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GEORGE SPERLING

Overview. When I accepted the invitation to participate in this symposium, I
promised to discuss some representative models of perception. It soon became
apparent that the mathematical models currently being proposed are so numer-
ous and so complex that it would require volumes to do justice to even one
subspeciality, such as color vision or binocular vision. For example, simple
linear matrix operations sufficed for the theory of color mixture for 100 years
(Wyszecki and Stiles [1967]); today’s more comprehensive theories of color
perception invoke additional nonlinear operations (e.g. Pugh and Mollon
[1979]).2 There are new developments in theories such as factor analysis, multidi-
mensional scaling, and cluster analysis which have been used to describe the
mapping of physical stimuli (such as simple color patches but also much more
complex stimuli) into psychologically significant space (Shepard [1980]). Mea-
surement theory has evolved as a branch of mathematics to describe the
mapping of physical stimulus dimensions (most often intensity) into psychologi-
cal dimensions (Krantz, Luce, Suppes, and Tversky [1971], Roberts [1979)).

In sensory psychology, particularly in the study of vision and of hearing,
linear equations have been used with considerable success to describe the
receptors, i.e., the optical properties of the lens of the eye (Fry [1955), Krauskopf
[1962]) and the transducer properties of the outer, middle, and inner ear (basilar
membrane, Allen [1977a], {1977b]). Sine wave stimulus patterns and linear
theory are widely used to describe the first order psychological properties of
sensory systems (Licklider [1961], Graham [1981]). But in these domains,
familiar engineering methods have been all but exhausted; current theories deal
with complex, nonlinear sensory mechanisms (Schroeder [1975], Victor, Shapley,
and Knight [1977]). In fact, process models (such as models of the presumed
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neural processes that underly perception) can quickly become mathematically
intractable; only a few workers have reduced the corresponding sets of nonlin-
ear differential equations to something understandable (Sperling and Sondhi
[1968], Grossberg [1972], {1973}, Luce and Green [1972], [1974)).

Visual illusions that result from viewing “impossible” figures are better
understood via topological analysis of the stimuli (Cowan [1974]); errors in the
perception of a sequence in a string of characters are better understood by
means of combinatorial algebraics (Sperling and Melchner [1976]); Riemannian
geometry is used to describe the binocular perception of space (Luneberg
[1947)); and Markov, random walk, and diffusion models occur in the study of
reaction time, decision making, and other processes (Norman {1972}, Link and
Heath {1975}). :

In the study of selective attention (e.g., to one part of the visual field or to one
kind of character symbol in a visual search task) new concepts such as the
attention operating characteristics have developed (Sperling and Melchner
[1978], Navon and Gopher {1979]) that are intimately related to the receiver
.operating characteristics of signal detection theory (Green and Swets [1966],
Egan [1975]), as well as to important concepts of economics. Relevant mathe-
matical specialties are utility theory and linear programming. '

In a study of visual motion perception in ambiguous .displays, functional
equations was the mathematical tool used to develop a process model (Burt and
Sperling [1981)). In fact, as many kinds of mathematics seem to be applied to
perception as there are problems in perception. I believe this multiplicity of
theories without a reduction to a common core is inherent in the nature of
psychology (Sperling {1978]), and we should not expect the situation to change.
The moral, alas, is that we need many different models to deal with the many
different aspects of perception.

The perceptual problems I will be concerned with in this paper involve the
dynamics of resolving perceptual ambiguities in general; examples are given
from binocular vision and depth perception. The relevant areas of mathematics
are nonlinear differential equations and catastrophe (or potential) theory. I have
chosen these examples because the possibility of further mathematical develop-
ment is most appealing.

Path-dependence in binocular vision: The phenomena. We begin with the
general problem of path-dependent perceptual states: how do we understand the
cases where our perception of the present stimulus depends on our perception of
the immediately preceding stimuli?®

Multistability of vergence. A classical example of this kind of phenomenon is
described by Helmholtz {1924, p. 58]. Helmholtz viewed a binocular stereogram,
that is, two identical or nearly identical images, so that each eye saw only its

3Much of the subsequent discussion is based on Sperling {1970), which the reader should consult
for details, additional references, and interaction models.
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corresponding image (Figure ). First, he achieved vergence-fusion of the
sterogram, that is, he arranged for the left and right half-images to fall on
corresponding retinal points, and they were perceived as a single, unitary image
(Figure 1(b)). At this point, the stereo images were arrayed so that the lines of
sight of his two eyes were parallel. Then, Helmholtz began to increase slowly the
separation in physical space between the two half-images so that, in order to
maintain fusion, his eyes were forced to diverge. He found that by pulling the
images apart in this way he was able to cause the lines of sight of his eyes to
diverge by as much as eight degrees to follow the images. When the divergence
angle required to maintain fusion increased beyond eight degrees, Helmholtz
lost fusion; that is, his eyes returned to a parallel position and he saw two
partially overlapping stereo half-fields (Figure 1(c)). To restore fusion, Helm-
holtz had to bring the stereo half-images much closer together than the point at
which fusion broke.

