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Abstract-To determine which spatial frequencies are most effective for letter identification, and whether 
this is because letters are objectively more discriminable in these frequency bands or because can utilize 
the information more efficiently, we studied the 26 upper-case letters of English. Six two-octave wide filters 
were used to produce spatially filtered letters with ZD-mean frequencies ranging from 0.4 to 20 cycles per 
letter height. Subjects attempted to identify filtered letters in the presence of identically filtered, added 
Gaussian noise. The percent of correct letter identifications vs s/n (the root-mean-square ratio of signal 
to noise power) was determined for each band at four viewing distances ranging over 32 : 1. Object spatial 
frequency band and s/n determine presence of information in the stimulus; viewing distance determines 
retinal spatial frequency, and affects only ability to utilize. Viewing distance had no effect upon letter 
discriminability: object spatial frequency, not retinal spatial frequency, determined discriminability. To 
determine discrimination efficiency, we compared human discrimination to an ideal discriminator. For our 
two-octave wide bands, s/n performance of humans and of the ideal detector improved with frequency 
mainly because linear bandwidth increased as a function of frequency. Relative to the ideal detector, 
human efficiency was 0 in the lowest frequency bands, reached a maximum of 0.42 at 1.5 cycles per object 
and dropped to about 0.104 in the highest band. Thus, our subjects best extract upper-case letter 
information from spatial frequencies of 1.5 cycles per object height, and they can extract it with equal 
efficiency over a 32: 1 range of retinal frequencies, from 0.074 to more than 2.3 cycles per degree of visual 
angle. 

Spatial filtering Scale invariance Psychophysics Contrast sensitivity Acuity 

INTRODUCTION 

Characterizing objects 

When we view objects, what range of spatial 
frequencies is critical for recognition, and how 
is our visual system adapted to perceive these 
frequencies? Ginsburg (1978, 1980) was among 
the first to investigate this problem by means of 
spatial bandpass filtered images of faces and 
lowpass filtered images of letters. He noted the 
lowest frequency band for faces and the cutoff 
frequency for letters at which the images seemed 
to him to be clearly recognizable. The cutoff 
frequency for letters was l-2 cycles per letter 
width; faces were best recognized in a band 
centered at 4 cycles per face width. He also 
proposed that the perception of geometric visual 
illusions, such as the Mueller-Lyer and Poggen- 
dorf, was mediated by low spatial frequencies 
(Ginsberg, 1971, 1978; Ginsberg & Evans, 
1979). 

*To whom reprint requests should be addressed. 

An issue that is related to the lowest fre- 
quency band that suffices for recognition is the 
encoding economy of a band. For a filter with 
a bandwidth that is proportional to frequency 
(e.g. a two-octave-wide filter), the lower the 
frequency, the smaller the number of frequency 
components needed to encode the filtered image 
of a constant object. Combining these two 
notions, Ginsburg concluded that objects were 
best, or most efficiently, characterized by the 
lowest band of spatial frequencies that sufficed 
to discriminate them. Ginsburg (1980) went on 
to suggest that higher spatial frequencies were 
redundant for certain tasks, such as face or 
letter recognition. 

Several investigators were quick to point out 
that objects can be well discriminated in various 
spatial frequency bands. Fiorentini, Maffei and 
Sandini (1983) observed that faces were well 
recognized in either high or in lowpass filtered 
bands. Norman and Erlich (1987) observed that 
high spatial frequencies were essential for dis- 
crimination between toy tanks in photographs. 
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With respect to geometric illusions, both Janez 
(1984) and Carlson, Moeller and Anderson 
(1984) observed that the geometric illusions 
could be perceived for images that had been 
highpass filtered so that they contained no 
low spatial frequencies. This suggests that low 
and high spatial frequency bands may carry 
equivalently useful information for higher visual 
processes. 

Characterizing the visual system 

In the studies cited above, the discussion of 
spatial filtering focuses on object spatial fre- 
quencies, that is, frequencies that are defined in 
terms of some dimension of the object they 
describe (cycles per object). Most psychophysi- 
cal research with spatial frequency bands has 
focused on retinal spatial frequencies, that is, 
frequencies defined in terms of retinal coordi- 
nates. For example, the spatial contrast sensi- 
tivity function (Davidson, 1968; Campbell & 
Robson, 1968) describes the threshold sensi- 
tivity of the visual system to sine wave gratings 
as a function of their retinal spatial frequency. 
Visual system sensitivity is greatest at 3-10 
cycles per degree of visual angle (c/deg). How 
does visual system sensitivity relate to object 
spatial frequencies? 

Unconfounding retinal and object spatial 
frequencies 

Retinal spatial frequency and object spatial 
frequency can be varied independently to deter- 
mine whether certain object frequencies are best 
perceived at particular retinal frequencies. Ob- 
ject frequency is manipulated by varying the 
frequency band of bandpass filtered images; 
retinal frequency is manipulated by varying the 
viewing distance. 

