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Abstract— Three stages of visual processing determine how internal noise appears to an external observer:
light adaptation, contrast gain control and a postsensory/decision stage. Dark noise occurs prior to
adaptation, determines dark-adapted absolute thresholds and mimics stationary external noise. Sensory
noise ocours after dark adaptation, determines contrast thresholds for sine gratings and similar stimuli,
and mimics external noise that increases with mean luminance. Postsensory noise incorporates perceptual,
decision and mnemonic processes. It occurs after contrast-gain control and mimics external noise that
increases with stimulus contrast (i.e., multiplicative noise). Dark noise and sensory noise are frequency
specific and primarily affect weak signals. Only postsensory noise significantly affects the discriminability
of strong signals masked by stimulus noise; postsensory noise has constant power over a wide spatial
frequency range in which sensory noise varies enormously.

Two parallel perceptual regimes jointly serve human object recognition and motion perception: a
first-order linear (Fourier) regime that computes relations directly from stimulus luminance, and a
second-order nonlinear (nonFourier) rectifying regime that uses the absolute value (or power)-of stimulus
contrast. When objects or movements are defined by high spatial frequencies (i.e., texture carrier frequencies
whose wavelengths are small compared to the object size), the responses of high-frequency receptors are
demodulated by rectification to facilitate discrimination at the higher processing levels. Rectification sacrifices
the statistical efficiency (noise resistance) of the first-order regime for efficiency of neural connectivity and
computation.

1. INTRODUCTION

Bandpass filtering refers to the processing of images or sounds so that they contain
only a narrow range—typically one or two octaves—of component frequencies. In
audition, bandpass filtering is used to create stimuli that stimulate only a small portion
of the basilar membrane. By studying psychophysical responses to stimuli filtered in
different bands, information processing mediated by each portion of the basilar
membrane can be studied.

In vision, the aim of bandpass filtering is to create stimuli that stimulate only one
or a small number of the visual channels that operate in parallel to process visual
stimuli. Ideally, stimuli filtered in high frequency bands would stimulate only receptors
(channels) with small receptive fields. Stimuli filtered in low frequency bands would
stimulate only channels that have large receptive fields. (The term channel is used
here to designate an information processing system characterized by receptors of a
particular size.) As in audition, there is substantial interest not only in how stimuli
that are confined to a single band are processed, but also in how information from
stimuli in different bands is perceptually combined.

With the advent of affordable graphics processors, bandpass filtering has become
an increasingly widespread stimulus manipulation in vision. Working with
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bandpassed stimuli raises to the fore some important issues that are the subject of
this article. With hindsight, we see, as usual, that some of these issues have been
confronted before, but consideration of bandpassed stimuli offers important new
insights. In other cases, new stimuli and procedures raise new questions and offer
new opportunities. This paper coordinates data that have emerged from paradigms
that utilize bandpass filtered stimuli together with a variety of other data in order to
arrive at some general principles of sensory information processing.

2. VISUAL NOISE AT THREE STAGES OF PROCESSING

Consider first a study that was originally designed to determine whether image spatial
frequencies or object spatial frequencies were critical for object discrimination. Parish
and Sperling (1987a,b) filtered individual capital letters in five different spatial
frequency bands (Fig. 1). They studied the role of three factors in the ability of subjects
to identify these letters when they were embedded in noise: (1) the signal-to-noise
ratio, (2) the object-relative spatial frequency band in which the letters-plus-noise
were filtered and (3) the viewing distance (which determined retinal spatial frequency).
They found that identification accuracy was independent of viewing distance over a
range of more than 30:1. In this wide range, retinal spatial frequency did not matter
in determining recognition accuracy; only object spatial frequency mattered. On the
other hand, visual sensitivity to sine gratings at threshold varies enormously within
the same range of retinal frequencies. In this section, we examine sine-grating detection
and letter discrimination in order to define the various sources of noise that limit
visual performance.

2.1. Additive and multiplicative noise

We consider two kinds of noise; additive noise and multiplicative noise. The term
additive noise is used here to denote a stationary noise source that is independent
of the signal and is added to the signal. Additive noise can be overcome by increasing
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Figure. 1. Upper: A sample of the letter G filtered in five spatial frequency bands. The number above the
band indicates the 2D mean frequency (cycles per letter height) of the approximately two-octave wide
band. Lower: The filtered letter plus noise in the same bands with a signa]-to'-noise ratio of 0.50 in all
panels. The effective s/n in the reproduction is somewhat lower (from Parish and Sperling, 1987a).
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signal strength until the effective signal-to-noise ratio is sufficient to support the
desired level of performance. -

Multiplicative noise is proportional to the signal, that is, it multiplies the signal. ‘ e
For example, in a binary (dark-grey/light-grey) image, reversing the contrast of 8 £
(multiplying by — 1) a randomly chosen 10 percent of the pixels would be a form of
multiplicative noise. Increasing the intensity or the contrast of the image would not
alter its signal-to-noise ratio. Multiplicative noise is equivalent to adding noise
whose expected power is proportional to signal power. Several authors have noted
the distinction between additive and multiplicative noise (e.g., Legge and Foley, 1980;
Carlson and Klopfenstien, 1985; Legge et al., 1987; Pavel et al., 1987).

Loss of information that results from too-sparse sampling of the stimulus also can ;
be regarded as a form of multiplicative noise (e.g., Legge et al., 1987). To sample a :
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signal means multiplying it by & in the neighborhoods of the sampled points and by
zero elsewhere. (The constant & is chosen so that the energy of the original signal is - , ‘
preserved in the sampled signal) For many applications, multiplying parts ofa signal 7T N
by zero (in sampling) is equivalent to multiplying parts of it by random numbers RO — e ,
(multiplicative noise). In both cases, as the perturbation increases, information z
eventually is lost (noise), and the lost information cannot be recovered by increasing
signal strength (multiplicative noise).
Multiplicative noise cannot be responsible for detection or discrimination
thresholds that are reached by reducing the strength of a signal. Because multiplicative
noise declines proportionately with diminishing signal strength, weak signals are not
worse off than strong signals. Because sufficiently low-luminance or sufficiently
low-contrast visual signals are not visible, we infer that the internal noise that limits
vision at low contrasts is better represented as additive rather than as multiplicative
noise.
There are many visual discrimination tasks in which increasing stimulus luminance
or contrast does not improve performance. Consider six examples. In attempting to
detect a spatial sine wave grating embedded in noise, with a fixed signal-to-noise
ratio, the contrast of the display as a whole has no effect on performance once a
critical contrast is reached (Pelli, 1981). In detecting spatial amplitude modulation
of a one-dimensional spatial noise, once about eight times the contrast threshold for
the noise is reached, further increases in overall contrast do not make the modulation
more detectable (Jamar et al., 1982; Jamar and Koenderink, 1985). In Parish and
Sperling’s (1987b) letter-in-noise discrimination task, only the signal-to-noise ratio )
matters.! In discriminating direction of motion, once a contrast of about 0.05 is
reached, further increases in contrast do not improve performance (Nakayama and
Silverman, 1985). Similarly, in audition, typically the signal-to-noise ratio (and not
the absolute signal strength) determines performance. For example, when a noisy
radio broadcast is loud enough to be distinctly heard, making it louder does not
make it more intelligible. The visual analog, the independence of the discriminability
of noisy, dynamic visual signals upon the stimulus contrast at which they were viewed
was verified over a 4:1 range of contrasts by Pavel et al. (1987). In such cases,
human performance appears to be characterized by multiplicative noise.
From a theoretical point of view, it is important to note that systems, which appear /
upon external examination to have identical multiplicative noise, may have vastly
different internal mechanisms for generating their behavior. Viewed externally, the
internal operation of multiplying the noise by a factor k before adding it to the signal
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is equivalent to the internal operation of dividing the signal by k before adding it to
the noise. Both result in the same internal signal-to-noise ratio. The equivalence of
dividing signals by k and multiplying noise by k suggests gain control as a physio-
logically plausible internal mechanism to mimic multiplicative noise: The gain-
control multiplies input signals by 1/k before a constant-power internal noise is added.