(a)

(b) (¢}

{d) (e)

FIGURE 1.(a) A sterogram showing the left L and right R half-images viewed by the left and right
eyes, respectively. The lenses G, G’ enable the observer to focus at the short viewing distance. The
partition P isolates the views of the two eyes. The arrows indicate the direction in which the stimuli
are moved in Helmholtz’s horizontal vergence demonstration. The broken lines indicate parallel lines
of sight; the solid lines indicate the actual lines of sight when the observer is able to verge accurately
at the angle of divergence shown. (b) Representation of the cyclopean perception when the eyes are
correctly verged. The perception after vergence fails for (c) horizontal vergence, (d) vertical vergence,
and (e) torsional vergence.
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This example illustrates path-dependence for a particular stereogram separa-
tion, say, eight degrees. If the eyes were diverged prior to the eight degree
stereogram—perhaps because the previous stereogram had a seven degree separa-
tion and they were able to fuse it-the eyes remained fused. If the immediately
preceding stereogram had a zero or a 12 degree separation, the eyes would not
fuse. Whether the eyes were fused or not depended on their history. Thus, we
have two stable states, fused or not fused, in response to the same present
stimulus, and the particular state that is achieved depends on the sequence of
the preceding stimuli.

This example exploits the most familiar of the eyes’ vergence systems—the
system that controls the convergence and divergence of the lines of sight of the
two eyes. Many people have voluntary control over lateral vergence, particularly
convergence, and that control can considerably complicate actual demonstra-
tions and theory. However, the demonstration works equally well with vertical
vergence which, so far, has not been voluntarily controlled. Helmholtz found
that when one stereo half-image was raised and the other lowered, the eyes
would diverge vertically-one up, the other down-to maintain fusion. The
angular range of vertical vergence was about the same vertically as the range of
horizontal divergence. Similarly, when the stereo half-images are rotated around
their centers in opposite directions, the eyes will follow these rotations with
corresponding torsional rotations around their axes.

Multistability of accommodation (focusing). The accommodation (focusing)
system of the eyes provides perhaps the simplest demonstration of path-depen-
dence.* Take a piece of paper that has some printing on it and make a hole
about % to 1 cm diameter in the center. Close one eye and bring the hole as close
to the other as possible, all the while maintaining the paper in sharp focus.
Direct the line of sight through the middle of the hole at a distant object while
méintaining the paper in focus. The hole should appear to be filled with an
extremely blurred image while the surrounding paper is sharp (Figure 2). Now
move the paper away while maintaining the line of sight. The eye will focus on
the distant object, which now appears clearly. Without changing the line of
sight, reintroduce. the paper to the position it occupied just previously. It should
be possible to now look through the hole and to see the distant object in focus
and the surrounding paper blurred. (Younger subjects have a much better
demonstration because of their greater range of accommodation. Once the
accommodative range becomes too small, voluntary-rather than a stimulus—
control of accommodation can predominate.) However, by adjusting the param-
eters of the demonstration—aperture size, distance, contrast, etc.—bistability can
usually be restored. The demonstrations show path-dependence in accommoda-
tion. Precisely the same visual stimulus (distant view through a near aperture)
can lead to two states of accommodation: near focus or far focus, depending on

“The demonstration of path-dependence in accommodation was reported by Sperling [1970}.
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the previous stimuli, i.e., on where the eye happened to be focused before
looking through the hole.

]
!

(a)

FINE PRINT ALL
AROUND THE HOLE
TO PRY A
STH ND A
TEST FOR PLANE
OF FOCUS.

(b} (c)

FiGUure 2. (a) Arrangement for observing two states of accommodation (focusing of the eye). The
observer looks through the aperture with one eye at a distant object. (b) The view, accommodated on
the aperature. (¢) The view, accommodated on the distant object.

Multistability of fusion. Perhaps the most interesting instance of path-depen-
dence in this class of visual phenomena occurs in perceptual fusion. To demon-
strate it, the eyes view a stereogram through a complex optical system that
cancels the effect of eye movements; that is, the images are optically stabilized
on their respective retinas irrespective of where the eyes happen to point. Now,
let the images be moved apart on the retinas just as, in the first example, they
were moved apart in physical space. Eye movements cannot compensate for the
image slip; nevertheless, perceptual fusion can be maintained for an appreciable
image separation before fusion suddenly “breaks” and the two half-images
appear to be partially overlapping instead of a fused unitary image (Diner
[1978], Fender and Julesz [1967]). Again, we have two perceptual states—fused
and unfused-in response to the same physical stimulus on the retina.