The cutoff object spatial frequency of lowpass 
filters and the observer’s viewing distance were 
varied independently by Legge, Pelli, Rubin and 
Schleske (1985) who studied reading rate of 
filtered text at viewing distances over a 133 : 1 
range. Over about a 6 : 1 middle range of dis- 
tances, reading rate was perfectly constant, and 
it was approximately constant over a 30: 1 
range. At the longest viewing distances, there 
was a sharp performance decrease (as the 
letters became indiscriminably small). At the 
shortest viewing distance, performance de- 
creased slightly, perhaps due to large eye move- 
ments that the subjects would have to execute 
to bring relevant material towards their lines of 

sight, and to the impossibility of peripherally 
previewing new text, 

While viewing distance changed the overall 
level of performance in Legge et al., the cutoff 
object frequency of their low-pass filters at 
which performance asymptoted did not change. 
From this study, we learn that reading rate can 
be quite independent of retinal frequency over a 
fairly wide range, and that dependence on criti- 
cal object frequency does not depend on viewing 
distance. Because the authors measured reading 
rate only in lowpass filtered images, we cannot 
infer reading performance in higher spatial fre- 
quency bands from their data. 

&confounding object statistics and visual system 
properties 

Human visual performance is the result of the 
combined effects of the objectively available 
information in the stimulus, and the ability of 
humans to utilize the information. In studying 
visual performance with differently filtered im- 
ages, it it critical to separate availability from 
ability to utilize. For example, narrow-band 
images can be completely described in terms 
of a small number of parameters-Fourier 
coefficients or any other independent descrip- 
tors-than wide-band images. Poor human 
performance with narrow-band images may 
reflect the impoverished image rather than 
an intrinsically human characteristic-an ideal 
observer would exhibit a similar loss. 

The problem of assessing the utility of stimu- 
lus information becomes acute in comparing 
human performance in high and in low fre- 
quency bandpass filtered images. Typically, 
filters are constructed to have a bandwidth 
proportional to frequency (constant bandwidth 
in terms of octaves). For example, Ginsburg 
(1980) used faces filtered into 2-octave-wide 
bands; while Norman and Ehrlich (1987) also 
used 2-octave bands for their filtered tank pic- 
tures. With such filters, high spatial frequency 
images contain more independent frequencies 
than low frequency images. 

Although linear bandwidth represents per- 
haps the important difference between images 
filtered in octave bands at different frequencies, 
the informational content of the various bands 
also depends critically on the nature of the 
specific class of objects, such as faces or letter. 
Obviously, determining the information content 
of images is a difficult problem. When it is not 
solved, the amount of stimulus information 
available within a frequency band is confounded 
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with the ability of human observers to use the 
information. Direct comparisons of perform- 
ance between differently filtered objects are 
inappropriate. This distinction between objec- 
tively available stimulus information and the 
human ability to use it has not been adequately 
posed in the context of spatial bandpass 
filtering. 

Eficiency 

In the present context, physically available 
information is best characterized by the per- 
formance of an ideal observer. If there were no 
noise in the stimulus, the ideal observer would 
invariably respond perfectly. To compare the 
performance of an observer, human or ideal, 
noise of root-mean-square (r.m.s.) amplitude n 
is progressively added to the signal of r.m.s. 
amplitude s until the performance is reduced to 
some criterion, such as 50% correct in a letter 
identification task. This defines the signal to 
noise ratio, (s/n), , for a criterion c. Efficiency efl 
of human performance is defined by: 

where h and i indicate human and ideal observ- 
ers, and s and n are r.m.s. signal and noise 
amplitudes (Tanner & Birdsall, 1958). In a pure, 
quantally limited system, efficiency actually 
represents the fraction of quanta absorbed 
(utilization efficiency). In the context of signal 
detection theory, efficiency is given by a d’ ratio: 

efl= (di/d1)2. 

Overview 

For an object that contains a broad spectrum 
of spatial frequencies, object spatial frequency is 
determined by the center frequency of a spatial 
bandpass filtered image. Retinal spatial fre- 
quency is determined by the viewing distance at 
which the stimulus is viewed. Stimulus infor- 
mation is determined jointly by the signal-to- 
noise ratio, by the spatial filtering, and by the 
characteristics of the set of signals; these three 
informational components are combined in the 
efficiency computation. Letters are a convenient 
stimulus to study because they are highly over- 
learned so that human performance can be 
expected to be reasonably efficient, and because 
much is already known about the visibility of 
letters in the presence of internal noise (letter 
acuity) and about the visual processing of 
letters. 

