual data
are shown for two subjects. The reported items fall into two groups. The
first group of typically two items is centered around the target item, the
second group of items has the same distribution as those reported follow-
ing a cued shift of attention (e.g., Figure 7.5c and Figure 7.5f(9.2)).
(b) One subject’s self-report of the group (1 or 2) from which an item
was retrieved is shown by the heavy lines. (Adapted from Figure 2,
p. 779 in Weichselgartner and Sperling (1987), AAAS, by permission.)
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the trajectory of subatomic particles. Many years later, he became inter-
ested in visual motion perception, we became friendly, he attended AIC
conferences, and there I demonstrated to him that tracing the trajectory
of attention involved a very similar process to tracing particles in the
bubble chamber. To trace the trajectory of attention, one fills a space-time

Figure 7.10 (a) Hypothetical trajectory of an unknown subatomic particle that
entered the opening of a Glazer bubble chamber (an x,y,z cube)
which was embedded in perpendicular magnetic and electric fields.
Dots indicate microscopic bubbles produced where the entering parti-
cle interacted with water molecules; two splits into component parti-
cles are visible. (b) Space-time (x,y,t) cube of consecutively displayed
letter arrays. The few letters a subject can report represent the space-
time trajectory of attention. ((a) Modified from Figure 1, p. 261 Shih
and Sperling (2002), APA as publisher, by permission; (b) Copyright
G. Sperling, by permission.)

Figure 7.11 Filling an x,y,t cube filled with letters to measure the x,y,t trajectory of
attention. (a) A sequence of 15–21 3 × 3 stimuli. (b) The time course of
stimulus exposures. (c) Time course of the tonal cue (schematic). (d)
The set of possible tonal cues (duration 200 ms). Procedure: In response
to a tonal cue to shift attention, the subject reports the earliest possible
three letters from the cued row (top, middle, or bottom). The three
reported letters (from among the "135 letters presented) are analogous
to the bubbles in the bubble chamber; they represent the space-time tra-
jectory of attention (After Figure 3, p. 265 in Shih and Sperling (2002),
APA as publisher, by permission.)

Models of Visual Attention 161



cube with letters (Figure 7.10). Figure 7.11 illustrates Shih and Sperling’s
(2002) rapid sequence of 15 to 21 3 × 3 letter arrays. A subject is instructed
to maintain fixation at the middle of the array. At a random time during the
sequence, a high, middle, or low frequency tone is presented, and the
subject attempts to report the letters in the indicated row from the stimulus
that was concurrent with the tone. After the response, the subject is shown
a comprehensive feedback display including the number of points earned on
that trial—the closer in time the reported letters are to the target array, the
more points earned. The letters that the subject actually reports reveal the
trajectory of attention.

Figure 7.12 shows the average responses for 7,376 trials of one subject in
the attention trajectory experiment. Attention shifts from the fixation point
to the top, middle, and bottom row with almost the same time constant,
and it shifts simultaneously to all locations. Further analysis showed that
letters reported from the different locations within a row are virtually
independent—e.g., reporting a letter from the +250 array in the far left posi-
tion does not make it more likely that the reported letter in the center
position on that trial will also be from the +250 array versus the +450 array.

The data in Figure 7.12 provide a remarkable confirmation of the
quantal spotlight model (Figure 7.7b). Where a spotlight is pointed does
not influence how long it takes to switch from the current spotlight location
to the next spotlight location. In terms of the attention model in Figure 7.6,
the subject is initially in the attention state of alertness for the tonal signal
and remains in that state until the tonal signal is detected and interpreted.
There are three possible subsequent states, open the attention gate to admit
letters into short-term memory from the top, middle or bottom stimulus
row. According to Figure 7.8 (the neural template instantiation of the spot-
light model), there is no a priori reason for any of these gate openings to
differ significantly in their temporal characteristics, even though the
middle row does not require a vertical shift of attention. The quantal trajec-
tory of attention is strikingly different from the sampled continuous trajec-
tories of particles in the Glaser Bubble Chamber.