Path-dependence, multiple stable states, hysteresis. Insofar as we consider only
deterministic theories, path-dependence and multiple stable states are equiva-
lent. Different states can be reached only via different paths, and path-depen-
dence implies that the same stimulus will lead to -different responses (multiple
stable states) depending on the path taken. Hysteresis refers to a particular kind
of path-dependence, namely, the tendency of a state to perseverate even after
inducing conditions have changed to be more appropriate for some other state.
This is, in fact, the kind of path-dependence that is most frequently observed,
and the kind that has been the subject of all the examples.

Path-dependence: Theory. To begin to describe these phenomena mathemati-
cally, we start with one particular example—vergence. Let the vergence angle that
would be required to place the two half-images of a stereogram onto exactly
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FiGURE 3. Graphical representation of Helmholtz’s vergence experiment. (a) Abscissa u represents
the stimulus disparity between images to the left and right eyes; v is the eyes’ vergence angle, and the
ordinate is u — o the perceived disparity, which is shown, as perceived in the inserts at the extreme
left. In the inserts, L and R indicate left-eye and right-eye stimuli, respectively. The arrows indicate
the sequence of successive events (stimuli presented and the resulting perceived disparity) in an
experiment. Right part of graph represents divergence, the left part convergence; the break in the
axes indicates that the breakaway vergence angles are different in the two directions. The shaded
area represents hysteresis—the difference between perceived disparity depending upon the path
taken. (b) A catastrophy theory representation of the experiment in (a). The arrows represent the

p?th of an experiment; heavy arrows, the stimulus converging, and light arrows, the stimulus
diverging. See text for details.

corresponding retinal points be . Let the actual vergence angle between the
eyes be v. Then the (perceived) disparity is u — v. Helmholtz’s experiment can
be represented in a graph of u — v versus v, as in Figure 3. We start with the
eyes parallel (v = 0) and the stimulus positioned on corresponding retinal points
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(v — v = 0), represented at the point (0, 0) in Figure 3(a). As u is increased by
pulling the stereo half-images apart (vertically or horizontally), the eyes follow at
first: thus the perceived disparity ¥ — v is 0. When the critical angle is reached,
the eyes fall back to their parallel position and the perceived disparity equals the
actual disparity u — v between the two stereo half-images. For all larger values
of u, the perceived disparity # — v remains equal to u since the eyes remain
parallel (v = 0). When the angle between the stereo half-images is again re-
duced, another critical angle, smaller than the breakaway angle, is reached
where vergence-fusion is again restored. These events are represented by follow-
ing the arrows around one half of Figure 3(a). As the separation between the
stereo half-images is reduced further and becomes negative, a similar sequence
of events is produced in the other half of the graph. Thus, if the initial
separation (right side of Figure 3(a)) represents divergence, the left side repre-
sents convergence. If the right side represents displacement of the left image
above the right image, the other side represents the opposite displacement.

Catastrophe theory description. Figure 3(b) represents a catastrophe theory
(Thom [1974}, Susman and Zahier [1978]) description of the events of Figure
3(a). The path of Figure 3(a) is traced on the surface of Figure 3(b). When a fold
in the surface is reached, a catastrophe, that is, a jump to another level occurs.
In this representation, the third dimension (depth into the page) is not essential.
It could have an interpretation as the level of illumination upon or as the
contrast of the stimulus, with the unfolded rear section of sheet representing
subthreshold amounts of illumination or contrast.

Potential theory description. Elegant though catastrophe theory méy be, this

particular representation of a path-dependent phenomenon within that frame- -

work is merely descriptive; it does not yield any insight into the nature of the
underlying processes. A theory for the class of phenomena in question is needed.
The theory proposed here is a kind of potential theory in which an electrical
potential field governs the movement of a charged particle. 1 will use a
gravimetric analog of potential theory, in which a marble rolls on a bumpy
surface—the energy surface—under the influence of gravity, because this analogy
is particularly concrete and intuitively accessible.’