Specifically, to determine the roles of object 
and retinal spatial frequencies, letters are 
filtered into various frequency bands. Noise is 
added, and the psychometric function for cor- 
rect identification is determined as a function 
of s/n. Accuracydepends only on s/n and not on 
overall contrast, for a wide range of contrasts 
(Pavel, Sperling, Riedl & Vanderbeck, 1987). 
This determination is repeated for every combi- 
nation of object frequency band and viewing 
distance. Thereby, retinal spatial frequency 
and object spatial frequency are unconfounded, 
enabling us to determine whether a particular 
object frequency band is better di~~minated 
in one visual channel (retinal frequency) than 
any other (Parish & Sperling, 1987a, b). More- 
over, by computing an ideal observer for the 
identification task, we obtain an objective 
measure of the information that is present in 
each of the frequency bands. Finally, the com- 
parison of human performance with the per- 
formance of the ideal observer gives us a precise 
measure of the ability of our subjects to utilize 
the information in the stimulus. Having 
untangled these factors, we can determine which 
spatial frequencies most efficiently characterize 
letters for identification, 

METHOD 

Two experiments were conducted using simi- 
lar stimuli and procedures. 

Stimuli 

Letters (signals) and noise. The original, 
unfiltered letters were selected from a simple 
5 x 7 upper-case font commonly used on CRT 
terminals. Since this is an experiment in pattern 
recognition, we felt that the simplest letter pat- 
tern might be the most general; indeed, this font 
has been widely used in letter discrimination 
studies. For the purpose of subsequent spatial 
filtering, the letters were redefined on a pixel 
grid that measured 45 (vertical height) x 35 
(maximum horizontal extent of letters M and 
W). The letters had value 1 (white); the back- 
ground had value 0 (black), To avoid edge 
effects in filtering, the background was extended 
to 128 x 128 pixels for all computations. How- 
ever, only the center 90 x 90 pixels of the stimu- 
lus were displayed, as these contained effectively 
all the usable stimulus information, even for 
low spatial-frequency stimuli. Letters for pres- 
entation were chosen pseudo-randomly from 
the set of 26 upper-case English letters. Noise 



1402 DAVID H. PARISH and GEORGE SPERLING 

Table 1. Parameters of the bandpass filters: lower and upper 
half-amplitude frequencies, peak, and Xl mean frequencies 

in cycles/letter height 

Band Lower Peak Upper Mean” 

0 0 Lowpass 0.53 0.39 
1 0.26 0.53 1.05 0.74 
2 0.53 1.05 2.11 1.49 
3 1.05 2.11 4.22 2.92 
4 2.11 4.22 8.44 5.77 
5 6.33 Highpass 22.5 20.25 

‘%equencies are weighted according to their squared ampli- 
tude (power) in computing the mean. 

fields were defined on a 128 x 128 array by 
choosing independent Gaussian noise samples 
for each pixel, with the mean equal to zero and 
a variance a2 as required by the condition. (As 
with the letters, only the central 90 x 90 pixels 
were displayed.) Forty different noise fields were 
created. 

Fiiters. Each stimulus consisted of a filtered 
letter added to an identically filtered noise field. 
Six spatial filters were available, co~esponding 
to six successive levels of a Laplacian pyramid 
(Burt & Adelson, 1983). The zero-frequency 
component was added to the images so that they 
could be viewed. The object-relative filter 
characteristics, upper and lower half-amplitude 
cutoff and 2D mean frequency (cycles per 
letter height), appear in Table 1. The 2D mean 
frequency 7 for a given band is: 

127 127 

f= c c fx,yd.y 
x=oy=o 

where sX,, is the 2D frequency and a,,, is its 
amplitude. Cycles per object height is used 
rather than the more usual cycles per object 
width because the height of our upper-case 
letters remained constant across the entire set, 
whereas the width varied between letters. 

Figure 2 (top) shows the letter G, filtered in 
bands 1-5 without noise; the bottom shows the 
same signals plus noise, s/n = 0.5. The full 
128 x 128 array (extended by reflection beyond 
its edges) was passed through the filter so that 
the effect of the picture boundary did not 
intrude into the critical part of the display. 

Signal to noise ratio, s/n. A filtered letter is a 
signal. Let i, j index a particular pixel in the X, y 
coordinate space of the stimulus. The signal 
contrast c,(i,j) of pixel i, j is: 

The transfer functions (spectra) of the filters 
are displayed in Fig. 1. Approximately, filters 
are separated in spatial frequency by an octave 
(factor of 2) and have a bandwidth at half- 
amplitude of two octaves. The small mound in 
the lower right corner of Fig. 1 is a negligible 
imperfection in filter 4. For convenience, the 
limited range of spatial frequencies passed by 
each of the filters will be referred to as the band 
of that filter; a specific band is b, (i = 0, 1, 2, 3, 
4, 5), where b, is the lowest set of frequencies 
and b, is the highest. 

where liVj is the luminance of pixel i, j and lo is 
the mean signal luminance over the 90 x 90 
array. Signal power per pixel, s, is defined as 
mean contrast power averaged over the 90 x 90 
pixel array: 

s = (ZJ))’ if. c,(i, j)’ (2) 
1 j 

where c,,, is the contrast of pixel i, j and 
I = J = 90. 