2.2. Three sources of visual noise

To understand how internal noise sources appear when viewed from the outside, it
is useful to consider three stages of visual processing: light adaptation, contrast gain
control, and postsensory processing (which includes perceptual, attentional,
mnemonic, decision, and response processing). Figure 2 illustrates a flow chart for
the computations carried out by these early stages. The particular mechanisms
indicated in Fig. 2 for light adaptation and for contrast-gain control are based on
physiologically plausible principles. They are vastly oversimplified and serve to
illustrate the functional principles of the processes of light adaptation and gain control
rather than the precise details (cf. Shapley and Enroth Cugell, 1986). For example,
the flow chart omits the division of signals into two distinct pathways that carry
only positive and only negative signals (the on-center and the off-center neurons),
parallel spatial frequency channels are not explicitly treated, there is no gain control
for w,, and so on.

Three stationary noise sources are illustrated in Fig. 2; each has constant expected
power and an unchanging frequency spectrum. The three stages at which noise is
added are (1) directly at the input, (2) after light adaptation and (3) after contrast-gain
control.

2.3. Dark noise

In absolute darkness, the spontaneous activity of the visual receptors, rods and cones,
is represented as dark noise (Barlow, 1956, 1957). Dark noise is prior to any processes
responsible for light adaptation. To be reliably detected against a totally dark
background, a signal must exceed not only the level of dark noise but also the
combined level of all noise in the visual pathways. However, it would be expected
that, through evolution, absolute threshold would be determined primarily by dark
noise. That is, for receptors to serve most efficiently, their amplification gain would
have increased (through evolution) up to the point where the receptor noise itself
was the limiting factor.

2.4. Sensory noise

Sensory noise is the limiting noise in the detection of weak signals against uniform
backgrounds. For example, by definition, a spatial sine wave grating with a contrast
of 0.0001 has an absolute modulation that is proportional to its mean luminance.
The brighter the illumination, the greater its absolute modulation. If there were no
sensory noise, then increasing the absolute modulation of a spatial sinewave grating
by increasing its mean luminance at constant contrast ultimately would increase its
absolute modulation to the point of visibility (even with quantal noise in the stimulus).
However, at high luminances, grating stimuli are visible very nearly in proportion
to their contrast, not to their absolute modulation (Weber’s Law). The essential fact
of sensory noise is that, when viewed from outside the system at moderate to high

intensities, apparent noise power increases with absolute modulation rather than -
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remaining constant. To model noise that apparently increases with the mean
luminance (background intensity), the sensory noise source is placed after (central
to) the gain control that modulates visual responsiveness as a function of intensity.
Constant sensory noise, placed after the intensity gain-control mechanism, mimics
an external additive noise that increases as a function of background intensity.

2.4.1. Sensory noise, Weber’s law, quantal fluctuations. Weber’s law asserts that the
minimum detectable increment in intensity AS increases in direct proportion to
background intensity S on which it is superimposed; at threshold: AS/S = k, a constant.
Assume that, at threshold, a constant signal-to-noise ratio is required at the detector
itself: s/n = {signal amplitude}/{root-mean-square (RMS) noise amplitude}. Indeed, the
effective signal-to-noise ratio of the stimulus at the detector is equivalent to the &’
statistic of signal detection theory (Green and Swets, 1966). Internal noise after
adaptation to the background is equivalent to external noise whose RMS power
increased in proportion to the background intensity: either results in Weber’s law
behavior because, to maintain a constant signal-to-noise ratio, the threshold increment
would have to increase in direct proportion to the mean background. Thus, sensory
noise is assumed to be the source of Weber’s law.

Most visual stimuli are produced by sources that can, for practical purposes, be
approximated as quantal emitters. This means that, even with a nominally constant
stimulus, the number of quanta collected by the retina in any given area varies from
occasion to occasion and is characterized by a Poisson distribution. The variance of
the Poisson distribution is equal to its mean; therefore, the RMS power of quantum
noise increases in direct proportion to the square root of the luminance of visual
stimuli. Because quantal noise increases with the stimulus amplitude, it usually is
considered in conjunction with sensory noise.

The full analysis of quantal noise in the stimulus itself together with such factors
as the blur of the visual optics and the spacing of retinal cone receptors is quite
complex. For example, Banks et al. (1987) and Geisler (1989) applied such an analysis
to contrast detection thresholds for sine wave stimuli of spatial frequencies from 5
to 40 c/deg, at mean luminances from 3.4 to 340 cd/m? (10.7 to 1068 trolands). Stimuli
at each frequency consisted of seven sine cycles; i.e., the stimuli of different spatial
frequencies were scaled replicas of each other. Once all the preneural factors cited
above had been taken into account, at the observed thresholds, the stimulus s/n at
the detector was constant (Banks et al, 1988). The most ' parsimonious
interpretation is that sensory noise is negligible compared to quantal stimulus noise
for these stimuli. For sine wave gratings at lower spatial frequencies than 5c/deg and
for more intense stimuli at all spatial frequencies, sensory noise becomes quite
significant relative to quantal noise. At very low levels of background luminance,
dark noise becomes important (Geisler, 1989). Indeed, a model such as that of Fig. 2,
together with threshold data obtained at different adaptation levels, offers a clear
distinction between, and independent estimates of, residual sensory noise and dark
noise.