Two kinds of factors designated as internal and external factors control the
shape of the energy surface. For example, the basic surface governing horizontal
vergence is bowl-shaped, the shape being determined by internal factors. The
marble tends to roll to the center of the bowl, representing the tendency of the
eyes to verge to a neutral position in the absence of an external stimulus.
Specifically, let the displacement vergence energy surface g(v) be a concave-up
function of v. Let the movement of the marble along this surface be governed by

5In a potential field ¢'(x), the force acting on a particle is proportional to ¢’. An energy field e(x)
is the integral of a potential field so that the force is proportional to e’ = 3e(x)/dx. In the
gravimetric analog, force f = —ke’/(1 + €'2), an irrelevant complication, which becomes negligible
as ¢’ — 0. For appropriately scaled units, the gravimetric and potential models are equivalent.
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a simple differential equation:

d% dv  —dg(v

—d-;z—-i-k'a?=—-70—), k>0 4))
For concreteness, think of the marble as rolling in a smooth bowl filled with
salad oil. The dynamic properties of motion are given by equation (1), but it is
evident that so long as there is nonzero friction in the medium, the marble must
eventually come to rest at the equilibrium point, the bottom of the bowl. The
horizontal projection of the marble’s position represents the instantaneous
‘vergence position of the eyes. For convenience, let the value of o at the
minimum of g(v) be zero; this point represents the neutral position of eyes in the
absence of any visual stimulus, i.e., in the dark. The motion of the marble when
it is placed up on the side of the bowl and released represents the vergence
movements of the eyes when they are verged on some particular stimulus, say, a
book, and the light is suddenly turned off. In the dark, the eyes return to their
neutral position (Figure 4).

qlv)

>V

FIGURE 4. Vergence displacement energy g(v) as a function of vergence angle v. The eye’s vergence
position is represented by the projection onto the abscissa of a marble rolling on the surface. This
surface governs the eyes’ return to their neutral vergence positon when they are somehow displaced
from it; a typical path is indicated.

To show how external factors—the external stimuli impinging on the eyes—can
introduce new equilibrium states, we need some definitions. Let the stimulus to
the left retina be described as a luminance distribution l,(x,y) which is a
function of x and y, the horizontal and vertical coordinates expressed in units of
visual angle. Let the stimulus to the right eye be /g(x, y). Define h(v), the
vergence image-dispaﬁty energy as a function of vergence angle v,

wo)=-[f [b(x-52)~wlx+50)xs. @

Except for the minus sign, the vergence image-disparity is essentially the
unnormalized cross-correlation between the images to the left and right eyes; h
has a minus sign so that it has a minimum when the correlation has a maximum
(Figure 5). Vergence image-disparity energy h(v) expresses how well the images

on the two retinas would match if the eyes were to assume a vergence angle of
exactly v.
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Ficure 5. Ilustration of the computation of vergence image-disparity energy. (a) Luminance
distributions /; and g on the left and right retinas as a function of vergence shift v for the stimuli
illustrated in row 4. (b) Vergence image-disparity energy A(v) for the stimulus in row 4. The numbers
on the graph of k(v) indicate the corresponding row in (a). The axes are placed at 0, 0; that is, v is
zero in row 4. The eyes would have to diverge slightly from their initial position at 5 to achieve
vergence-fusion of stimulus 4, as indicated by the corresponding minimum in A(v). The figure can be
rotated 90 degrees to place the left side on the bottom; in this case, it represents vertical vergence.

The internal and external factors controlling vergence are added to obtain the
net vergence energy:

e(v; I, Iz) = g(v) + h(v; I, Ip). (3)

Figure 6(a) shows an example of a unistable vergence stimulus. That is, a
stereogram is viewed in which the separation of the two half-images is so slight
that the eyes inevitably fuse on it. The vergence energy surface corresponding to
it has a single minimum.

Now let the stereo half-images be pulled apart. This has the effect of moving
the minimum of g and the minimum of 4 further apart. Sooner or later a point is
reached where the two minima are so far apart that when they are added to
form e(v), it has two minima (Figure 6(b)). These minima correspond to the two
stable equilibrium points for such stereograms. The eyes achieve the off-center
equilibrium point when the stereo half-images are drawn apart slowly, all the
while maintaining vergence-fusion. This corresponds to drawing the minima of
e(v) apart slowly, all the while keeping the marble in the bottom of the moving
minimum. If the marble were initially at v = 0 when the energy surface was
suddenly formed to have two minima, it would remain in the minimum at zero.
Thus, there are two equilibrium points for the marble, depending on the
sequence of events leading up to the two-minimum surface.
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giv)

h{v)

e(v)

FIGURE 6. Potential theory model. (a) Two halves of a stereogram (4, A), fixation points are
indicated by +. Vergence displacement energy g(v) adds to vergence image-disparity energy h(v) to
produce (net) vergence energy e(v), which has a single minimum slightly displaced in the direction of
divergence. (b) Two halves of a stereogram requiring a greater divergence than (a) to achieve fusion.
The corresponding vergence energy surface has two minima. The arrows indicate “vergence
disparity”: the displacement of the minimum of e(v) [which determines the actual vergence position}
away from the minimum of h(v) [which minimizes L/ R image disparity]. (c) A stereogram which is
at the limit of vergence fusion. The e(v) susface has only one minimum corresponding to the neutral
vergence position.