Dynamics of attention. Summary. The ART experiment illustrated that
ARTs can have a very similar distribution of latencies as MRTs. The
gating model for temporal attention showed that the window of attention
began to open about 1/4 sec after a cue to shift attention, and that the atten-
tion window remained open for about 1/3 sec. The analysis of spatially cued
RTs showed that a shift of attention corresponded to turning a spotlight off
at the initial location and turning a differently directed spotlight on at the
second location. In a further analogy with spotlights, the distance between
the points at which spotlights are directed is completely irrelevant to the
dynamics of the switch from one spotlight to another. The analogous
property—independence of distance traversed—was observed for attention
by comparing MRTs and ARTs. Independence of distance traversed also
observed in the letter-chamber experiment in which tones of different pitch
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Figure 7.12 Full 3-D-representation of three trajectories of visual attention in
response to tonal cues to—as quickly as possible—shift attention to
the top, middle, or bottom row. Each row indicates responses to just
one of the three tonal cues. Each column indicates the response
letters the subject wrote in just one of the three response positions:
left, center, and right. The curves represent that proportion of response
letters reported from a display that occurred at the indicated “critical
time”. (The critical time of a display is the midpoint of the interval
during which it is visually available—i.e., the midpoint of the time
between the onset of the display and the onset of the following
display.) Insert at top right identifies different symbols for the different
rates of stimulus presentation in terms of the SOA (stimulus onset
asynchrony, the time from the onset of one display to the onset of
the next); 100-1 and 100-2 refer to the 100 ms SOA stimuli before
and after extensive practice. Curves are best-fits from a model
similar to that in Figure 7.5d. The overlap of the data within a panel
and the similarity of the response curves between panels indicate
that attention shifts to the top, middle, and bottom rows with the
same temporal dynamics, and that it shifts simultaneously to each sti-
mulus location (left, center, right)—i.e., there is no left-to-right atten-
tion scan. (Reproduction of Figure 12, p. 266 in Shih and Sperling
(2002), APA as publisher, by permission.)



cued attention shifts to different locations. Whether attention remained at the
initial location (middle row, zero distance traversed) or shifted to a different
location (top or bottom row) made no difference in the dynamics of the shift.
And, although items within a row are typically read from left-to-right and
reported from left-to-right, attention shifted concurrently to all items in the
to-be-attended row. The experiment on two attention glimpses was consis-
tent with the aforementioned and further showed that two consecutive atten-
tion episodes follow after about 1/3 sec.

Saccadic eye movements typically present the visual system with three
new images per sec. All the earlier experiments were conducted without
intentional eye movements, but the dynamic properties of attention that
were observed seem perfectly in tune with the dynamics of saccadic eye
movements. It seems quite likely that visual spatial attention evolved to nor-
mally coordinate with eye movements, and perhaps also vice versa. This
concludes the analysis of the dynamics of attention, the subsequent sections
deal with the filtering properties of selective attention.

7.9 The Attention Operating Characteristic

In the experiments considered so far, subjects attended to one area or one
instant in time and attempted to ignore everything else. When a subject
attempts to perform two tasks concurrently, how does performance
change as the attention is selectively allocated to one task or the other or
equally to both? Historically, the two ways of investigating performance
in multiple tasks are illustrated by two search tasks, searching for a
target in area A, searching for a target in area B. In a compound task,
the search is for a target that can occur in either A or B; in a concurrent
task, the search is for two targets, one in A and one in B (Sperling and
Dosher, 1986). The compound task has greater uncertainty (noise) than
either of its component tasks, therefore, even an ideal observer has a
deficit. Therefore, to determine that a human observer’s deficit also has
an attentional component requires an ideal observer model. This consider-
able complication is bypassed in concurrent tasks. Examples: Driving a car
while listening to the radio, driving while texting on a smartphone.

The prototypical example of visual spatial attention that is considered
here uses a search task and stimuli generally similar to those of the previous
experiments herein. Subjects search the rapid stream of stimuli (Figure 7.13)
with attention directed primarily to the inside or the outside or equally to
both streams to find the two target items in an embedded critical array,
one inside target, one outside target. In control conditions the subject
search for only one target. All control conditions were designed to be
approximately equally difficult so that difference between concurrent con-
ditions could be attributed to the compatibility of the two tasks.
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Figure 7.13 shows the data of one practiced subject. In Figure 7.13b
(noise-masked, same-size letter in inside), performance is close to the inde-
pendence point (the corner of the embedded rectangle where there is no
loss in dual- versus single-task performance). When attending primarily to
inside or outside, in this condition, the subject does as well on the primary
task as in the control condition, and has impaired but still good performance

Figure 7.13 Attention operating characteristics, AOCs, determined for three different
search arrays. Subjects view a rapid stream of 20–25 arrays that are com-
posed entirely of random letters except, in the middle of the stream, there
is a target array (shown) that has one numeral in the inside group and
another numeral in the outside group. (a) The inside letters are much
smaller than the outside letters. (b) Inside letters are the same size as
outside letters but masked by a noise character. (c) The role of letter
and numbers is reversed only in the inside where the target is a letter
among numerals. The task is to detect both targets. For each set of
stimuli, each of three attention conditions was run in a homogenous
block of trials: Most attention outside, equal attention to both, most
attention inside. In control blocks, the subject reported only the inside
(or only the outside) target throughout the entire block. Data are
shown for one subject: the percent of correct detections in attention con-
ditions (open circles) and correct detections in control conditions (filled
points on axes). The intersection of the lines from the control conditions
represents the independence point, where tasks are performed perfectly
without interference. The solid lines are the experimentally determined
AOCs. The dashed lines are straight-line fits. The closer the AOC lies
to the independence point, the more compatible are the two concurrent
search tasks. The dotted line connecting the two control conditions in (c)
represents the performance expected when the subject performs only one
task on a trial and flips a coin that has probability p, 0 # p # 1 to deter-
mine whether to do task 1, otherwise do task 2—i.e., total incompatibil-
ity. (After Figure 2.15, p. 2–28 in Sperling and Dosher (1986), Wiley, by
permission; originally from Figure 1, p. 216 in Sperling and Melchner
(1978).)
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on the secondary task. By analogy to driving and listening to the radio, giving
primary attention to driving would leave driving unimpaired even when the
radio is playing, listening would be somewhat impaired.