2.5. Postsensory noise

In the suprathreshold experiments with added external noise discussed above,
detection depended only on the signal-to-noise ratio s/n and not on the contrast
at which these signals-plus-noise were viewed. In terms of a model, the dependence
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of objective performance measures (such as direction-of-motion judgments, intel-
ligibility scores, letter discriminations) on s/n and their independence of stimulus
contrast is represented by a contrast-gain control that equates all signals that exceed
a minimal contrast level. For example, the input/output function illustrated in the
contrast-gain control box of Fig. 2 is shaped like a logistic function with an asymptotic
output of — 1 for large negative contrasts and an asymptotic output of + 1 for large
positive contrasts. A constant noise source that was located centrally to (added after)
such a gain control would appear to an external observer to be equivalent to an
external noise source that was directly proportional to contrast in those ranges of
input where the gain-control was near its asymptotes.

From a functional point of view, all noise sources that are added after contrast-gain
control will appear externally to be multiplicative noises, proportional to stimulus
contrast. There are many such sources. Consider a two-alternative forced-choice
intensity discrimination task. In successive intervals, an observer is presented with,
for example, sounds of intensity 40 and 41db and required to say which interval
contained the louder sound. Generally, observers do better in a pure block of trials
(only two sounds 40 and 41db occur) than in a mixed block (e.g., trials with 40 and
41db mixed in with trials containing 60 and 61db, a ‘roving’ discrimination—
Berliner and Durlach, 1973). In the pure block, the inability of the human observer
to equal the performance of the ideal observer is attributed to a combination of
(human) sensory and decision noise. In the mixed block, there is additional ‘context’
noise due to an attentional/mnemonic component. In an identification task, where
observers must identify (name) each stimulus (e.g., 40, 41, 60, 61 db), their performance
can be characterized as being further degraded by mnemonic noise.

The relative levels of performance in any two complex detection, discrimination,
or identification tasks will be determined by a combination of shared noise sources
and task-specific noise sources, (€.g., MacMillan, 1987). All these postsensory noise
sources are grouped together. under the heading of postsensory noise, representing

. perceptual, contextual, decision, attentional, mnemonic and response processes that,
according to the task, add noise after contrast-gain control.

To recapitulate: In vision, at threshold, sensitivity is governed by the intrinsic
additive noise of the visual system (Pelli, 1981). Above threshold, matters apparently
are quite different. “The notion of the observer’s equivalent noise, which has been so
useful in understanding detection, is found not to be relevant at suprathreshold
contrasts.” (Pelli, 1981, p. 121.) However, to formulate coherent theories of
performance, we need merely to enlarge the concept of equivalent noise to include
noise sources that, to an external observer, appear to vary with adaptation (because
they are located after adaptation gain control) and noise sources that appear to vary
with stimulus contrast (because they are located after contrast-gain control).

2.6. The efficiency of detection

The efficiency eff of discrimination is the ratio of s?/n? required by an ideal observer
to the s/n? required by a human observer at the same criterion level ¢ of performance:
eff = (si/n)?/(sy/ny)2. Alternatively, efficiency can be expressed as the squared ratio of
human over ideal & when confronted with the same stimuli: eff = (d,/4))*. Efficiency
represents an estimate of how much less information than the human the ideal
observer needs in order to match the human’s performance. For example, in a visual
display of n independent, equivalently informative pixels, eff is the fraction of the n
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pixels that the ideal observer needs to observe in order to match human performance.

Experimental determinations of efficiency establish an upper bound on the power
of the human internal noise sources. Parish and Sperling (1987a) determined the
efficiency of human discrimination in identifying visual letters masked by noise
When both the letters and noise were passed through a filter centered at 1.05 cycles
per letter height, efficiency exceeded 0.40. Furthermore this high efficiency was
observed over a 30:1 range of viewing distances. At the different viewing distances,
these stimuli are transduced by visual channels characterized by vastly different retinal
spatial frequencies. The constant high efficiency in a range where sensory noise varies
enormously suggests that information loss in the visual pathway before the point of
po_stsensory noise was negligible. In terms of noise sources, this means (1) that dark
noise and sensory noise were negligible compared to stimulus noise and (2) the
postsensory noise in the optimal band was of approximately the same power as the
real stimulus noise (because the efficiency was near 0.5). Over the enormous range
of spatial frequencies subserved by these channels, efficiency was determined primarily
by postsensory noise. ’

3. LETTER DISCRIMINATION, NOISE AND THE SPATIAL
MODULATION TRANSFER FUNCTION (MTF)

The MTF, also called the contrast transfer function, is the function that gives the
contrast modulation of a sinewave grating at its threshold of detection as a function
of its spatial frequency (Fig. 3). The question we address here is: How do the results
of Parish and Sperling’s letter discrimination experiments relate to what is already
kpovyn ' about sine-wave detection? First, Parish and Sperling’s (1987a) letter
d1scrxm1r'1ation experiments involved an enormously greater range of low spatial
freguenmes than are typically used. In the range of retinal spatial frequencies for
which data from both kinds of experiments are available, contrast threshold ranges
from a minimum of 0.002 at 5-8c¢/deg to a maximum of 0.07 at 37 ¢/deg (e.g., van
Nes and Bouman, 1967, cf. Fig. 3). [The frequency of 37 c/deg is the mean retinal
fr'equency of Parish and Sperling’s highest frequency band 5d at its longest viewing
dlst?mce; the most detectable retinal sine frequencies (5c/deg) are produced by
Parish and Sperling’s frequency bands 3d, 4c, and 5b (Fig. 3) at closer viewing
fiistances.] In the letter-in-noise experiment, observed discrimination efficiericy was
independent of the mean retinal frequency (varying only with object spatial frequency)
whereas, in the sine-wave grating detection experiment, threshold sensitivity for
sinusoidal gratings varies from 0.07 to 0.002, a factor of 35, within the same frequency
range (Fig. 3). Indeed, the combination of filter frequency with viewing distance in the
letter-in-noise discrimination experiment produced retinal frequencies that varied
over a range of more than 200:1 (Fig. 3), and discrimination was independent of
retinal spatial frequency throughout this entire range.

Figure 3 illustrates the division of spatial frequencies into three regions:

(1) The top region which represents invisible sinusoidal gratings—their contrast
is below detection threshold.

(2) A middle region, indicated in grey, in which detection is governed by quantal
and sensory noise. In this region, increasing stimulus contrast improves performance.