The filter spectra (shown in Fig. 1) are Noise contrast c,(i,j) is the value of the i, jth 
approximately symmetrical in log frequency noise sample divided by the mean luminance. 
coordinates, a symmetrical spectrum in log co- Analogously to signal power (equation 2), noise 
ordinates is highly skewed to the right in linear contrast power per pixel, n, is equal to (~/~~)2. 
frequency coordinates, resulting in a mean that The signal to noise ratio is simply s/n. 

1 2 

Cycles/field width 
4 8 16 32 64 

0.6 

.5 

* 0.4 

0.0 
0.35 0.70 1.4 2.8 5.6 91.2 22.4 

Cycles/letter height 

Fig. 1. Filter characteristics for the filters used in the 
experiments. There are two abscissas, both on a log scale. 
The top abscissa is the frequency in cycles per unwindowed 
field width (128 pixels); the bottom abscissa is in cycles per 
letter height (45 pixels). The ordinate is the normalized gain. 
The parameter i indicates the filter designation 6, in the text. 

is much greater than the mode. In a 2D (vs 1D) 
filter, the rightward shift is accentuated. For 
example, band 2 has a peak frequency of 1.05 
c/object but a 2D mean frequency of 1.49 
c/object. The single most informative character- 
ization of such a skewed bandpass spectrum 
depends somewhat on the context; usually use 
the mean rather than the peak. 
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Q~~nl~zQii~n. Our display system produced 
256 discrete luminance levels. Level 128 was 
used as the mean luminance lo; & was 
47.5 cd/m2. To produce a visual display of a 
given letter, band, and s/n, signal power s and 
noise power n were normalized so that the 
luminance of every one of the 8100 displayed 
pixels fell within the range of the display system; 
there was no truncation of the tails of the 
Gaussian noise. (Although the relationship be- 
tween input gray-level and output luminance 
was not quite linear at the extreme intensity 
values, it was determined that more than 90% 
of the pixels fell within the linear intensity 
range.) Intensity no~ali~tion was applied sep- 
arately to each stimulus (combination of signal 
plus noise), By normalizing the total stimulus 
s $ n, the actual value of s displayed to the 
subject ~minished as n increased; i.e. the actual 
value of s was not known by the subject. Indeed, 
even stimuli with precisely the same letter in the 
same band and with the same s/n might be 
produced with slightly different s and n depend- 
ing on the extreme values of the noise fields. 

Seven values of s/n were available for each 
band, chosen in a pilot study to insure that the 
data yielded the entire psychometric function 
(chance to best performance). The same pilot 
study showed that subjects never performed 
above chance when confronted with noise-free 
letters from 5,; this band was omitted from the 
present study. 

Procedure: ex~er~rne~~ I 

Four of the experimental variables-letter 
identity, noise field, frequency band, and s/n-- 
were randomized within each session. A fifth 
variable, viewing distance, was held constant 
within each session and was varied between 
sessions. Four viewing distances were used: 
0.121, 0.38, 1.21 and 3.84m. A chin rest was 
used to stabilize the subject’s head for viewing 
at the shortest distance. At the four distances, 
the 90 x 90 pixel stimulus subtended 31.6, 10, 
3.16 and 1 .O deg of visual angle respectively. The 

upper and lower h~f-~plitude cut-off retinal 
frequencies for the upper six filters, with respect 
to the four viewing distances used in this exper- 
iment, and for a fifth distance used in the second 
experiment, appear in Table 2. Subjects partici- 
pated in four I-hr sessions at each viewing 
distance. Each session consisted of 315 trials, 
nine trials at each of seven s/n’s for each of the 
five frequency bands. 

Prior to the first session, subjects were shown 
noise-free examples of the unfiltered letters. 
They were told that each stimulus presentation 
consisted of a letter and a certain amount of 
noise, and that the letter may appear degraded 
in some way. They were informed that at no 
time would a letter be shifted in orientation or 
from its central location in the stimulus field. 
Finally, they were instructed to view each stimu- 
lus for as long as they desired before making 
their best guess as to which letter had been 
presented. A response (letter identity) was 
required an every trial. Subjects typed the 
response on a keyboard connected to the host 
computer (Vax 1 l/750); subsequently, typing a 
carriage return erased the video screen and 
initiated the next trial in a few seconds. The 
room illumination was very dim; the respanse 
keyboard was lighted by stray light from its 
associated CRT terminal. No feedback was 
offered to the subjects. 

Observers 

Three subjects, two male and one female, 
between the ages of 20 and 27 participated in the 
experiment. All subjects had normal or cor- 
rected-to-normal vision. One of the subjects was 
a paid participant in the study. 