Figure 6(c) illustrates what happens when the separation between the stereo
half-images is increased further. The minimum produced by h(v) eventually

becomes too shallow to hold the marble; beyond this critical separation there is
again only one stable equilibrium point.
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This qualitative model of multistable path-dependent states is in agreement
with the major experimental phenomena (multiple stable states, hysteresis, etc.)
described in the examples and summarized in Figure 3. The minima of the
energy function de/dv = 0 correspond to the points on the catastrophe surface
in Figure 3(b). The advantage of the potential theory representation is that it
provides a mechanism for the system dynamics, not merely a representation of
the equilibrium states, which is all that is provided by a catastrophe theory
representation.

Vergence disparity. The potential theory representation also provides an
explanation for some second order phenomena, such as “vergence disparity”.
When the eyes are induced to verge at a position other than the neutral point,

they do not move away far enough from the neutral point to produce perfect -

left /right image registration. There is a disparity between the optimum and the
actual vergence position (Ogle [1950], Fincham and Walton [1957]). In the
theory, this “vergence disparity” is represented by the fact that the minimum of
e(v) does not lie exactly over the minimum of A(v); because of the concaveness
of g(v), the minimum of e(v) is displaced towards the intrinsic neutral point
(minimum of g(v)). A closely related observation is that detailed, high contrast,
large area stimuli are most effective in inducing the eyes to depart from their
neutral position and in minimizing “vergence disparity”. According to the
computation of A(v) in the theory, such stimuli have larger, steeper minima and
therefore these minima are less deviated by the addition of g(v) to produce e(v)
(reducing “vergence disparity™) and their steeper sides preserve minima further
from the neutral point. ' o

Optimization theory. The vergence theory can also be thought of as an error
theory. There is an error function h(v) that represents the error in image
registration as a function of vergence angle v, and an “error” function g(v) that
represents the displacement v of the eyes from their preferred position as an
error. The equilibrium vergence position is the one that minimizes the summed
errors.

A theory for accommodation can be generated according to principles that
are quite analogous to those of the theory for vergence. There is an error
function [an accommodation displacement function g(v)] that represents the
deviation v of accommodation from its preferred position as an error. And, there
is an error function [image defocus function, A(v)] that represents image blur.
The equilibrium value of accommodation minimizes the sum of these two
“errors”. The main phenomena and conclusions about vergence can be trans-
posed directly to accommodation.

When we consider accommodation and vergence together, we observe that
where the eyes are induced to accommodate determines where they prefer to
verge and vice versa. The interaction between these two systems produces very
interesting phenomena and theories to account for them (Sperling [1970]).
Complex though such theories may be, they are elementary in another sense.
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The eyes can be verged at only one angle at one time. They can be focused only
at one distance. To reproduce the path-dependent phenomena of vergence and
accommodation, a neural model need compute only one value, 9h(v,)/dv [at
v = v, the eyes’ current (instantaneous) vergence or accommodation position]
and add this value to a reference signal 3g(v)/9v [at v = g} to produce the
motor control signal. But in a neural system for perceptual fusion, fusion image
disparity must be calculated for a range of possible z-depth values (Zmivs Zmax)
because for any fixed vergence position, perceptual fusion is possible over a
range of depths. Furthermore, at each visual direction x, y, fusion at a different
depth z is possible. This leads to an interaction between all points in the x, y
plane, instead of an interaction between just two points as in the interaction of
vergence and accommodation.

In fact, in one visual direction, only one fusion plane is observable.® This is a
manifestation of a very general property of perceptual systems; they cannot
simultaneously perform two antagonistic responses. Therefore, there is no reason
to preserve information that would ultimately lead to antagonistic responses.
Some of these kinds of decisions occur early in perceptual processing.

Two illustrative examples are figure/ground interaction (perceiving one part
of a scene as figure precludes simultaneously perceiving it as ground) and
binocular rivalry (seeing the image from one eye precludes simultaneously seeing
a contradictory image from the other eye). Here, we will develop a particular

theory of the neural processes that subserve binocular fusion, but the principles
are widely applicable. '

Neural theory.

Neural binocular field. The neural binocular field (NBF) is a representation
inside the organism of the depth and space relations outside, literally, a reflec-
tion of the world in the brain of the beholder. The basic theory (Figure 7)
usually is attributed to Kepler (Boring [1933], Kaufman [1965]). The x, y
dimensions of the NBF represent, approximately, the dimensions perpendicular
to the observer’s visual axes; the z dimension represents depth in space. Signals
from the left and right retinas enter the NBF at an “angle” so that as z increases,
these signals are represented at successively greater x translations relative to
each other. The middle z-plane of the field represents the horopter, the surface
in space that projects to precisely corresponding retinal points.”