(3) The lower region in which postsensory noise predominates. Here, noise is
proportional to contrast so performance is independent of contrast. The numbers
indicate the center frequency (projection on the x-axis) of various bandpass stimulus
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Figure 3. The contrast modulation transfer function (MTF) and the frequency ranges of the letter-in-noise
stimuli of the Parish and Sperling letter discriminaton experiments, The MTF gives the contrast detection
threshold for sine gratings as a function of their retinal spatial frequency; it is based on data of van Nes
and Bouman (1967). Stipling indicates the area, near threshold, where quantal noise and additive sensory
noise predominate. Noise also predominates in the whole upper portion of the graph, where stimuli are
invisible. Each open, downward facing rectangle indicates the approximate retinal half-bandwidth of an
object frequency band (1-5, Fig. 1) at one of the viewing distances (a = closest, d = furthest) used by Parish
and Sperling (1987a). The horizontal placement of the corresponding number/letter symbol indicates the
mean retinal frequency of the stimulus; symbols (b, ¢) for intermediate viewing distances also are shown.
The stimulus symbols are placed vertically at a contrast > 109 to indicate that for all larger contrasts
(downward in the figure), performance is independent of contrast, i.¢., it is controlled by multiplicative noise.

conditions of the Parish-Sperling study, and the approximate contrast level (0.1,
projection on the y-axis) at which performance becomes independent of stimulus
contrast.

Previously, Jamar and Koenderink (1985) had noted an apparent independence of
spatial-frequency in the detection of amplitude modulated noise gratings. They
investigated a relatively small range of frequencies and did not determine the efficiency
of detection. In letter detection, the enormous range of frequency invariance, and
the extremely low level of decision noise (as demonstrated by comparison with ideal
detectors) is truly astounding.

Detection thresholds for sine gratings vary enormously with retinal spatial
frequency in precisely the same range of frequencies where the discrimination threshold
for letters-in-noise is constant. The difference between the two experiments is readily
interpreted in terms of the levels<of-noise model. The detection of low-contrast
spatial gratings is limited by quantum noise in the stimulus and by sensory noise;
the discrimination of letters-in-noise is limited by postsensory noise. Whereas
letter-in-noise discrimination is unaffected by stimulus contrast over a wide range,
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stimulus contrast is the dependent variable in the grating detection experiment. Indeed,
the grating detection experiment can be viewed as indicating the effective power of
quantal plus sensory noise as a function of spatial frequency. We say ‘effective power’
because there is no provision in the simple stage model for input amplification that
may vary as a function of spatial frequency; input gain is incorporated into sensory
noise.

3.1. Conclusions

Representing grating detection and letter-in-noise discrimination as noise limited

processes yields the following conclusions: (1) Sine grating detection at low stimulus
contrasts is limited by quantal noise (Banks et al., 1988) and by sensory noise (Pelli,
1981) each of which varies little with stimulus contrast but varies greatly with retinal
spatial frequency and with mean luminance. (2) Letter detection at stimulus contrasts
greater than about 0.10 is limited by apparently multiplicative noise that is
proportional to stimulus contrast but is independent of spatial frequency (for a
100-fold range of retinal spatial frequencies). (3) When letters are discriminated in
external noise which deliberately is not negligible, the effective internal noise
apparently varies multiplicatively with stimulus contrast. These -empirical
relationships follow from the stage model of Fig. 2; and they are illustrated in Fig. 3.
(4) Sensory and postsensory noise are independent and vary differently with spatial
frequency. For example, the channel that transduces 5c/deg has the lowest sensory
noise, but it has the same decision noise as the channel that processes 37 c¢/deg, which
has 35 times more sensory noise.

3.2. Analogous phenomena in psychoacoustics

A similar pattern of strong frequency dependence of threshold detection and frequency
independence of high-intensity discrimination occurs in psychoacoustics. For example,
absolute intensity-detection thresholds AI(f) for sinusoidal pressure waveforms vary
enormously as a function frequency f. At high signal levels, detection thresholds for
sinusoidal increments AI(f)/I hardly vary with frequency (Reisz, 1928; Robinson and
Dadson, 1956; Jesteadt et al., 1977; see Scharf and Buus, 1986, for a review). Detection
limits at low input levels are quite different from discrimination limits at high input
levels. The nature of these differences is dictated by requirements of having maximally
sensitive receptors and of operating over an enormous dynamic range. Since these
problems are shared by many modalities, we should not be surprised at functionally
similar solutions.

3.3. Advantage of above-threshold gain that is independent of frequency
A visual object is characterized by relations between its component spatial frequencies.
When the object is viewed from nearer or further, these relations do not change, they
are merely transposed up or down the frequency axis. If the visual system had
important gain differences between different spatial frequencies, then these differences
would have to be incorporated into object descriptors in order to preserve object
invariance with scale changes. Clearly, object description at a high level can be more
economical when the low level description accurately represents the object’s spatial
frequency content. Constant gain across frequencies is the simplest way to begin a
scale-invariant description.

An auditory object (e.g., a voice or a tune) is characterized by the relations between
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the component auditory frequencies. To a good approximation, moving closer to or
further from the source corresponds to an overall intensity change. If changing
intensity were to change the internal frequency relations, the internal object descriptor
would have to be intensity (distance) dependent, an enormous complication. Near
threshold, the internal representation of sounds (or visual stimuli) inevitably reflects
the ear’s (or the eye’s) frequency sensitivity. Above threshold, it would be desirable
for object descriptions to be intensity invariant. Indeed, the further above threshold,
the less auditory and visual discriminations vary as a function of frequency.

4. WHY YOU CAN'T SEE THE FOREST FOR THE TREES:

THE ECONOMICS OF CONNECTIVITY

In audition, frequencies above 20 000 Hz are too high to be audible and amplification
will not make them audible. In vision, apparently, the opposite occurs. For example,
in Parish and Sperling’s (1987a) letter discrimination task with two-octave-wide bands,
the higher the center frequency of the band, the more discriminable the letters. Is
there an upper visual object frequency at which the trend to improved discriminability
reverses? What happens as visual stimuli are filtered in higher and higher spatial
frequency bands?

Consider first an ideal letter stimulus in which the letter has perfect zero-one step
edges (Fig. 4b). When such an edge is bandpass filtered, for example, by a difference
of Gaussians filter (Fig. 4a), the results are alternate dark-light stripes centered at the
edge (Fig. 4c). When the frequency spectra of different filter bands are related by
simple translation on a log frequency axis (ie., the frequency filters differ only in
scale), the basic shape of the bandpass filtered edge is independent of the center
frequency of the filter. By suitably scaling the abscissa, we arrive at a canonical
representation like that of Fig. 4(b) and 4(c) in which, as frequency band changes, only
the distance between edges changes, not the shape of the edge representation.

Obviously, the higher the filter’s center frequency, the narrower the edge representa-
tion. But spatial bandpass filters operate on object—not retinal—{frequencies. As the
frequency of a band is made higher and higher, the viewer can preserve a constant
retinal frequency by approaching the letter closer and closer, ultimately, with a
microscope. Locally, the edges filtered at different center frequencies f will produce
exactly the same retinal images when the viewing distance is proportional to 1/f.
What changes with viewing distance is the retinal distance between opposite edges
of a letter stroke. In normal viewing, the thickness of a letter stroke may be a few
arcmin. With sufficient magnification, the width of the letter stroke ultimately comes
to occupy degrees or even hundreds of degrees of visual angle. For extremely high
frequency bands, when a letter has been enlarged sufficiently to make its edges visible,
it is physically impossible to view the whole letter at one time. This is the classical
problem of trying to read a newspaper under a high power microscope. Even
individual letters become unrecognizable.