Procedure: experiment 2 

This experiment was run before expt 1. It is 
reported here because it offers additional data 
with two new and one old subject at a fifth 
viewing distance. Except as noted, the pro- 
cedures are similar to expt 1. The screen was 
viewed through a darkened hood at a distance 

Table 2. Lower and upper half-power frequency and 2D mean frequency (in c/de8 of visual angle) for all bands and viewing 
distances used in both experiments 

Viewing distance (m) 
Band 0.12 0.38 1.21 3.84 0.48 

0 (lowpass) 0.00-0.04 (0.03) 0.00-O. 12 (0.09) 0.00-0.37 (0.27) 0.00-1.18 (0.87) 0.00-0.15(0.11) 
1 0.02Cl.07 (0.05) 0.06-0.23 (0.16) 0.18-0.74 (0.52) 0.58-2.34 (1.65) 0.07-0.29 (0.21) 
2 0.04-0.15(0.10) 0.12-0.47 (0.33) 0.37-l .48 (1.04) 1.18-4.70 (3.30) 0.15-0.59 (0.41) 
3 0.07-0.30 (0.20) 0.23-094 (0.64) 0.74-2.97 (2.04) 2.34-9.40 (6.48) 0.29-1.18 fO.81) 
4 0.1 S-O.59 (0.40) 0.47-1.88 (1.27) 1.48-5.94 (4.04) 4.7~18.80(12.82) 0.59-2.36(1.60) 

5 (highpass) 0.3tS2.25 (1.41) 0.94-7.13 (4.45) 2.97-22.53 (14.19) 9.40-71.27 (45.00) 1.77-8.96 (5.63) 



of 0.48 m. At this distance, the 90 x 90 stimuli 
subtended 7.15 deg of visual angle. The half- 
amplitude cut-off frequencies and the mean 
frequencies of the six spatial filters are given in 
the rightmost column of Table 2. Three male 
subjects between the ages of 20 and 27 par- 
ticipated in the experiment. All subjects had 
normal or corrected-ta-normal vision. Two of 
the subjects were paid for their participation, 
and one, DHP, also participated in expt 1. Five 
sessions of 3fS trials were run for each subject. 

RESULTS 

~~yc~~rnet~~c functions: fi us itog)@ s/n 

The measure of performance is the observed 
probability fi of a correct letter identi~cation. 

The complete psychometric functions are dis- 
played in Figs 3 (expt 1) and 4 (expt 2). A 
separate psych~met~c function is shown for 
each subject, viewing distance and frequency 
band. In band b,, for all subjects, ~rfo~an~ 
asymptotes (for noiseless stimuli) at fi % 0.5. In 
all other bands, performance improves from 
near-chance (l/26) to near perfect as the value 
of s/n increases. 

_Woise reactance as a function of ~equency band 

An obvious aspect of the data of both exper- 
iments is that the data move to the left of the 
figure panels as band spatiaf frequency in- 
creases. This means that high spatial frequency 
stimuli {bands b4, b,) are identi~able at smaller 
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Fig. 3. Psychometric functions from expt I. Each graph displays performance as a function of log,, s/n, 

within a frequency band. The parameter is viewing distance. Subjects ape arrartged in columns and 
frequency band is arranged in rows, progressing from the bigbest frequency band at the top to the lowest 
band at the bottom. The four viewing distances are 3.34 (O), f.2f (A), 0.38 (01, and O.221 (0) m. 
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Fig. 4. Psychometric functions for each subject and fre- 
quency band in expt 2. Viewing distance was 0.48 m. The 
five frequency bands, b,-b,, are indicated, respectively, by 
0, a, A, 0 and +. The pro~bility of a correct response 

is plotted as a function of log,, s/n. 

s/n than stimuli in bands 6, and 6,; resistance to 
noise increases with spatial frequency band. To 
enable comparisons of noise sensitivity as a 
function of band, the s/n at which fi = 50% was 
estimated for each subject and frequency band 
from expt 1 by means of inverse interpolation 
from the best fitting logistic function. As view- 
ing distance had no effect, all estimates were 
made using the data collected when viewing 
distance was equal to 0.38 m. A graph of these 
(s/n)sox points as a function of the mean object 
frequency of the band is plotted in Fig. 5 (0). 
For comparison, the expected rate of improve- 
ment in (.~/n)~%, based on the increasing num- 
ber of frequency components as one moves from 
low to high frequency bands, is plotted as a 
series of parallel lines in Fig. 5. Performance 
improves [(~/n)~% decreases] somewhat faster 
than I/f (the slope of the parallel lines). These 
results, and Fig. 5, will be analyzed in detail in 
the Discussion section. 

-1.5 

-2.5 

-3.5 
032 0.36 1.00 1.78 3.1 5.62 $0.0 17.8 31.6 

Fig, 5. Performance of human subjects and various compu- 
tational discriminators. The abscissa indicates log,, of the 
mean frequency of each bandpass stimulus. The ordinate 
indicates the (interpolated) s/n ratio at which a probability 
of a correct response p = 0.5 is achieved. Circles indicate 
each of the three subjects in expt 1 at the intermediate 
viewing distance of 1.21 m. In band 6,, 2 of 3 human 
subjects fail to achieve 50% correct (efl = 0); these points lie 
outside the graph. (A) indicates sub-i&al and (0) indicates 
super-ideal performances of discriminators that brackets the 
ideal discriminator. The shaded area below the super-ideal 
discriminator indicates theoretically unachievable perform- 
ance. Squares indicate performance of a spatial correlator- 
discriminator. The oblique parallel lines have slope - 1 that 
represents the improvement in expected performance 
(decrease in s/n) as function of the number of frequency 
components in each band when tilter bandwidth is 

proportional to frequency. 