SSperling [1970]. The possible counterexample to the rule of one depth to one point is a partially
transparent screen that partially obscures an object behind it. It appears, however, that each surface

(screen and object) is represented by a patchwork of many small areas in the visual field; the two
kinds of patches do not intersect.

"In fact, in the vertical direction, the horopter is not even approximately perpendicular to the
visual axes (Helmholtz {1924]). Points along the midline in space (horizon) project to the horizontal
retinal midline, but points along the vertical midline in space actually project to a retinal line that
intersects the vertical retinal midline at an angle of several degrees. However, these practical
complications in the precise shape of the horopter are irrelevant for the general principles being
considered here, particularly insofar as we restrict our attention to a horizontal meridian.
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Figure 7. Keplerian projection theory. Objects in space, 1, 2, 3, 4, project through the retinas onto a
neural binocular field, NBF, that mirrors the external spatial relationships. Intersections of signals

from the two eyes (indicated by dots) represent possible matches. Three objects produce nine
possible matches in the NBF; only three of these are “correct”, and the remainder are “ghosts™. For

example, it is locally ambiguous whether the correspondence at point 4 in the NBF represents a real
object 4 or a ghost match of 3 with 1.

Given a Keplerian NBF, the neural problem of stereoscopic depth perception
reduces to three subproblems: (1) detecting correspondences (intersections) in
the NBF; (2) determining the “distance” of such correspondences from the
midline of the NBF; and (3) utilizing this depth information, i.e., using depth
information by concatenating it with pattern information about an object to
reach a determination of object shape or identity, or using depth information
directly to control vergence movements of the eyes and other motor responses.
The present summary focuses on the first of these problems— which is challeng-
ing enough. The other problems are treated in Sperling [1970] and elsewhere.

The most obvious complication in detecting correspondences in the NBF is
that depth information is by its very nature local (that is, it is concerned with
computing the depth plane of very small areas, x, y), and the information from
any small area is inherently ambiguous. For example, if the neural inputs to the
NBF carry information simply about whether a small area is lighter or darker
than its immediate surround, then the “true” matches will represent a small
fraction of all the matches most of which will be accidental false matches—or
ghost matches as they are called. If the inputs to the NBF carry highly specific
information, then we are not likely to find the specific information coded in a
small area, (so that area’s depth cannot be computed). Furthermore, to convey
depth in small areas with specialized codes would require an enormous prolifera-
tion of inputs so that there would be a reasonable chance of finding not only a
highly localized input but also an appropriately-specialized one. The solution to
this problem is to use information from the larger context to assist in the local
decision—a solution with very interesting mathematical properties.

There is an even more basic principle the visual system seems to have adopted
en route to its solution of the ghost matching problem. At any given x, y
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coordinate (representing one visual direction in the cyclopean field of view) only
one surface is perceived and only one depth magnitude is computed. What kind
of neural organization in the NBF can accomplish this?

The mathematical neuron. In order that this section be self-sufficient, we begin
with the description of a neuron, the basic element of the nervous system, with
apologies to the readers for whom this is repetitious. A neuron receives excita-
tory inputs [x;()] and inhibitory inputs [z(0)] from many other neurons, [}, [/].
It combines all its inputs (all of which are non-negative) to produce a single
non-negative output y(f), which in turn becomes an excitatory and/or inhibitory
input to other neurons. The exceptions are the first-order neurons, which receive
direct sensory input, and the last neurons in the chain, which produce outputs to
muscles, glands, etc.

From a functional point of view, a neuron is a mass of electrically conducting
jelly surrounded by a thin membrane which is characterized by high resistance R
and a capacitance C. An excitatory input to the neuron consists, essentially, of
injections of electrical charge (in the form of charged ions) into the neuron, i.e.,
an excitatory input is a current x(f).

In modeling a neuron, the excitatory input currents are assumed to add
linearly. The accumulated charge decays (exponentially) through the RC mem-
brane, and the output is proportional to the resulting voltage. Thus, to a first
approximation, a real neuron is modeled by an RC integrator; its response to an
excitatory impulse 8(f) at time ¢ = 0 is simply e™*/(RO),

The most common response of neurons to inhibitory inputs is a proportional
increase in membrane conductance (1/R). Thus, inhibition is not a subtractive
process—the opposite of excitation; inhibition is modeled as a shunting process
(Furman [1965]) that divides excitation. A nonlinear differential equation to
describe these relations is

G0+ 2= X0 (42)
where
RY1) = R;' + Z(2). (4b)

Capital letters X, Z are used to designate the sums over all excitatory and all
inhibitory inputs, respectively. This system was proposed and investigated by
Sperling and Sondhi [1968].