For the cases of letters printed with real ink on real paper, or illuminated letters
on real CRT screens, the scaling problem is similar to the case of ideal letters.
High spatial frequencies represent local texture information about ink droplets and
paper fiber or about how a CRT screen is populated with spots of light-sensitive
phosphor—local texture that obscures the larger landscape. This is the problem of
being unable to see the forest for the trees (Sperling and Parish, 1985). The scale of
observation is inappropriate for the object being observed.
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Figure 4. When is it impossible to see both the forest and the trees? The retinal image of a bandpass
filtered boundary can remain independent of filter frequency f,, by varying the viewing distance d. For
two boundaries that are physically separated by a distance ¢, the retinal distance r is ¢/d. Example:

' (a) Impulse response of f,,, a family of linear spatial filters that differ only in their scale w (e.g.,  is the center.
frequency of the passband). (b) A retinal illuminance distribution I(x) representing the left and right
b_oux?dary.of an ideal white stripe. (c) The retinal illuminance distribution of the filtered image {* f, with
viewing distance d chosen so that d = 1/w. This choice of d normalizes (leaves unchanged) the imamges of

" the bol.mdaries (neighborhoods of dashed lines in b and ¢). Only r varies wth o, not the boundary images
(d) Ultimately, for very large w, r grossly exceeds 360 deg. When it is necessary to view the boundary fron;
extremely close in order to achieve visible detail, it will then be impossible to simultaneously resolve a
boundary (see a tree) and to see both boundaries (see the forest).

4.1. Economy of connection

What is the appropriate scale of observation? This is dictated by the principle of
economy of connection. To compute relations, sensors must be connected to each
other. It is uneconomical for every sensor in a large field to be connected with and
to gompute its relations to every other sensor; typically sensors are connected only
to immediate neighbors and to nearby neighbors. A sensor and its similar neighbors
form a kind of module. The size of the visual receptive field viewed by a module is
inversely related to the module’s characteristic spatial frequency. In this arrangement,
the optimal scale of observation is when the object is of the same order of size as
the receptive field of the sensors so that the object can be entirely described within
a module. Indeed, the center frequency of the most efficient band for letter recognition
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NV

Figure 5. The letter T and receptive fields that have a center frequency of 1 cycle per letter height (in their
higher-frequency dimension). (a) The letter T centered in an even symmetric receptive field. The + and
— signs indicate the sign of the field’s response to spots of light in the indicated areas. (b) Horizontal
cross section showing the sensitivity of the receptive field as a function of position. (¢, d) The letter T within
an odd-symmetric receptive field.

is one cycle per object, i.e., the same order of size as the object. The size relation
between letters and the spatial frequencies that were empirically found to be most
efficient in identifying them is illustrated in Fig. 5. Note that several such spatial
frequency filters, in different orientations and phases, would be required to dis-
criminate between the 26 upper-case letters.

When, on the other hand, much smaller-sized sensors are used to describe a large
object then, in a hierarchically organized system, it requires communication between
modules, communication that occurs only at-higher levels. Empirically, using high
spatial frequencies to describe large objects results in a loss of perceptual efficiency.
Below, we consider some reasons why communication between modules might entail a
loss of information.

5. TWO PROCESSING SYSTEMS

The basic thesis of this section is that there are two processing systems: a Fourier
system that uses phase information and makes local computations within a small
local area (a module); and a nonFourier system that discards phase information and
coordinates computations made in different modules. We approach these general
issues by considering an analogy from radio communication.

5.1. Demodulation

5.1.1. High frequency carriers. In AM (amplitude modulated) radio communica-
tion, the amplitude of a high frequency carrier wave is modulated by the voice
frequencies that are to be transmitted. Voice frequencies of up to about 10000 Hz
are transmitted as amplitude modulations of a 100 000 Hz carrier frequency. The process
of extracting the low-frequency modulating signal from the high-frequency carrier
frequency is demodulation.
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Figure 6. Carrier frequencies, amplitude modulation, and demodulation. (a) A carrier frequency
C(x) = sin(2nf.x). (b) A signal S(x) that consists of an object A which has a large amount of the carrier
f. {one of its characteristic spatial texture frequencies), a second object B which has an intermediate
amount, and the background which has a small amount. () A representation of the actual frequencies in
the image, the image contrast distribution: L(x) = S(x)-C(x), an amplitude modulated carrier. (In visual
scenes, the phase of the carrier is not preserved across objects.) (d) The rectified image. The absolute value of
the image |S(x)- C(x)| is the simplest instantiation of fullwave rectification. (¢) A lowpass filter (Normal density
function). (f) The result of lowpass filtering (d), LP*|S(x)-C(x}|. (The = indicates convolution). The original
signal S(x) has been mostly recovered.
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In visual object recognition, an analogous process of modulation occurs when an
object A, whose overall shape is—by definition—characterized by frequencies around
one cycle per object, is differentiated from its surround by higher frequencies. This
would occur if the object had a surface texture that differed from the background
texture. In that case, a spatial filter tuned to one of the dominant spatial frequencies

in A, say f,, would record a large response wherever A was present, and smaller

responses elsewhere. Another object, B, might contain an intermediate amount of f,
(Fig. 6b) but a larger amount of other spatial frequencies. A texture functions, like a
color, to characterize an object.

There is a close analogy between a characteristic texture frequency and an AM
carrier frequency. The goal of demodulation is the same in both instances. In AM
modulation, demodulation means estimating how much carrier signal (its amplitude)
is present at each instant in time. In a texture-defined object, the problem for the
visual system is estimating how much carrier signal is present at each point in space.
The difference is that the phase of an AM carrier is consistent throughout the signal; the
phase of texture-defined objects is not.

5.1.2. Neural mechanisms of fullwave and halfwave rectification. A simple form of
demodulation involves fullwave rectification (taking the absolute value) of the signal
(Fig. 6d). The modulated carrier is rectified and then lowpass filtered (Fig. 6e and f)
to remove the carrier and higher frequencies; only the original modulating signal
remains. In the visual system, after the initial receptors, positive and negative signals
are carried in separate channels (e.g., on-center, off-center neurons). An alternative
method of transmitting positive and negative quantities is to modulate the resting
firing rate of a neuron up and down. The advantage of using separate positive and
negative channels is that zero signal means zero impulses per second, and so the
average firing rate is minimized.