The non-effect of viewing distance 

Another property of the data is that, in most 
conditions, viewing distance has no effect on 
performance. Analysis of variance, carried out 
individually for each subject, shows that there is 
no significant effect of distance in any band for 
subject dhp and a significant effect of distance in 
bands b4 and 6, for the other two subjects. 
Further analysis by a Tukey test (Wirier, 1971) 
in bands b4 and b5 for these subjects shows that 
the only significant effect of distance is that 
visibility at the longest viewing distance is better 
than at the other three distances. For subject 
CJD, the improvement is equivalent to a gain in 
s/n of 0.19 and 0.28 log,, (for bands b4 and b,, 
respectively); for MAV, the corresponding gains 
were 0.21 and 0.40. 

Improved performance at long viewing dis- 
tances is almost certainly due to the square 
configuration of individual. pixels, which pro- 
duces a high frequency spatial pixel noise that is 
attenuated by viewing from sufficiently far away 
(Harmon & Julesz, 1973). In low frequency 
bands, pixel-boundary noise is not a problem 
because the spatial filtering insures that adjacent 
pixels vary only slightly in intensity. We ex- 
plored the hypothesis of peel-Sunday noise 
with subject CJD, who showed a distance effect 
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in band 5. At an intermediate viewing distance 
of 1.2 1 m, CJD squinted her eyes while viewing 
stimuli from band 5. By blurring the retinal 
image of the display in this way, performance 
improved approximately to the level of the 
furthest viewing distance. 

To summarize, the only significant effect of 
distance that we observed was a lowering of 
performance at near viewing distances relative 
to the furthest distance. This impairment 
occurred p~rna~ly in bands 4 and 5, In these 
bands, the spatial quantization of the display 
(90 x 90 square-shaped pixels) produces arti- 
factual high spatial frequencies that mask 
the target. These artifactually produced spatial 
frequencies can be attenuated by deliberate 
blurring (squinting), or by producing displays 
with higher spatial resolution, or by increasing 
the viewing distance to the point where the pixel 
boundaries are attenuated by the optics of the 
eye and neural components of the visual modu- 
lation transfer function. In all cases, blurring 
improves ~rformance and eliminates the 
slightly deleterious effect of a too small viewing 
distance. Thus, for correctly constructed stim- 
uli, in the frequency ranges studied, there would 
be no significant effect of viewing distance on 
performance. This finding is in agreement with 
the results of Legge et al. (1985), who examined 
reading rate rather than letter recognition. It is 
in stark disagreement with the results of 
sinewave detection experiments in which retinal 
frequency is critical-see Sperling (1989) for an 
explanation. 

DISCUSSION 

A comparison of performance in different 
frequency bands shows that subjects perform 
better the higher the frequency band; and sub- 
jects require the smallest signal-to-noise ratio 
in the highest frequency band. To determine 
whether performance in high frequency bands is 
good because humans are more efficient in 
utilizing high-frequency info~ation, or because 
there is objectively more information in the 
high-frequency images, or both, requires an 
investigation of the performance of an ideal 
observer. The performance of the ideal observer 
is the measure of the objective presence of 
information. Human performance results from 
the joint effect of the objective presence of 
information and the ability of humans to utilize 
that information. Human efficiency is the ratio 
of human performance to ideal performance. 

Ideal di~criminasor 

Definition. An ideal discriminator makes the 
best possible decision given the available data 
and the interpretation of “best.” The perform- 
ance of the ideal discriminator defines the objec- 
tive utility of the information in the stimulus. 
We prefer the name ideal discriminator, rather 
than ideal observer, because it indicates the 
critical aspect of performance under consider- 
ation, but we occasionally use ideal observer to 

emphasize the relations to a large, relevant 
literature on this subject. Our purposes in this 
section are first, to derive an ideal discriminator 
for the letter identification task, second, to 
develop a practical working approximation to 
this discriminator, and third, to compare the 
performance of the human with the ideal dis- 
criminator. 

Although ideal observers have recently come 
into greater use in vision research, the appii- 
cations have focused primarily on dete~ining 
the limits of performance for relatively low-level 
visual phenomena. For example, Barlow (1978, 
1980): and Barlow and Reeves (1979) investi- 
gated the perception of density and of mirror 
symmetry; Geisler (1984) investigated the limits 
of acuity and hyperacuity; Legge, Kersten and 
Burgess (1987) examined the pedestal effect; 
Kersten (1984) studied the detection of noise 
patterns; and Pelli (1981) detailed the roles of 
internal visual noise. Geisler (1989) provides an 
overview of efficiency computations in early 
vision. Our application differs from these in that 
we expand the techniques and apply them to 
a higher perceptual/cognitive function, letter 
recognition. 