Figure 7.13a shows that searching for small targets on the inside and
large targets on the outside are considerably less compatible tasks than
searching for the same-size targets in both locations (Figure 7.13b). Even
when attention is directed mostly to one location, there is a performance
deficit at the attended location relative to the control condition.

Figure 7.13c shows data from the most extreme case, total incompatibility
when searching for a numeral among letters in the outside location and a
letter among numerals in the inside. The data fall nearly on the line represent-
ing an arbitrary choice on each trial of which single task to perform in the
dual task experiment. The deviation above the line in attending to the
inside task (detect letter among numbers) suggests that the subject can
perform slightly better on the overlearned detect-a-number-among-letters
task than expected from the fraction of resources devoted to that task. This
situation represents the extreme case in which the two tasks are so incompat-
ible that while performing one, the other is impossible. To perform in a con-
tinuing dual task situation, one would have to alternate attention between the
tasks. For some persons, driving and texting might represent such an extreme
situation. Rapid alternation between the tasks would enable some degree of
joint average performance, but at any given moment, only one of the two
tasks can be performed. Task alternation would involve the dynamics of
attention switching that were considered in the previous sections.

Three additional facts. (1) When the two targets in the incompatible dual
task (Figure 7.13c) do not occur in the same display, performance recovers
to control condition levels when the SOA (time between the onsets of the
two target-containing displays) is 240–480 ms. This task-switching time
(from detecting target of type 1 to detecting target of type 2) perfectly
matches the attention reaction time ART data in Figure 7.5c, which mea-
sures the switch from searching for and detecting a target in one stream
and then “grabbing” an item from an adjacent stream. (2) When only a
single target frame is presented and followed by a noise frame (at the
same SOA as in the rapid streams), the data are statistically identical
(unpublished). (3) The AOC is isomorphic to the ROC (receiver operating
characteristic of Signal Detection Theory (Sperling, 1984; Sperling &
Dosher, 1986). In conventional ROC graphs the “conventional origin”
(worst performance) is at the lower right whereas, in AOC graphs, the
origin is, as usual, at the lower left.

7.10 Resources and Utility in Dual-Task Performance

The AOC Figure 7.14 illustrates the possible outcomes when two tasks
compete for the same limited resource. Competition for limited resources
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is universal, and so are the algorithms that describe it. A simple example
that applies universally is illustrated competition in Figure 7.14 which illus-
trates a limited time resource in the case of two overlapping classes, one
from noon to 3:00 p.m., the other from 2:00 to 4:00 p.m. The shared
resource, needed for both classes, is the overlap time from 2:00 to
3:00 p.m. How a student allocates this resource to each class depends on
the utility function: Getting the highest average grade requires a different
allocation than passing both courses, i.e., getting the same, maximum
grade in each course. This example illustrates one important reason to
specify an explicit utility function for subjects, rather than to simply
telling them, for example, to allocate 90% of your attention to task 1
and 10% to task 2.

Strategy microprocesses: Alternating versus sharing. In the classroom
Attending Operating Characteristic example, the shared resource, time,
was divided between the overlapping classes on every day. Suppose that
both classes met for 15 days during the term. To get the maximum
average grade, the student has to attend all of Class-2 so the strategy is
the same whether the classes occur just once or many times. However, to
pass both courses with a grade of 80%, the critical resource, the

Figure 7.14 Resource allocation in dual attention tasks: The classroom attendance
example. (a) Class-1 is offered from noon to 3:00 p.m., Class-2 is
offered from 2:00 to 4:00 p.m., a student needs to attend both. The
strategy is to attend Class-1 until time tc, then to quickly switch to
Class-2. (b) The AOC, the fraction of the total class time the student
spends in each class as a function of tc. Assume the grade achieved in
each class is directly proportional to the fraction of time attended.
The diagonal lines are equi-utility contours that represent the average
grade (assuming the two grades are weighted equally) associated with
that point on the graph. Switching at 2:00 p.m., yields the highest
achievable average grade, 83%. (c) Assume that grading is pass-fail.
A utility functions divides the graph into pass and fail regions that
depend on the passing grade. The highest passing grade that still
enables the student to pass both courses is 80% which is achieved by
switching classes at precisely 2:24 p.m.—i.e., by attending 80% of
each class. (After Figure 2.2, p. 2–8 in Sperling and Dosher (1986),
Wiley, by permission.)
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overlapping hour had to be shared 36/60 for Class-2 and 24/60 for Class-1.
Whereas this division was accomplished by switching daily at 2:24 p.m., it
could also be accomplished by attending all of Class-2 (switch at 2 p.m.) on
three-fifths of the days (e.g., Mon, Wed, Fri) and all of Class-1 (switch at 3
p.m.) on the remaining days (Tue, Thu). Conventionally, this alternating
strategy is called switching.

