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Critical duration, supersummation, and the narrow domain of strength-
duration experiments. Overview. Critical duration (as derived from strength-
duration experiments) and supersummation are defined. An example demon-
strates that supersummation can occur in a simple linear system when the
criterion response property is that an output remains above threshold for a
specified duration. In general, supersummation occurs when there is intensity
compression or, equivalently, a time-limited process. Historically, critical duration
has been studied as a means for deriving systematic understanding. When the
general shape of the system impulse response is already known (e.g., thatitis
_ monophasic), the critical duration can provide a useful description of the
parametric changes that occur with factors such as adaptation level, spectral
composition of the test flash and of the background, and so forth. Unfortunately,
strength-duration experiments are intrinsically inadequate for defining system
transfer functions; for this, more complex paradigms ~ such as those involving
multiple pulses or sine waves - are required.

This didactic note is in response to W & K's provocative but not entirely
satisfactory article on critical duration. Since W & K do not provide a correct
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definition ot critical duration we begin at the very beginning.

Stimuli. The classical concept of critical duration is defined for very restricted
classes of stimuli - stimuli that vary only in strength and duration - that is, stimuli
whose intensity i(t) is varied as a function of time so that

i /I O=t<T
i(t) =
0 eisewhere
That is, the stimulus is furned on only for a time interval T and is furned off at all
other times. We shall call such stimuli “‘pulses of intensity / and duration 7.,"” or
“(, T) pulses." For convenience we designate the time f, at which a stimulus is
turned on as zero (, = 0).

Responses. The response that the experimenter chooses to measure to an
(/, T) puise may be aimost anything. Some numerical value or some property of
this response is chosen by the experimenter as the criterion response property
(usually abbreviated simply to response, R). Suppose the stimulus is an (/, T)
pulse of light. Some examples of criterion response properties A are:

1. In a physiological preparation where the experimenter records a voltage V(?)
as a function of time: the criterion response property A could be selected to be a
fixed peak voltage, such as max {V(1)} = 2 voits; or it could be min V()] =
~ 0.5mV, or max ~ min = 3 mV, or the smallest time value ¢, such that V(r,;.,,) =
2.3 mVis 0.1 s (latency), or the longest time vaiue 1y, such that V(l,,) = 2.3Vis
568, Of fnex — Imn = 2 8 (duration), or V(t) has exactly two relative maxima; etc.

2. In a physiological preparation in which action potentials are measured: A
could be that ten nerve impulses are recorded within one second of stimulus
onset, or that exactly 10,000 nerve impulses are recorded in the total response to
the stimulus.

3. In a psychophysical experiment with blocks of trials consisting of 100 (/, 7)
pulses and 100 blanks, randomly mixed: A could be exactly 65 correct target
detections by an observer with exactly 5 faise detections of blanks.

4. In the detection experiment such as (3) above: A could be a mean reaction
time (on the correct detection trials) of exactly 300 ms,

5. Ina search experiment for a target numeral embedded in a field of letters;
R could be correct target identification on 50 percent of trials.

8. In a counting experiment: R could be a correct response on 65 percent of
trials with stimuli containing exactly j elements (when the probability that stimuli
contain exactly j elements is given by a particular probability distribution:

oK), 2_ plk) = 1

k=0

7. Inareading experiment with flashed text: R could be answering 70 percent
of the subsequent comprehension questions correctly.

In principle the / and T values of the stimulus pulses are varied so as to yield a
large number of different (/, T) pairs, each of which produces the criterion
response property. In practice this is feasible only for physiological preparations,
and even there it is inefficient, because most stimuli do not produce precisely the
criterion response property. However, the (/, T) pairs that would have produced
the criterion response property usually can be inferred from pairs that produce
too little or too much response. This inefficiency in data collection and utilization is
a weakness of the critical-duration methodology. With / and T regarded as
independent variables, and the observed amount of the criterion response as the
dependent variable, one could do a more efficient and powerful data analysis. For
example, the strength-duration data fall within the framework of conjoint
measurement (Krantz & Tversky, 1970) and of monotonic analysis of variance
(Kruskal, 1965). These are powerful descriptive and analytic tools that have not
yet been adequately exploited by workers in this area. Moreover, they deal with
the essential stochastic nature of the data, which is ignored in the traditionat
approach,