For the letter identification task, the ideal 
discriminator is conceptually easy to define. A 
particular observed stimulus, X, representing an 
unknown letter plus noise, consists of an inten- 
sity value (one of 256 possible values) at each of 
90 x 90 locations. The discriminator’s task is to 
make the correct choice as frequently as possible 
from among the 26 alternative letters. 

The likelihood of observing stimulus X, given 
each of the 26 possible signal alternatives, can 
be computed when the probability density func- 
tion of the added noise is known exactly. The 
optimal decision chooses the letter that has the 
highest likelihood of yielding x. The expected 
performance of the ideal discriminator is com- 
puted by summing its probability of a correct 
response over the 2568’@’ possible stimuli (256 
gray levels, 90 x 90 pixels). Unfortunately, 
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Fig. 6. Flow chart of the experimental procedures that are modelled by the ideal discriminator analysis. 
Upper half indicates space-domain operations; lower half indicates the corresponding operations in the 
frequency domain. Computations are carried out on 128 x 128 arrays; the subject sees only the center 
90 x 90 pixels. A random letter and a random noise field are each filtered by the same filter (b); the noise 
is amplified to provide the desired signal-to-noise ratio; the letter and noise are added, the output is scaled 
and quantized (represented by the addition of digitization noise), and the result is shown to the subject. 
In the frequency domain o,, ID?, the bandpass filter selects an annulus, whereas the quantization noise 

is uniform over o,, 0+,. 

when there is both bandpass filtered and inten- 
sity quantization, the usual simplifications that 
make this enormous computation tractable are 
not applicable. 

As an alternative to computing the expected 
performance of the ideal discriminator, one can 
compute its performance with a particular sub- 
set of the possible stimuli-the stimuli that the 
subject actually viewed or, preferably, a larger 
set of stimuli for more reliable estimation. This 
Monte Carlo simulation of the performance 
of the ideal discriminator is a tractable com- 
putation that yields an estimate of expected 
performance. 

Deriuation. Stimulus construction is dia- 
grammed in Fig. 6 which shows the equivalent 
operations in the space and the frequency do- 
mains. To derive an ideal discriminator, we need 
to carefully review the processes of stimulus 
construction. We use uppercase letters to rep- 
resent quantities in the frequency domain and 
lowercase letters to represent quantities in the 
space domain. A letter is defined by a 90 x 90 
array that takes the value 1 at the letter 
locations and 0 at the background locations. 
When this array is spatially filtered in band b, it 
defines the letter template ti,Jx, y), where i 

indicates the particular letter, b the frequency 
band, and X, y the pixel location. We write 
TJo,, oY) for the Fourier series coefficient of 
t,, indexed by frequency. 

An unknown stimulus u~,*(x, y) to be viewed 
by a subject is produced by adding filtered 
n&, y) with post-filtering variance a2,, to the 
template t,,(x, y), where letter identity i is un- 
known to the subject. The stimulus is scaled and 
digitized (quantized) to 256 levels prior to pres- 
entation, contributing an additional source of 
noise qi. b(x, y ), called digitization noise. Finally, 
a d.c. component (dc) is added to ui,b to bring 
the mean luminance level to 128. These steps are 
diagrammed in Fig. 6 which shows both the 
space-domain and the corresponding frequency- 
domain operations. The space-domain compu- 
tation is encapsulated in equations (3): 

4, *tx9 Y > = Bi. bLti. bCX9 Y I+ nb(X9 Y >I (34 

ui,b(X,Y)=Bi,b[ti,b(X,Y)+n6(X,Y)l 

+ 4i, & Y I+ c&z. (3b) 

The scaling constant pi,*, limits the range of 
real values for each pixel, prior to quantization, 
to [-OS, 255.51. The degree of scaling is deter- 
mined by the maximum and minimum values in 
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the function ti,b + nb. Note that the extreme 
values in the image are determined by ay which 
is adjusted to yield the appropriate s/n for each 
condition; the values of ti,b are fixed prior to 
scaling. Specifically: 

B&b = 
256 

max(t,,, + nb) - min(t,,, + nb)’ 
(4) 

As a result of bandpass filtering, the 
noise samples in adjacent pixels are strongly 
dependent on each other. Therefore, the dis- 
criminator problem is best approached in the 
Fourier domain, where the random variables 
{ Nb(o, , co,)> are jointly independent because 
the filtering operations simply scale the differ- 
ent frequency components without intro- 
ducing any correlations (van Tress, 1968). The 
task of the ideal discriminator is to pick the 
template ti, b that maximizes the likelihood of ui, b 
with a priori knowledge of: (i) the fixed func- 
tions t, *, and their probabilities; and (ii) the 
densities of the jointly independent random 
variables {Nb(w,,wY)}. As is clear, /Ii,+, 02,, 
{Q,.dw,, q>>, and {Ni,b(Wxr o,>> are all Jointly 
distributed random variables characterized by 
some density5 To compute the likelihood of ui, b 
the ideal discriminator must integrate f over all 
possible values that may be assumed by the 
set of jointly distributed random variables, 
whose values are constrained only in that they 
result in a possible stimulus ui, *. Unfortunately, 
no closed-form solution to this problem is avail- 
able, forcing us to look for an alternative 
approach. 