Contingency analysis. Switching and sharing strategies in the classroom
example can be distinguished by looking at performance on test questions
that ask about the material presented during the overlap hour, the shared
resource. Suppose tests in each class always ask at least one question about
material that was presented at random times in the overlap hour. Except by
chance, the alternating student will never answer both questions correctly
because he was never in both classrooms on the same day. However, the
sharing student will have a three-fifths chance of answering the question
from Class-2 and a two-fifths chance of answering the questions from Class-1.

Attending two classes on the same day is analogous to a a subject making
two responses in a dual-task experiment. It makes possible some very useful
analyses. Consider, for example, a 2 × 2 contingency table (Table 7.1) an
alternating student would be expected to exhibit a perfect negative correla-
tion, whereas a sharing student would exhibit complete independence. When
this contingency analysis was applied to the dual task divided attention data
in Figure 7.13, the major mechanism for dividing attention was switching. In
the classroom example, alternation occurred between two states: “Attend all
of Class-1” and “Attend all of Class-2”. For the data in Figure 7.13, Sperling

Table 7.1 Contingency table for the joint distribution of responses in tasks 1 and 2
of a dual task experiment. P1 and P2 are the probabilities of correct per-
formance; the probabilities in the cells represent independent perfor-
mances in Task 1 and 2; K is an indicator of the deviation from
independence. A negative K indicates a negative correlation between
performances in the two tasks, typically produced by alternating the
access to a shared resource from trial-to-trial between task 1 and task
2 (“switching”). (After Table 1, p. 317 in Sperling and Melchner
(1978), AAAS, by permission.)
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and Melchner (1978) reject the hypothesis that the alternation occurs
between just two states, but the data are not rich enough to yield a more
detailed analysis. One methodological conclusion, demonstrated repeatedly
earlier, is that obtaining multiple responses on each trial makes possible anal-
yses that would otherwise be impractical or impossible.

7.11 Using Ambiguous Motion Displays to Measure
the Amplification of Attention

Figure 7.13 illustrates two ambiguous motion displays. The motion in these
stimuli is invisible to the first-order motion system, which computes motion
on a space-time map of local Weber contrast, a quantity that varies from
!1 to +1 that is often mistakenly called luminance. That is, all the
stimuli in these experiments have been calibrated to be equiluminant for
(and therefore invisible to) the first-order (Fourier) motion system (e.g.,
Anstis & Cavanagh, 1983; Lu & Sperling, 2001a). However, motion in
these displays is easily perceived by the third-order motion system which
computes motion on a space-time map of salience, i.e., a salience field in
which areas that are perceived as figure versus areas that are perceived as
ground are assigned different values (Lu & Sperling, 1995, 2001b).

In the stimulus of Figure 7.15a, the saturated green stripes in frames 1, 3, 5
differ more from the yellow background (which consists of an equal mixture
of red and green) than the unsaturated red stripes, and therefore the green
stripes have higher salience. In frames 2 and 4, the areas of high-contrast
texture have greater salience. Therefore, when these frames follow on top
of each other in rapid succession, motion from right-to-left is perceived
between these consecutive high-salience areas, as indicated in the figure. In
the stimulus of Figure 7.15c, the color grating’s stripes are of equal saturation
and therefore of approximately salience. Typically, the perceived motion
direction, if any, of these stimuli is ambiguous. However, Lu and Sperling
(1995) showed that attending to a feature causes that feature to be more
salient in motion paradigms. When the subject is instructed to attend to
green and to follow the motion of the green stripes in the stimuli of
Figure 7.15c, motion is perceived from right to left, just as in Figure 7.15a.
Attention to the color green has increased the salience of green. Note that
attending only to green stripes without automatic attention to the texture
would yield ambiguous motion; it is the combination of the high salience
green with the high salience texture that produces consistent right-to-left
motion in these stimuli. Similarly, in the stimulus of Figure 7.15c, attending
to the red stripes produces perceived motion in the opposite direction from
attending to green.