Critical Duration. Let us assume we have or can obtain (/, T) data pairs as
needed, each of which produces the criterion response property. Let the energy
E(T)ofany (/, T) pulse be defined as £(T) = /(T) - T.(We needto write {T)as a
function of T to keep track of which / goes with which T.) Suppose the limit of £(T)
as T goes to zero exists: let

Eo = im E(T)
T—0
Consider the /value of (/, T) pairs as T goes to infinity:

lim K(T) =/,
Teve
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The critical duration T is the ratio of these two limits:
T =&/l

What purpose does this definition serve? in certain simple cases it is approxi-
mately true that/ - T = Eyfor T = T, and that/ = [, for T = T,. Thus, T (together
with £, or 1) is a succinct characterization of a family of data. This relation is
conveniently expressible in linear form on log-log coordinates (see Fig. 1). in
human visual psychophysics this approximation as a determinant of visual
threshold is sometimes taken as axiomatically true (for example, Graham & Kemp
1938; lkeda & Boynton 1962) and sometimes as axiomatically false |as in the
study of stimulus quantum fluctuations (Barlow 1957; 1958) and of probability
summation resulting from “'multiple looks'* (Blackwell 1963)}.

In spite of its long history in experimental psychology, there is seldom interest in
critical duration itself; critical duration is nearly always studied for what it can reveal
about the properties of the system. Critical duration is a means, not an end.

The simpiest model with which we can reasonably hope to describe a
physiological preparation or a psychological situation is a /inear system. Linear
systems are completely characterized by their impulse response (i.e., by their
response to an impulse - an extremely brief pulse) or by their response to
sing-wave stimuli (Schwartz & Friedland 1965; Sperling 1964). Thus, linear
systems are studied most effectively with sine-wave stimuli and impulses. What
can a strength-duration experiment tell us about the transfer function of a linear
system? In fact, it has often been taken for granted that strength-duration
experiments with (/, T) pulses are inherently inadequate to determine the transfer
function of a linear system; the formal prootf of this deficiency by Norman &
Gallistel (1978) is quite recent. f we enlarge the set of stimuli to include
exponentially increasing and exponentially decaying stimuli, then Norman &
Gallistel provide a procedure for obtaining certain kinds of transfer functions.
However, their method is so complex and so highly susceptible to data impreci-
sion that it has never yet been attempted. Thus, sine-wave stimuli, if applicable,
are preferable.

On the other hand, when the general shape of a linear system's impulse
response is already known, the critical duration can provide a useful characteriza-
tion of this shape and of the parametric changes that occur with factors such as
adaptation level, spectral composition, area of test flash and of background field,
and so on. For example, suppose the impulse response f(t) is nonnegative
everywhere, and suppose that the criterion response property is a peak response
of at least ¢, ¢ > 0. Then critical duration {, = A/max {/(t)}, where A is the area
under f(¢) [although f(t) is a totally deterministic impulse response, whenever
f(t) = O for all t = 0, we can characterize its shape by the parameters used to
describe probability density functions]. Let the variance of /(t) be ¢°. Then ¢, is
directly proportional to ¢ (the standard deviation), a common statistic used to
describe the “width” of £(t). For example, when Kf) = a(2x)~° exp[.5(x —
#)?/4%), a normal function [of course, in the time domain, #(¢) can never be exactly
normall, £, = o (27)%. When f(f} = 7="t"~'e""/(n — 1)!, a gamma function (which
represents the impulse response of a series of n consecutive RC-stages, each
with time-constant AC = 7), t, = 7(n — 1)i{n — 1)' ~ %"~ 'and ¢ = 7. For the
single RC-stage (n = 1), t, = 7 ; that is, the critical duration equals the time
constant.

For nonlinear systems there has been so little success in any analysis that it
would be premature to judge the utility of strength-duration methods.

Supersummation:an example. Supersummation is a term used by W & K to
refer to the following strength-duration phenomenon: there exist Tyand 7, T; <
T, such that £(T,) > E(T,). This means that there is a long-duration pulse (;, T;)
that actually requires less energy than a short-duration puise (/,, 7,) to produce
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Figure 1 (Sperling). An idealized strength-duration function for (I, T') pulses
of intensity I and duration T. (A) Linear coordinates; (B) Logarithmic coordi-
nates. The critical duration as defined in text is ¢, The area of A which is
represented in B is indicated by the lightly drawn box labelled a; the area of B
in A is indicated by the box b.