When there are separate on- and off-channels, to preserve the sign of the signal at
subsequent synapses, the target synapses for on- and off-neurons must operate in
opposite directions (excitation or inhibition, see Fig. 7a). Fullwave rectification is
accomplished when the target synapses of the on- and off-channels operate in the same
direction (see Fig. 7b). Fullwave rectification means that the high-frequency sensors of
the carrier frequency communicate information about their location and the magni-
tude (but not the sign) of their responses to the next higher level of the system. On the
other hand, halfwave rectification (Fig. 7c) corresponds to independent analyses of the
on- and off-channel signals, a process that has been proposed as a mechanism for
locating luminance boundaries (Watt and Morgan, 1985).

Converting the output of high frequency detectors to lower frequencies
(demodulation) is a critical component of object recognition because objects are
defined most efficiently and most economically in the lowest feasible frequency range.
The computational advantage of a hierarchical demodulatory scheme is that pattern
recognition at the higher level can use a single computation that is independent of
the scale or the contrast of the sensors that are transmitting information from lower
levels. Because, in this context, demodulation involves going from higher to lower
spatial frequencies, the pattern recognition algorithm can operate at the lowest
frequency. Using the lowest possible frequencies is computationally efficient because
of the economy of connection: A neuron and its immediate neighbors span the field
of interest.
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Figure 7. How linear transformations, fullwave rectification, and half-wave rectification can be
accomplished in the visual system. On-System refers to neurons that have an on-center/off-surround
receptive field organization (Kuffler, 1953) and that carry signals representing positive local contrasts

. relative to the surround Off-System refers to off-center/on-surround neurons that transmit information about

negative local contrasts. (a) When synapses from an On-System neuron onto a target neuron are excitatory
and Off-System synapses are inhibitory (indicated by the inverting amplifier-1), the sign of input contrasts
is preserved and first-order (Fourier) analysis of the stimulus can occur. (b) Fuliwave rectification occurs
when both On- and Off-System synapses are the same (either excitatory or inhibitory); this results in
second-order signal analysis that is ‘nonFourier’. (c) Positive halfwave rectification occurs when the
On-System signals are analyzed independently; negative halfwave rectification refers to independent analysis
of Off-System signals. Like fullwave rectification, halfwave rectification could be the essential nonlinearity
in a second-order processing scheme.

In letter discrimination, the experimentally measured efficiency of discrimination
was highest (eff = 0.4) at 1 cycle/object, the lowest usable band of spatial frequencies.
Efficiency decreased to 0.1 at 10 cycles/object. Informational inefficiency is an
unavoidable consequence of rectification because a computation that discards the
sign of the input cannot be as efficient as one that takes sign into account. However,
statistical inefficiency is a consequence of, not direct evidence for, demodulation or
rectification. For direct evidence, we turn to other paradigms.

5.2. Direct evidence for two computational regimes in motion
and texture-slant perception

5.2.1 The x,t cross-section of a motion stimulus. Perhaps the most convincing way
to demonstate two computational systems is to embed two conflicting cues, one aimed
at each system, in the same stimulus. The best examples occur in the domain of
motion stimuli. The image of a moving stimulus is a three-dimensional (3D) function
that gives luminance I(x, y, t) as a function of x, y,¢. To represent this 3D function on
a printed page, we use x, ¢ cross-sections that omit the y dimension as illustrated in
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Figs. 8(a) and (b). Figure 8(a) shows a frame-by-frame representation of a rightward

moving black bar; Fig. 8(b), shows the corresponding x, ¢ cross-section. Superimposed

on the bar’s x,t¢ cross-section in Fig. 8(b) is a sinewave. This sinewave is the x,t
cross-section of a sinusoidal grating that is moving at the same velocity as the bar.
This particular moving grating represents one of the largest Fourier components of
the moving bar.

5.2.2. Motion stimuli that can be perceived in either of two directions. Figure 8(c)
shows a space—time representation of a motion stimulus that has conflicting cues—a
contrast-reversing bar, based on Anstis’ (1970) reversed phi phenomenon. The bar
steps sideways across a gray field, alternating its contrast between black (— 1) and
white (+ 1) on each step. The stimulus is Gaussian windowed in space—time so that
only a few steps in the middle of the screen are maximally visible.

In the x, ¢ cross-section, the bar moving to the right appears as a contrast-reversing
diagonal slanting to the right. However, the Fourier sinewave components of the
contrast-reversing bar are slanted down and to the left, indicating Fourier motion
to the left. By rectifying the contrast-reversing bar, ie., taking the absolute value of
its contrast, the result is the stimulus of Fig. 8(b); and its Fourier sinewave components
are slanted downward to the right, indicating rightward motion.

When such a contrast-reversing bar is viewed from near, it seems obviously to
move to the right. However, when it is viewed in peripheral vision, or from a distance,
or at very low contrast, it apparently moves to the left (Chubb and Sperling, 1988a,
1989b). This clearly indicates that observers make two different kinds of motion
computations.

5.2.3. First-order motion perception. From an algorithmic point of view, a motion
extraction system can be regarded as consisting of three consecutive types of
computation: linear filtering, motion extraction, and decision. The first two, filtering
and motion extraction, are carried out in parallel everywhere in visual space. A visual
stimulus is processed first by linear filters in x,y,¢ that determine the range and
amount of spatio-temporal frequencies that enter into the rest of the system, ie., the
linear filters determine the range of frequencies to which the motion system is sensitive.
A second, inherently nonlinear stage, performs elementary local motion extraction
by cross-correlation (Reichardt, 1957; van Santen and Sperling, 1984), spatio-temporal
energy analysis (Adelson and Bergen, 1985), or some other relatively simple
motion-extraction algorithm. At subsequent stages, the extracted motion from the
various different motion detectors in each neighborhood and from various locations
is compiled, and a decision is reached that is appropriate to the response demands.

For motion stimuli, Chubb and Sperling arrive at a functional discrimination
between first-order (Fourier, direct) and second-order (nonFourier, rectified)
processes. The first-order regime is referred to as a Fourier process because it is well
modeled by the type of computation described above. That is, when the stimulus
contains Fourier motion components in the range of spatio-temporal frequencies to
which humans are sensitive, the amount and direction of these Fourier components
directly predicts the amount and direction of perceived motion.