Blaser, Sperling, and Lu (1999) varied the relative saturation of the red and
the green stripes in stimuli like those of Figure 7.15 over the full range. In
some stimuli, red was more saturated (red advantage) and others the green
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Figure 7.15 Manipulating color salience by varying color saturation. (a,c) Two
ambiguous equiluminous motion displays, one in which the color
saturation of the red component of the red-green color grating is
low, another with a equally saturated red and green components. A sti-
mulus consists of a single grating (color or texture); the numbers rep-
resent the sequence in which the stimuli are displayed one on top of the
other. The lines represent the direction (in space and time) in which the
stripes of highest salience in each successive grating are correlated to
produce apparent motion. With neutral attention (no instruction to
attend to a particular color), the stimulus sequence (a) produces appar-
ent motion to the left whereas (b) is ambiguous. Attending to red or to
green in (a) or (b) increases the salience of the attended color by about
25% and thereby increases the tendency to perceive apparent motion
in the indicated direction. (b,d) A graphical representation of the mag-
nitude of saturation (difference of color from the neutral yellow back-
ground) of the stripes in the chromatic grating. (After Figure 1,
p. 11682 in Blaser et al. (1999), Copyright (1999) National
Academy of Sciences, USA, by permission; colored version of this
chapter: http://www.sowi.uni-kl.de/lachmann/sperling.pdf.)



was the more saturated (green advantage). Subjects judged the direction of
apparent motion under three attention conditions: First a neutral condition
(no attention instruction given), then sessions were conducted with attention
to a particular color, and, finally, sessions were conducted with attention to
the opposite color. In each attention condition, the subject viewed the stimuli
from four distances, beginning with the nearest, then doubling the distance
three times to produce visual stimuli of 0.5, 1, 2, and 4 cycles/deg. The
data in Figure 7.16 show that the perceived direction of the ambiguous
motion stimulus depends on the attention instruction. The exception is that
two of the three subjects could not perceive consistent stimulus motion in
the smallest stimuli—i.e., at the furthest viewing distance.

All the data in Figure 7.16 are very well described by a simple motion
model (Blaser et al., 1999, Figure 3, p. 11684). The input to the motion
computation is salience as a function of space (x) and time (t). Salience is
equal to one for the local areas of greatest texture contrast and for color
areas of maximum saturation, and is proportional to texture contrast and
to color saturation in other local areas on a scale (0,1), where zero is the
salience of the yellow background. The input is multiplied by two
factors: (1) a spatial filter that determines how the input is reduced as
viewing distance increases and (2) an attentional gain factor that is 1 for
neutral attention and achieves the values shown in Figure 7.16 for red
and green attention—i.e., red gain is a factor of 1.29, green attention
gain is 1.46 for the expert observer shown in Figure 7.16. Finally, noise
is added before the motion computation. A subject’s model parameters
are the same for the four viewing distances, three attention instructions,
and five values of red-green stimulus red advantages, and the model
accounts for 99% of the variance of the data.

Salience versus appearance. Insofar as apparent motion is concerned,
dull red stripes of a stimulus under red attention behave like more
intensely saturated red stripes under neutral attention. This is due to an
attention-produced change in salience, not to a change in appearance.
For stimuli that are well above threshold, attention makes stimulus judg-
ments more accurate. Attending to a pink stimulus makes it more promi-
nent but it does not make it appear more red, on the contrary, it makes the
judgment of its pinkness more accurate (Prinzmetal, Amiri, Allen, &
Edwards, 1998).

Trained salience persists. Tseng, Gobell, and Sperling (2004) trained
some subjects to search briefly flashed displays for target characters on
red squares among distractor squares of other colors, and other subjects
to search for targets on green squares. Training to asymptotic performance
took four to seven hours. Subsequently, when viewing ambiguous motion
displays similar to those in Figure 7.15, the red- and green-trained subjects
perceived motion in opposite directions. In some subjects the selective
increase in salience of the trained color persisted for more than a month
and had to be reversed by search-training the opposite color. This further
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Figure 7.16 How attending to red (diamonds), to green (circles), or being attention-
ally neutral determines the perceived direction of ambiguous red-green
motion displays. Each panel shows the data from one observer in three
attention conditions. Each row represents gratings of particular retinal
size (spatial frequency) produced by varying the viewing distance. All
stimuli are equiluminant. The abscissa is the “Red Advantage”, the
color saturation of red minus the saturation of green. The ordinate is
the percent of motion judgments that were in the red direction. The
colors of the points indicate the attention condition (diamonds = red,
circles = green), black represents neutral attention. The curves are
derived from a simple model that subjects the input stimulus to a
high spatial frequency cutoff filter, introduces a small level of random
noise, and then computes motion direction based on the surviving
salience-strength of the stimulus areas. The numbers in the bottom
panels indicate the increase in color salience produced by the attention
instruction. All the curves for a subject are produced by the model
for that subject—i.e., all panels use precisely the same parameters
(a spatial filter, attentional gain, and internal noise). (After Figure 2,
p. 11683 in Blaser et al. (1999), Copyright (1999) National Academy
of Sciences, U.S.A, by permission; colored version of this chapter:
http://www.sowi.uni-kl.de/lachmann/sperling.pdf).



demonstrates that the ambiguous motion paradigm is an extremely sensitive
measure of salience and thereby also of attention.