280 THE BEHAVIORAL AND BRAIN SCIENCES (1979), 2

the criterion response property R; that is, /,T, < /,T,. This increased efficiency of
some long pulses relative to some brief ones is the opposite of what is typically
observed in strength-duration experiments. In the typical case the rule of all (/,T)
pulses is: the longer the pulse, the more energy it needs to produce A. The
phenomenon of supersummation is so called because brief pul$es are assumed
to exhibit perfect summation - a long pulse that has lower energy at its threshold
than a brief puise exhibits supersummation.

One can trivially produce supersummation on demand. Consider the following
Gedanken experiment. Stimuli consist of one page of text (about 300 words)
iluminated by an (/,T) pulse. The criterion response property is a subject’s ability
to answer correctly 70% of the questions on a subsequently administered
reading-comprehension test. Let us suppose that the subject can answer these
questions when the page is adequately illuminated for a duration of one minute.
Making the illumination more intense might enable the subject to read slightly
faster. But no intensity is great enough to yield 70% performance with durations of
less than, say, 30 seconds (Fig. 2). Not only do we have supersummation
(perhaps even super supersummation), but the limit as T approaches zero of E(T)
does not exist; £(T) appeared to be heading for infinity near T = 30 s when the
experiment was terminated because of the hazard of intensity-induced eye
damage.

The reading example is deliberately obvious. To understand a page of text, we
need to make eye movements, to read individual words and comprehend
individual sentences, and so on. Each of these processes can be speeded up
slightly by good illumination, but only modestly. Probably more than 100 eye
movements are required, and one very brief flash, no matter how intense, just
won't do.

Eye movements are not essential to produce supersummation. One can easily
construct stimuli that contain chess or arithmetic or counting problems that can
be grasped in a single fixation (i.e., they do not require eye movements) but that
require time for their solution. The essence of these examples is the intrusion of
high-order ‘mental processes -that require time for their execution and are
relatively indifferent to intensity.

Supersummation in a linear system. To clarify supersummation, consider a
simple linear system with input i(f) and output y(f). To be specific, we can
consider a single-stage RC circuit, a finear system whose output is an exponential
decay with time constant A~' when the input is an impulse. The equation for this
systemis y(f) = L2 i(r)e M-"d7.

If we choose as the criterion response property r the achievement by y(t) of a
particular threshold value ¢ at some particutar time (y(t)-= € for t = T,), or the
achievement of a particular peak value (max [y(f)} = ¢), or the achievement of a
particular cumulative output ( j;' y(t)dt = €) or any of a number of other A's, then
we will observe a nearly linear strength-duration function similar to that in Figure
18. However, if we choose as the criterion -response property that the output
exceed a threshold vaiue ¢ for a speciﬁgd duration D - that is, that y(#) = ¢ for all t
in some interval (f,, t, + D) and y(t) < ¢ for all other t - then we will observe
supersummation.

For example, suppose the decay time-constant A~ of the AC systemis 1 s and
we wish to observe an output response that is greater than ¢ for 100 s. A 100-s
input puise will be incredibly more efficient than an impulse input whose decay
must survive for 100 s. In fact, the brief impulse will have to contain about
e'™/105 ~ 2.6 x 10*' more energy than a pulse of 105-s duration. The
strength-duration function is illustrated in Figure 3.

Compression and time-limitations. Figure 4 shows a block diagram representa-
tion of a system that produces the strength-duration functions described above.
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Figure 2 (Sperling). Strength-duration function for the reading Gedanken
experiment. A page of text is illuminated by an (I, T') pulse; the critical response
property is a score of 70% on a subsequent comprehension test.
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Figure 3 (Sperling). Strength-duration function for (I, T) pulse inputs to a
linear, one-stage RC system with a time constant of 1 s. The criterion response
property is that output remain above ¢ for 100 s. Abscissa is the log base 10 of
pulse duration T’; ordinate is the log base 10 of the pulse intensity I relative to .
The asymptote IT = '™ represents sensitivity only to energy; the asymptote I =
€ represents sensitivity only to intensity; their intersection marks the critical
duration ¢,, which occurs at 2.7 x 10°s or 8.5 x 10 years. The box a indicates
the ordinary range of experiments: within it, T varies from .01 s to 10° (11.6
days), and I varies over 10° The sharp corner at a seems to indicate that
supersummation begins at T equal to about 100 s; however, the whole function
between S and S’ has supersummation relative to the I . T asymptote. Note
similarity to Figure 2.