Closer examination of typical real neurons implies complications to the
seemingly simple equations (4). Some of these can be incorporated gracefully;
others produce intractable complications. Saturation of excitatory inputs is
incorporated into (4a) by replacing the right-hand term x(¢) with x(!Y}(B — Y(¢£)).
[The resulting systems have been elegantly dealt with by Grossberg [1973]. The
feedforward shunting inhibition proposed by Sperling and Sondhi [1968] yielded
a formulation that is virtually equivalent to Grossberg’s.] Other complications
are: the equilibrium voltage to which inhibition drives the neuron interior
generally is somewhat lower than the resting voltage for zero excitatory inputs.
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Many neurons have a threshold e > 0 below which there is no output. This is
modeled by replacing y(¢) by »'(¢) = max(0, y(f) — ¢). The conducting interior
of the neuron has significant resistance, so that-depending on the shape of the
neuron—the exact placement of excitatory and inhibitory inputs can have im-
portant effects. This effect has been dealt with by computer simulations (Rall
[1964)).

Functional model. The major psychophysical findings for which we seek a
neural theory are: (1) multiple stable states/path-dependence in perceptual
fusion (i.e., in fusion with stabilized retinal images); (2) only one perceivable
depth at any one time in any one visual direction; (3) context dependency of
fusion~a solution for the ghost-ambiguity problem. We propose operations that
are carried out on the information in the NBF, and then a neural model that
could accomplish these operations. Uniqueness is not claimed either for the
operations or the model. ’

The functional model begins with the assumption that there is a structure like
the NBF (Figure 7) receiving spatially labelled inputs, and that there are
elements capable of detecting binocular correspondences. The outflow from the
NBF is generated by the correspondence-detecting elements, and this outflow
determines object perception, stereoscopic depth perception, vergence, etc. The
binocular correspondence-detecting elements interact among themselves by
competition and by cooperation to determine the outflow.

Competition, cooperation/competition. First consider a thin column in the
NBF, occupying a small area dxdy and extending in the z direction. The column
is assumed to function so as to never allow more than one z-level to be active at
one time (“monoactivity”, Sperling [1970]). This monoactivity function simply
associates with each small visual area one and only one perceived depth. In the
neural model, monoactivity is achieved by a purely competitive interaction. The
second function is cooperative/competitive. Activity at one level z in one
column cooperates with (does not inhibit) activity in adjacent columns at the
same level z and inhibits (competes with) everything else. The restriction of
activity to one level in a z-depth column is obviously a trivial but perfectly
satisfactory way to account for the restriction of perceived fusion to a single
depth plane at any x, y point in space.

The cooperative/competitive principle offers a solution to the ghost-am-
biguity problem since, on the one hand, it restricts activity to one level of the
NBF at any one point, and on the other, it encourages promising areas of
activity to expand and to dominate weaker areas. The advantage of a coopera-
tive/competitive principle for the solution to the binocular matching problem
has been widely appreciated since the principle was first proposed by Sperling
[1970]. The principle has subsequently been adopted as the basis of their
binocular models by Julesz [1971], Dev [1975], Nelson [1975], and Marr and
Poggio [1976].

Monoactive neural model: A case of pure competition. A simple neural network
to achieve competitive selection of a single neuron in a column is illustrated in
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Figure 8. Each neuron i receives an external input x,(7), produces an output y(?),

and receives its net inhibitory input Z; from every other neuron J in the column
Z, = kX, y(0. :

Floun!.e 8. A monoactive column of model neurons. Output connections are shown for one neuron, i.
It receives an external input x(f) that sums with an output-produced feedback excitatory input
ky y(1). It sends shunting inhibitory signals k, y,(¢) to all other cells. The small rectangular boxes in

the input path represent thresholding operations: when the input is y, y > 0, the output is
max(y — e, 0).

A neural network with merely recurrent inhibition would be a very tame “filter”
until three additions were made: (1) Positive feedback: each neuron feeds back a
portion of its output as an excitatory input; (2) Threshold: each neural output y
is subjected to a thresholding operation such that y, = max(y — ¢, 0); (3)
Saturation: each neuron has a maximum output, B. The effect of positive
self-feedback is to destabilize the system greatly and to increase the intensity of
interactions. If the strength of inhibitory connections k, is sufficient so that an
active neuron with output B can reduce all other outputs to below their
threshold, then it alone will have an output and all other neurons will be silent.
This situation obtains until another neuron captures the system. The system thus
appears to have the desired property of monoactivity-only one active neuron at
any one time (Sperling [1970, Appendix B]).