7.12 The Resolution of Spatial Attention

The resolution-quality of lenses is characterized by how accurately they can
image gratings of different spatial frequencies. Although human visual acuity
typically is clinically evaluated by the ability of subjects to identify letters of
different retinal sizes on a Snellen chart, visual acuity is better studied with
the same gratings used to study lenses. The advantage of studying a linear
system, like a lens imaging system, with gratings of different spatial frequen-
cies is that, once the responses to gratings of the relevant range of spatial fre-
quencies is known, the response to any other stimulus can be calculated.
According to Fourier’s theorem, any periodic stimulus can be represented
as a sum of orthogonal sine waves. In a so-called linear system, the response
to any arbitrary stimulus is simply the sum of the system’s responses to each
of the sinewaves of which the stimulus is composed. Gobell, Tseng, and Sper-
ling (2004), applied this logic to derive the spread function of spatial atten-
tion. Figure 7.17, shows the method and results.

A spatial-attention instruction-cue to a subject is a two-color display
(Figure 7.17a) in which one color denotes the areas to be attended, the
other the areas to be ignored. Subsequently, the subject is briefly shown a
12 × 12 array of disks in which a target (a larger disk) occurs in a to-be-
attended area. To insure that the subject doesn’t simply attend uniformly
to the whole field, ten false targets (disks identical to the target) occur in
the to-be-ignored areas. The subject has to scrunch attention into the to-be-
attended areas and to suppress inputs strongly for the to-be-ignored areas.
The attention cues are gratings of four different spatial frequencies. There
are two gratings of the lowest spatial frequency (one cycle per stimulus) rep-
resenting two different phases, one with the attended area in the center, the
other with the attended area in the flanks. On a trial, a random 1 of the
20 possible attention cues is presented and target location is random. All
attention cues have equal to-be-attended and to-be-ignored areas.

In Figure 7.17d (Results), the percent of target detections is shown sepa-
rately for vertical and horizontal attention cues for one typical subject. Per-
formance declines as spatial frequency increases, i.e., as the to-be-attended
area is divided into more and more smaller and smaller subareas. The
spatial attention model (Figure 7.18) is essentially the same as the temporal
attention model except that the stimuli and the attention cues are spatial
instead of temporal. It gives a good account of the data (Figure 7.17d)
which are the percent correct target detections in each of the 72 target loca-
tions for each of the 20 different attention cues (1,440 data points). Only
highly aggregated data are illustrated here.
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Figure 7.17 The procedure for measuring the spatial resolution of attention by
determining its spatial frequency response and thereby the spatial
attention system’s impulse response. (a) Ten of the 20 attention cues.
The other ten cues simply have the colors reversed. For half the sub-
jects, the target appears only in a red area (light gray), the other sub-
jects attend to a target in green areas (dark gray). (b) A sample
stimulus shown schematically. The search target T is a slightly larger
disc that appears in an area colored in the attended color. Ten FT
(false targets) are disc identical to the target but located in unattended
areas. The false targets force subjects to shape their spatial attention to
the to-be-attended areas. The dashed lines and labels are for illustra-
tion only and are not present in the displayed stimulus. (c) Schematic
illustration of a single trial. The attention cue display fades gradually
because when it is turned off suddenly, the subject sees an afterimage
in the opposite colors of the cue. The attention cue is followed by a
200 ms blank interval, the target-containing stimulus, a response
grid, and, not shown, a feedback display. (d) Data for one typical
subject: The percent of correct target detections as a function of the
spatial frequency of the attention cue. Error bars represent 95% confi-
dence intervals. The continuous curves are from an attention model,
the solid curve is for vertical attention gratings, the dotted line is for
horizontal attention gratings. Dots at bottom of graph indicate
chance performance. (After Figure 1, p. 1277 and Figure 2, p. 1280
in Gobell et al. (2004), Elsevier, by permission; colored version of
this chapter: http://www.sowi.uni-kl.de/lachmann/sperling.pdf.)



The model applies to any requested spatial distribution of attention.
Once the parameters of the model of Figure 7.18 have been determined—
e.g., for the stimuli illustrated, the model can process any arbitrary
requested distribution of attention for disks of the kind illustrated here,
and with modifications could presumably be applied to a much wider
variety of search tasks. In preliminary experiments (Hsu, Scofield, & Sper-
ling, 2006; Sperling, Scofield, & Hsu, 2008) quite complex random patterns
of requested attention distribution were tested, two of which are shown in
Figure 7.19. Although the model makes precise parameter-free predictions
for the 72 possible target locations in these stimuli, the predictions capture
only about half the data variance for the simpler stimulus (Figure 7.19b),
and are worse for the more complex stimulus (Figure 7.19c). The conclu-
sion is that the simple spatial-resolution-of-attention model captures some
important elements of spatial attention, but spatial attention is more
complex than the model.