5.2.4. Second-order motion perception. The contrast-reversing bar of Fig. 8(c) is an
example of a class of stimuli for which the direction of perceived motion is opposite
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Figure 8. Stimuli for analyzing second-order processing. (a) An x, y,t representation of successive frames
of a motion stimulus—a black bar moving rightward. (b) An x, ¢ cross-section of (a). A sinewave grating,
representing a dominant Fourier component, has been superimposed on the x, ¢ cross-section. Note that
the detection of direction of motion in x,t is equivalent to the detection of direction of slant in x,y.
(c)An x, t cross-section of a windowed, contrast-reversing bar, a stimulus that appears to move leftward from
afar (first order motion) and rightward from near (second-order motion): A sinewave grating, representing
a dominant Fourier component, has been superimposed on the x,t cross-section to indicate the direction
of Fourier movement. (d,e) x,¢ cross-sections of microbalanced stimuli whose motion is invisible to
first-order motion detectors and whose slant in their x, y representation is invisible to first-order orientation
detectors (e.g,, Hubel-Wiesel cells). (f) A texture quilt. The four rows represent four successive frames of
a dynamic stimulus. The initial extraction of either the low spatial-frequency texture oriented downward
left or of the high frequency texture oriented downward right will enable a first-order motion algorithm
to extract the overall leftward motion (overall slant downward to the left). Texture quilts remain
microbalanced after any purely temporal transformation and require an initial texture extraction followed
by rectification to expose their motion in x,¢ (or orienation in x, y) to standard analysis.
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to the direction of the Fourier motion components. Still other stimuli are perceived
to move in the absence of any appropriate Fourier motion components. These
‘non-Fourier’ motion stimuli are detected by a second-order motion system.

Second-order motion perception is now known to involve a stage of fullwave -

rectification (Fig. 7b) between the initial linear filtering and subsequent motion
extraction. Second-order motion operates over larger retinal distances than does the
first-order (Fourier) system. Additionally, consistent with the lower statistical
efficiency of rectification, the second-order system has higher contrast thresholds than
the Fourier system. Certain values of the parameters of viewing (such as small retinal
size, peripheral retinal location, and low stimulus contrast) increase the relative
strength of the first-order versus the second-order computation.

While the contrast-reversing bar is a simple demonstration stimulus, it does not
enable one to discriminate between a fullwave and a halfwave second-order
computation. Chubb and Sperling (1989b) demonstrate a sideways stepping,
contrast-reversing grating, a stimulus which displays obvious second-order motion
and in which halfwave rectification, alone or in combination with any reasonable
temporal transformation, can be excluded. In displays that were designed to exclude
fullwave rectification and admit only halfwave rectification or Fourier motion analysis,
Sperling and Chubb (1987) did not find significant second-order motion. Thus, the
predominant mechanism of second-order motion perception involves fullwave
rectification. Fullwave rectification also is the dominant mechanism in second-order
texture-slant processing of the x, y patterns that represented the x, ¢ cross-sections of
the motion stimuli in their motion experiments.’

In motion perception, there is a well-established distinction between short-range
and long-range motion processes (e.g., Braddick, 1974; Pantle and Picciano, 1976;
Westheimer and McKee, 1977; Victor and Conte, 1989b). The inadequacy of first-order
motion processing has been amply documented by Ramachandran et al. (1973),
Sperling (1976), Lelkens and Koenderink (1984), Pantle and Turano (1986), and Victor
and Conte (1989a). The properties adduced for the long-range motion perception are
generally those described for second-order motion above, plus a relative insensitivity
to the eye of origin of successive stroboscopic stimuli. To these can be added the
observations of Dosher et al. (1989) and Landy et al. (1987) that first-order motion
supports the kinetic depth effect (KDE, Wallach & O’Connell, 1953) whereby 3D
structure is perceived in 2D moving stimuli, whereas KDE induced by second-order
motion stimuli is weak and of enormously lower resolution (e.g., Prazdney, 1987).

The computations of first-order motion are well embodied in the quite similar
models of Watson and Ahumada (1983), van Santen and Sperling (1984), and Adelson
and Bergen (1985). To supplement these theoretical proposals, van Santen & Sperling
(1984, 1985) generated complex stimuli in which the direction and amount of perceived
motion was opposite to intuition. Experimentally measurements of the perceived
motion were quantatively predicted by their first-order, elaborated Reichardt model.

Chubb and Sperling (1988b, 1989a, b) provided a computational specification of a
second-order motion system. They also provided methods for producing stimuli that
can_be proved mathematically to be directly aimed at one or the other system. One
consequence is that it was easily shown that (retinal) short-range and long-range are
inadequate system descriptions because there is a broad intermediate range in which
both computations operate.
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5.2.5. The equivalence of x, y spatial slant to x,t velocity. The velocity of a moving
vertical line is the slope of its x, z cross-section (Fig. 8a,b). The slant of the line is the
angle corresponding to the slope: slant = tan ™ ! (slope). For any stimulus, velocity in x, t
and slant in x, y are equivalent up to a simple monotonic transformation. The problem
of left-vs.-right direction of motion discrimination for x,t motion stimuli involves
formally identical computations to the problem of left-vs.-right slant discrimination for
x, y spatial texture stimuli (van Santen and Sperling, 1985; Chubb and Sperling, 1987,
1988b).

To extract local texture slant in scenes, Knutsson and Granlund (1983) proposed
a computation in which similarly slanted odd and even linear filters (line and edge
detectors) added their squared (rectified) outputs. The core of their algorithm
anticipates Adelson and Bergen’s (1985) remarkably similar motion algorithm, which
in turn, was shown (by van Santen and Sperling, 1985) to be equivalent to other,
previously proposed motion mechanisms, including the Reichardt correlation detector
(e.g., van Santen and Sperling, 1984) and an elaborated Watson and Ahumada (1983)
detector. Thus, in confronting first-order motion stimuli, the theories of Fourier-based
motion perception and Fourier-based texture-slant perception have followed a parallel
evolutionary path to the same pinnacle of success; when confronted with second-order

‘motion and texture stimuli, the theories arrive at the same abyss.

5.2.6. Drift-balanced and microbalanced second-order motion/texture stimuli. Strong
evidence for two computational regimes is obtained in studies of slant detection in
textured x,y patterns as well as in studies of direction discrimination in one-
dimensional x,: motion perception. Figures 8(d) and (e) show demonstrations of
stimuli that show obvious apparent motion (when presented as x, ¢ motion stimuli)
and obvious slant (orientation) when presented in x, y, as in the illustration.

The stimuli of Fig. 8(d) and (e} are driftbalanced: that is, they are exemplars of
random stimuli in which the expected motion (or slant) is exactly equal for every
pair of oppositely-directed component Fourier frequencies (Chubb and Sperling,
1988b). The overlaid sine gratings of Fig. 8(b) and (c) are an example of two
oppositely-directed Fourier components—their slants in the x,¢ cross-sections are
equal and opposite. The stimuli of Fig. 8(d) and (e) are not only driftbalanced, they are
also microbalanced. This means, roughly, that every little area, whatever its shape,
in these stimuli is driftbalanced. This means that the obvious slant in these x, y stimuli
would be invisible to every linear Hubel-Wiesel cell (i.e., neurons with receptive fields
such as illustrated in Fig. 5). The motion in the x, ¢ versions of the stimuli is invisible
to any standard (Fourier or Reichardt-equivalent) motion detector. Any oriented x, y
filter or oriented x, t motion detector would have the same expected response for any
microbalanced stimulus (in particular, zero, for the stimuli of Fig. 8d and ¢) as for
their mirror-images. Rectification is required to make the x,t motion or x, y slant in
these stimuli accessible to standard slant or motion analysis (Chubb and Sperling,
1988).