Although the above argument may sound believable, it was (Grossberg [1973],
[1978]) who first provided an adequate mathematical analysis of competitive
systems of this kind (excitatory self-feedback, widespread inhibitory feedback).
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Let us re-examine the assumptions. As has been pointed out earlier (in the
section entitled The mathematical neuron) output saturation is an inherent part of
Grossberg’s theory so it does not require a special assumption. In order for the
system to have the multistable monoactive property, Grossberg found that the
form of the inhibitory feedback return function was critical; that is, the amount
of signal fed back bad to be an S-shaped function of input intensity. [Sperling’s
output function is zero for inputs below threshold and rises linearly to B when
inputs are above the threshold; thus, threshold and saturation create an angular
member of the S-function class.] :

The point of this discussion is that monoactivity of a column of model
neurons can be achieved under a wide variety of conditions and assumptions.
Sufficient conditions are: inhibitory feedback onto the other neurons within the
monoactive column, excitatory self-feedback, and an S-shaped feedback return
function (or output threshold and saturation).

Monoactive systems perform an exceedingly universal and useful function:
selecting one from many inputs. For example, in motivational systems, when an
animal is hungry, thirsty, and sleepy, and can satisfy these drives at three
different locations, it does not walk to the mean location. It selects these
activities one at a time. When there are several objects of possible interest in the
visual field, the eyes do not point at the blank space between them. They fixate
the objects successively. The same is true of vergence movements when objects
at different depth planes are present in the field of view.

In the case of binocular fusion, the theory proposes that there is a monoactive
system at each x, y column of the NBF. This is the correlate in the NBF of the
restriction that depth can be perceived at only one depth at any one visual
direction. Another possible example is the ambiguous figure: perceiving one
perceptual organization precludes simultaneously perceiving the other possible
organizations. In general, perceptual and motor functions that involve categori-
zation are likely to be accomplished by means of a monoactive network.

Double-coupled neural model: cooperation / competition. The monoactive neural
model essentially made single decisions: which neuron will be dominant at any
one time. It had only one kind of interaction and may be considered to be
single-coupled. The second neural model uses context to resolve ambiguity.
Thus, many neurons are active at every time and the model deals with determin-
ing the combination of active neurons. It is double-coupled in the sense that it
exhibits one kind of interaction with members of its column and another kind
between columns.

The basic building block is a monoactive column of many strongly competi-
tive neurons. Such a column represents the z dimension, depth, in the NBF.
Many of these columns are densely packed together in the x, y plane, perpendic-
ular to the z axis. The position in the column of the one active neuron column
represents a decision about depth locally. How does this decision affect the
decision arrived at in the adjacent columns? The proposal put forward by
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Sperling [1970] is that a neuron at level z in one column facilitates neurons at
and near to level z in adjacent columns, by inhibiting neurons elsewhere in the
adjacent columns. In effect, the neuron attempts to influence adjacent columns
to respond more-or-less in the same way as its own column. It makes inhibitory
feedback connections to neurons at different levels in adjacent columns as in its
own column. Lateral excitatory connections between same-level neighbors
strengthen the cooperativity beyond that achieved by inhibiting-the-inhibition.
But it is necessary that lateral interactions between neighbors be different from
vertical interactions within a column. Otherwise, the whole NBF would function
like a single column. The lateral connections to adjacent columns are not so
strong that they override strong input signals. When inputs are weak or ambigu-
ous, the effect of cooperation/competition interaction is to build “planes of
influence” at the z level of the model neurons that happen to have the strongest
input signals. When there is a depth-ambiguous area between two unambiguous
-areas, the boundary between the two planes of influence can be quite unstable.
{In stereograms constructed to satisfy these conditions, it is sometimes possible
actually to see the rapid sweep of one depth plane over another (Sperling
(1970]).]

The interaction between adjacent model neurons that represent different
depth planes can result in far-reaching effects that travel like a wave. In other
words, local cooperation/competition can result in global interactions. This is
one of the features that makes cooperation/competition models so interesting
and attractive to theorists. While systems like the one proposed here have been
simulated, I do not know of a comprehensive mathematical treatment; it seems
to be a worthwhile area of investigation.

The cooperation/competition mechanism that serves binocular vision quite
probably serves other perceptual functions that involve local/global interac-
tions, such as figure/ground relations and depth perception. Interpreting a
portion of a scene as figure causes the area interpreted as figure to spread and to
extend its boundaries to the limits of the area interpreted as ground. Similarly,
seeing an ambiguous motion stimulus (composed of many points) moving in one
direction in one part of a stimulus causes the motion interpretation to be applied
to all other parts.

Summary and conclusion. Simple demonstrations of path-dependent percep-
tual states led to simple, useful descriptive models (potential theory) and to
formidable process models (cooperation/competition networks) that still present
substantial mathematical challenges.
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