Attention is a feature. Minor variations of the paradigm provide profound
insights into the nature of attention. In particular, when the colored cue sti-
mulus remains visible throughout the stimulus exposure, the task is reduced
to finding the target on the attended color, not merely on a remembered area
previously designated by the color. In terms of performance, making the
color available throughout the exposure provides a benefit but it is confined
primarily to the higher spatial frequency displays (Gobell et al., 2004, Exp. 4,
pp. 1285–1287). The spatial resolution of an active perceptual system is
greater than the spatial resolution of remembered areas-to-be-attended.
However, comparing the tasks also suggests that, at a neural level, selective
attention is a feature, just like color. The task of the nervous system is to give
more weight to an item that is a large disk AND some other property; that
other property can be “on a red area” or “on an attended area”. The subse-
quent decision process is concerned only with the salience weight of an item,
not how it was computed. Other, parallel processes, of course, do take note
of the color of the background, of an item’s location, and many other aspects
of the display and the situation.

7.13 Measuring Feature Attention Filters With
the Centroid Paradigm

So far, the focus has been on temporal and spatial attention: Here, the focus
is on attention to features, describing the mechanisms of feature-based
attention (FBA) and measuring them quickly and efficiently. The particular
instance of feature-based attention is attention to a color. The measurement
method is the centroid paradigm (Drew, Chubb, & Sperling, 2010), which
was extensively elaborated specifically for measuring FBA by Sun, Chubb,
Wright, and Sperling (2016a). It is well established that FBA operates
broadly across space, heightening sensitivity to the attended feature even
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Figure 7.18 A model of the spatial resolution of visual attention applied to the
results of Gobell et al. (2004). As with all attention models, there is
a path for the stimulus to an attention gate (×) where the selective-
attention process initiated by the attention cue determines what infor-
mation passes and what is attenuated—i.e., an attention filter. The
144-disk stimulus flashes for 200 ms to enter the stimulus path
where it persists briefly. Each stimulus distractor disk has a weight 1,
the target and the ten false-target disks (slightly larger than the distrac-
tors) have weights of 1 + wt, all stimulus weights are multiplied by the
spatial acuity function which has weight 1 in the center and less else-
where. The Attention Instruction cue assigns a weight of one to the
attended areas and zero to the others. The Low Pass Spatial Filter
(LPSF) attenuates the amplitudes of high spatial frequencies in the
Attention Instruction cue. The effect of low pass frequency filtering
on the requested Attention Instruction cue is illustrated schematically
as Internal Attention, which represents the achieved weights of
attended and unattended areas. The net effect is to reduce the differ-
ence wt between targets and distractors, particularly near attend-
ignore boundaries. The resulting Internal x,y map of filter weights is
stored in memory and applied continuously to the Attention gate
where it multiplies the input weights. Independent normally distributed
random numbers are added the 144 disks, and the Decision process
chooses the location of the disk with the highest net value (target or
non-target) as the model output. Model performance is shown in
Figure 7.17d. (Modification of Figure 9, p. 1289 in Gobell et al.
(2004), Elsevier, by permission; colored version of this chapter:
http://www.sowi.uni-kl.de/lachmann/sperling.pdf.)



at locations that are irrelevant to the task at hand (for references, see Sun
et al., 2016a). This global property of FBA was exploited by Sun, Chubb,
Wright, and Sperling (2016b) in a centroid paradigm to derive human
attention filters for a single color among a wide range of distractor
colors. Just as the physical description of a color filter describes the relative
transmission of the filter for each wavelength of light, a color-attention
filter describes the relative effectiveness with which each color in the
retinal input ultimately influences performance. Here we consider a
simpler instance of feature attention, namely the extent to which attention
to dark dots (targets) among light dots (distractors) enables subjects to
ignore the light dots, and vice versa.

In the centroid paradigm, subjects are briefly shown a cloud of items, in
this instance, dots, and asked to move a mouse-controlled pointer to the
centroid of the dots. The centroid is defined as the Euclidean center of
mass. If the dots were coins on a weightless sheet, the centroid is the
point where the sheet would be perfectly balanced if placed on a fulcrum.
Judged centroids are an instance of a statistical summary judgment, a prop-
erty of the display that is perceptually available even though the individual
components—in this case the dots—are not. Figure 7.18 shows the proce-
dure. When subjects are given immediate feedback, they learn the task in
just a few trials, and reach asymptotic performance in several hundred
trials. As a trial takes just 3 to 4 sec, learning takes less than 15 minutes.

Figure 7.20 shows the procedure and results of an experiment (Drew
et al., 2010) in which subjects judged the centroids of 8 and of 16-dot
clouds under three attention conditions: Give equal weight to all dots,
give equal weight to all dark dots and zero weight to light dots, give
equal weight to all light dots and zero weight to dark dots. Subjects