5.2.7. Texture quilts prove linear filtering precedes rectification. Figure 8(f) shows
an example of a texture quilt (Chubb and Sperling, 1989a). The essential ingredient
of a texture quilt is a moving patch of texture. The trick is that the spatial phase of
the texture in the moving patch is uncorrelated from frame-to-frame.

The temporal version of texture quilt illustrated in Fig. 8(f) exhibits consistent
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apparent motion; and the spatial version exhibits consistent slant. Although the
adjacent patches in the quilt of Fig. 8(f) differ both in spatial frequency and in slant,
preliminary experiments indicate that apparent motion is perceived in texture quilts
with patches differing only in spatial frequency or only in slant, These results mean
that the early texture grabbers are spatial-frequency selective and that at least some
are orientation specific.

Chubb and Sperling (1990) prove that to make the overall motion in such a texture

quilt accessible to motion analysis requires an initial stage of selective spatial filtering
(texture grabbing) followed by rectification and standard motion (or texture) analysis.
No purely temporal transformation, no matter how complex and nonlinear, can make
this motion (or texture) accessible to first-order analysis. In terms of a perceptual
computation, this means that the texture with which each patch of the texture quilt
is filled must first be extracted and rectified before the information can be used in
a larger-scale slant-extraction or motion-extraction computation to reveal the overall
pattern.

Since the work of Schade (1952) and DeLange (1954), first-order Fourier-based
computations have been the cornerstone of psychophysical analysis.* The examples
of Fig. 8(c, d, €) show the limitations of first-order linear analysis and the necessity of
postulating second-order computations. Texture quilts (Fig. 8f) provide a fine tool for
studying the spatial properties of the second-order processes for perceiving motion
and texture-slant.

5.3. Direct evidence for two computational regimes in distance judgments

As with motion perception and texture-slant perception, distance estimation
experiments also yield evidence for two perceptual proceéssing systems, one Fourier
and one rectifying system. In a three-bar distance estimation experiment, an observer
must judge whether a central line is equally spaced between two flanking bars
(bisection). In a two bar task, the observer directly judges the distance between two
widely separated bars.

5.3.1. Direct estimates of distance. On a grey background, for widely separated
bars, it matters not whether any of the bars is black and the other white, or whether
both are white or both are black (Burbeck, 1987). Indeed, when ‘bars’ are defined by
patches of high frequency gratings so that the bars themselves do not differ in average
luminance from their surround, distance judgments are as accurate as with
solid bars.

That observers accurately judge the distance between widely separated grating
patches virtually guarantees a demodulatory process by means of which the stimulus
grating patch is represented internally as a solid patch. To solve the distance task
with a first-order computation, ie., with linear receptive fields and without
demodulation, would involve horrendous complications. The linear receptive fields
needed for distance judgments are dumbbell-shaped receptive fields with one end of
the dumbbell in each patch. Linear receptive fields are inherently phase sensitive with
responses that vary from negative to zero to positive depending on just where in the
receptive field the stimulus patches fall. Receptive fields would have to be duplicated
for all orientations, distances, pairs of frequencies, and for at least four pairs of spatial
phases (sin, cosine in each patch). Otherwise, for example, distance judgments would

be impossible if the two bars being judged were of different spatial frequencies. In
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fact, the distance between two grating patches of different spatial frequencies is judged
as accurately as the other distances (Burbeck, 1988). Demodulation resolves all these
problems of first-order computations at once by transposing distance judgments to
the lowest common domain.

For closely spaced bars, there is a significant difference in judging distance between
same-contrast and opposite-contrast patterns. Again, there is the telltale
rectification-times-size interaction that indicates two processing regimes: rectification
dominating at large retinal sizes, and direct computation at small retinal sizes.

5.3.2. Bisection. Klein and Levi (1985) used a central line to bisect a spatial interval
defined by two horizontal flanking lines. The flanking lines were either directly above
and below the central line or displaced sideways. Observers judged which interval
was smaller. With large retinal images, the sideways displacement was immaterial;
with small retinal images, it was critical. This difference between results at close
spacings and far spacings of lines in psychophysical judgments led Klein and Levi
(1985) to postulate two regimes of detection mechanisms. They proposed a regime
for small-size computations that relied on efficient linear filters (direct computation),
but they did not propose a specific regime for large-size computations. However, the
failure of the first-order small-size computation to account for the large-size results
is-consistent with the rectification proposal, although Klein and Levi’s results do not
specifically require rectification.

5.4. Two processing regimes: Conclusions
For bandpass filtered objects, different computations will be carried out depending
on whether the object can be coded by neighboring sensors or whether it requires
the coordination of information from distantly separated sensors. Nearest neighbor
computations can use linear filters and can be highly efficient (first-order com-
putations). Distant computations require demodulation (which is carried out by
fullwave rectification) and information that is coordinated at higher levels of the
computational hierarchy (second-order computations). The second-order computa-
tions, because they use rectification for demodulation, sacrifice statistical efficiency
(impaired compared to ideal detectors) for computational simplicity (improved relative
to attempting the computation at the same hierarchical level). Critical issues remain
unresolved: How do first- and second-order. computations combine to determine
perception? To what extent are the noise sources associated with first- and
second-order computations shared or independent?

It seems obvious that counting and labeling (rectification) operations will

+ predominate over linear processes at higher perceptual and cognitive levels of

processing. The surprise has been that simple rectification occurs so eatly in
processing, being involved in retinal gain control and in the earliest stages of motion
and pattern analysis. Presumably the appearance of rectification early in visual
processing is determined by two factors: its economy of neural connectivity in a
hierarchically organized nervous system and its ecological adequacy in our natural
environment.
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NOTES

1. Informal observations. Variations in contrast and luminance were not reported in Parish and Sperling
(1987a).

2. The nomenclature was suggested by P. Cavanagh (1990),

3. Although it is embedded in a much more complex framework, Grossberg and Mingolla (1985)
incorporate a fullwave rectifying stage in their general model of texture and boundary perception that
appears to deal with second-order stimuli. However rectification and similar nonlinear operations such
as squaring do not, in and of themselves, imply second-order processing. For example, Adelson
and Bergen’s (1985) detector of directional motion energy is equivalent to the Reichardt motion model
(van Santen and Sperling, 1984, 1985) and to Knutsson and Grandlund’s (1983) texture-orientation
model. All of these models embody a nonlinear squaring stage (or the equivalent) and they merely
perform first-order computations; none can detect second-order motion or orientation.

4. Ives (1922) anticipated subsequent linear theories of visual threshold phenomena but he was ignored
by the psychophysicists of his time because they did not understand linear systems theory.