Figure 4 illustrates the computation of a criterion superthreshold duration being
carried out by three stages in series: a threshold-transducer, a perfect integrator,
and a detector. Supersummation normally occurs in systems that have a
compressive intensity transformation. (A compressive transformation of x, c(x) is
one that has a negative second derivative - that is, ¢(x) is concave downward.
Such a transtormation is called compressive because it reduces (compresses)
the input's dynamic range; it is also called saturation.) The duration detector
involves extreme compression - compression in which all intensities above ¢ are
treated as equivalent. Ultimately, a system that is indifferent to intensity is
concerned with other aspects of the stimulus - for (/, T) pulses the other aspect is
time. Reading, counting, solving arithmetic problems, and so forth, are examples
of processes that depend on time and are relatively indifferent to intensity (once
legibility is achieved). Conversely, such processes may be thought of as
containing extreme éompressive transformations. Whether it is more heipful to
consider supersummation as resulting from a compressive transformation or a
time-limited process will depend on the context and on individual preference: the
two ways of conceptualizing it are two sides of the same coin.

Counting dots. Hunter & Sigler (1940 op. cit.) presented their subjects with
(I, T) pulses or arrays containing various numbers of dots. The criterion response
property was a certain percentage of correct reports for each stimulus number. A
complete data analysis would have to include a correction for the subject’s
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Figure 4 (Sperling). (a) Block diagram representation of a linear RC stage
followed by the duration detector. The input to the system is i(¢ ); the output of
the linear RC stage is y(t); and the output of the whole system is either “yes” (to
indicate detection) or “no” (to indicate failure to detect.) (b) is identical to (a)
except that the duration-computation component has been decomposed into
three components: a threshold-transducer, a perfect integrator, and a detector.
Their outputs are shown. The output threshold is ¢; the threshold duration is D.
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guessing strategy and separate analyses for individual subjects. However, even
from the uncorrected group data, the supersummation for numerosities of 9, 10,
and. 12 (the three highest tested) is so striking that it demands explanation. The
explanation seems obvious: counting takes time; counting more dots takes more
time. The greater the time required, the greater the relative efficiency of longer
flashes, just as in the AC example. Unfortunately Hunter & Sigler's data are quite
incomplete for high numerosities. And even if their data were better, we have
already noted Norman & Gallistel's (1978) proof that strength-duration data are
not, in general, rich enough to yield the transter functions. Thus, the elucidation of
dot-counting processes will require other kinds of data.

Multiple flashes. The above-mentioned reading example (a page of text
illuminated by (/, T) pulse) is basically more complicated than the other exampies.
A sequence of brief pulses, one occurring in each fixation period, could be more
efficient than any long-duration puise with the same total energy. The (/ T)
methodology would be applied to the brief pulses (the microstructure) within the
pulse-train macrostructure.

In fact, even the microstructure is better studied with pairs of pulses, separated
by a variable interval, than by single (/, T) pulses. A pair of pulses separated by an
interval T probes the interactions (summation, inhibition, etc.) that occur at this
interval far more effectively than does a single pulse of duration T (which
simultaneously probes all intervals less than or equal to T). Rashbass (1970), and
Broekhuijsen, Rashbass, & Veringa (1976) all provide instructive examples of the
power of the method.

The two-pulse method with certain assumptions and with certain embellish-
ments - such as permitting the pulses in pairs to be of the same or of opposite
polarities - can yield a transfer function (Broekhuijsen et al. 1976). However,
systems of psychological interest are seldom simple finear systems. To study
norlinear systems, one needs an even richer data base than for linear systems;
for some such analyses pulse trains or mixtures of sine waves are an adequate
basis (for references, see Victor & Knight 1979).

The moral. Strength-duration exoeriments can give interesting insights into
systems, such as the presence of supersummation. However, the data provided
by the method are inherently inadequate. Single-pulse studies must be supple-
mented with data from a richer assortment of stimuli {[such as multipte-pulse and
(multiple) sine-wave stimuli] and (it practicat) a richer assortment of response
measures.
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