Figure 7.19 Two examples of complex attention attention cues. (a) A 12 × 12 jittered
array of disks with 133 distractor disks and, slightly larger, 1 target disk
and 10 false-target disks. (b) An attention cue indicating that the target
will occur in one color (e.g., red (dark gray) in a red-observing session)
and the false targets in the other color. (c) An even more complex atten-
tion cue. (Copyright G. Sperling, by permission; colored version of this
chapter: http://www.sowi.uni-kl.de/lachmann/sperling.pdf.)
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Figure 7.20 Using the centroid paradigm to measure attention filters for features: dark
versus light dots. (b) A sample 16-dot stimulus that has 2 dots of each of 8
Weber contrasts. (a) A representation of the stimulus in (b) with the dots
replaced by large squares to better indicate the contrasts of the dots. (c)
After a brief flash of the stimulus (b), a cross-hairs cursor display
appears. The task of the subject is to use a mouse to move the cursor
to the remembered centroid of the stimulus. (d) Feedback display. The
illustration shows the subject’s judged centroid, the correct centroid,
and the stimulus. The two centroids shown in (d) represent the centroid
of only the dark dots and the centroid of only the light dots. However,
only the one task-relevant centroid is displayed to the subject—i.e., the
centroid of all dots, only the dark dots, only the light dots. (e) Model
for computing an attention filter. The stimulus is represented perfectly
as an input to the model—i.e., the exact location and contrast of each
dot is given. An attention filter assigns a weight to each color of item
in the input stimulus. Illustrated here is an estimate of an attention
filter that attempts to give equal weight to all dark dots and zero
weight to all light dots. The model then computes a perfect centroid
using the dot weights assigned by the filter. The output of the model is
then compared to the subject’s response for that stimulus. Simple linear
regression gives the optimum attention filter for predicting the subject’s
response. (f) The average attention filter for 11 subjects in three attention
conditions: Give equal weight to all dots, give equal weight to all dark
dots and zero weight to light dots, give equal weight to all light dots



performed the centroid task quite well and achieved reasonable attention
filters, weighting attended (target) dots about three to four times more
than distractor dots. More detailed measures of performance are described
in Sun et al. (2016a)—e.g., efficiency (the fraction of stimulus dots an ideal
detector would need in order to match a subject’s performance), filter fidel-
ity, selectivity (the ratio of the weights of attended to unattended dots), data
driveness (weight of a Bayesian prior versus stimulus information).

The beauty of the centroid paradigm is (1) that the attention filter is a
complete quantitative description of selective attention to a feature in a par-
ticular context. The filter assigns an attention (salience) weight not only to
the target feature but also to each of the unattended features in the display.
(2) Deriving an attention filter with the centroid paradigm is an order of
magnitude quicker than traditional attention paradigms that yield less
detailed measures of feature attention.

7.14 Summary and Conclusions

Data and computational models for spatial, temporal, and feature attention
were reviewed. The mechanism of selectively attention is the selective trans-
mission of only a subset of the information between stages at different levels
of information processing. Although attention normally simultaneously
affects many stages of neural information processing, in the experiments con-
sidered here, the influence of selective attention was largely focused on one
particular stage of processing. In the spatial attention experiments, informa-
tion was selected from a particular region, not necessarily a connected region,
for subsequent entry into memory (Shih & Sperling, 2002; Sperling, 1960) or
for detection (Gobell et al., 2004), or for speeded reaction time (Shulman
et al., 1979). Temporal attention to a brief interval in time enabled selected
items to enter memory Reeves and Sperling (1986) and to speed RT (Sperling
& Weichselgartner, 1995). Feature attention enabled (1) selected-feature-
containing areas to influence the direction of apparent motion (Blaser
et al., 1999) and (2) computation of the centroid of only the selected items
(Drew et al., 2010). When both temporal and spatial attention were involved,
the selection was determined by the product of independent spatial and
feature filters (Shih & Sperling, 2002; Sperling & Weichselgartner, 1995).
When a subject attempts to perform two concurrent tasks, an AOC describes

and zero weight to dark dots. Shown are the ideal attention filters and
those achieved for 8-dot and 16-dot displays. Error bars are 95% confi-
dence intervals for the population means. (Panels (a–d) Copyright
G. Sperling, by permission, panels e, f after Figures 5 and 7, pp. 5 and
7 in Drew et al. (2010), ARVO, by permission; colored version of this
chapter: http://www.sowi.uni-kl.de/lachmann/sperling.pdf.)
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the performance as a function of the amount of attention allocated to each
task (Reeves & Sperling, 1986; Sperling & Dosher, 1986). The brain pro-
cesses by which attention is accomplished are quite complex. Nevertheless,
the processes of attention listed above were accurately and efficiently
described by the computational models herein.

Information

A colored full version of this chapter is available as free download:
http://www.sowi.uni-kl.de/lachmann/sperling.pdf. All articles of which
Sperling is an author are available as free downloads from
http://www.cogsci.uci.edu/~whipl/staff/sperling/

Note

A Type 1 trial has a right answer that can be rewarded and a wrong answer: e.g.,
which of two identically colored light patches, the one on the right or the one on
the left, is brighter, or which has greater area. Once a subject has mastered the
Type 1 procedure—i.e., learned the meaning of brighter or of area in this context,
a Type 2 procedure without systematic reward is possible: Which of two lights of
different colors seems brighter? Type 2 is also used to study illusions and preference:
Which of the two odd shapes seems to have more area? Which is more beautiful?
(Sperling, 1992; Sperling, Dosher, & Landy, 1990).
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