Bracketing. To estimate the performance of 
the ideal discriminator, we look for a tractable 
super-ideal discriminator that is better than the 
ideal but which is solvable. Similarly, we look 
for a tractable sub-ideal discriminator that is 
worse than the ideal. The ideal discriminator 
must lie between these two discriminators; that 
is, we bracket its performance between that of 
a “super-ideal” and a “sub-ideal” discriminator. 
The more similar the performance of the super- 
and sub-ideal discriminators, the more con- 
strained is the ideal performance which lies 
between them. 

Our super-ideal discriminator is told, a priori, 
the extact values for bi,b and & for each stimu- 
lus presentation. Therefore, it is expected to 
perform slightly better than the ideal discrimi- 
nator which must estimate these values from 
the data. The sub-ideal discriminator estimates 
these same parameters from the presented 
stimulus in a simple but nonideal way. There- 

fore, it is expected to perform slightly worse 
than the ideal discriminator. The computational 
forms used to compute /Ii, ,, and 0; for the 
sub-ideal discriminator are presented in the 
Appendix, along with the derivation of the 
likelihood estimator used by both discrimin- 
ators. A complete discussion of these deri- 
vations and the problems associated with the 
formulation of an ideal discriminator for such 
complex stimuli is presented in Chubb, Sperling 
and Parish (1987). 

Performance of the bracketed discriminator. 
The super- and sub-ideal discriminators were 
tested in a Monte Carlo series of trials, in which 
they each were confronted with 90 stimuli in 
each of the frequency bands at each of seven s/n 
values chosen to best estimate their 50% per- 
formance point. The s/n necessary for 50% 
correct discriminations was estimated by an 
inverse interpolation of the best fitting logistic 
function. The derived (s/n)mV0 is the measure 
of performance of a discriminator. The mean 
ratio, across frequency bands, of 

(s/n)500h sub-ideal/(s/n),,, super-ideal 

is about 2 (approx. 0.3 log,, units). The 
ratio does not depend on the criterion of 
performance. 

Eficiency of human discrimination 

In all conditions, human subjects perform 
worse than the sub-ideal discriminator. Notably, 
with no added luminance noise, the subideal 
(and, of course, the ideal) discriminator func- 
tion perfectly, even in b, where subject perform- 
ance is at chance, and in b, where subjects 
reached asymptote at about 50% correct. 

Data from the subjects are plotted with the 

(sin Lo% sub-ideal and (s/n),,, super-ideal in 
Fig. 5. For comparison, Fig. 5 also shows the 
performance of a correlator discriminator which 
chooses the letter template that correlates most 
highly with the stimulus in the space domain. In 
the coordinates of Fig. 5 (log,,s/n vs loglof 
where f represents the mean 2D spatial fre- 
quency of the band), the vertical distance d from 
the human data log(s/n),,, , human down to the 
bracketed discriminator log(s /n)500A, ideal rep- 
resents the log,, of the factor by which the 
bracketed discriminator outperforms the human 
observer at that value of J For the purpose 
of specifying efficiency, we assume the ideal 
discriminator lies at the mid-point of the sub 
and super-ideal discriminators in Fig. 5. The 
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Fig. 7. Discrimination efficiency as a function of the mean 
frequency of a 2-octave band (in cycles per letter height) 
indicated on a logarithmic scale. Data are shown for three 
observers: A = SAW, 0 = RS, 0 = DHP. The viewing 
distance is 2.21 m, which is representative of all viewing 

distances tested. 

efficiency efl of human discrimination relative 
to the bracketed discriminator is efl= 10-2d, 

where: 

The values of eff in each object frequency 
band are shown in Fig. 7. In band 0, eflis zero 
because human performance never reaches 
50%; indeed, it never rises significantly above 
4% (chance). In band 1, human performance 
asymptotically climbs close to 50% as s/n ap- 
proaches infinity; eflx 0. In band 2, eflreaches 
its maximum of 35-47% (depending on the 
subject), and it declines rapidly with increasing 
frequency (b,-b,). 

The 42% average efficiency in band 2 is 
similar in magnitude to the highest efficiencies 
observed in comparable studies. For example, 
efficiency has been determined for detecting 
various kinds of patterns in arrays of random 
dots (Barlow, 1978, 1980; van Meeteren & 
Barlow, 1981), tasks which, like ours, may 
require significantly cognitive processing. In a 
wide range of conditions, the highest efficiencies 
observed were about 50%, and frequently 
lower. Van Meeteren and Barlow (1981) also 
found that efficiency was perfectly correlated 
with object spatial frequency and was indepen- 
dent of retinal spatial frequency. 

Spatial correlator discriminator. A correlator 
discriminator cross-correlates the presented 
stimulus with its memory templates and chooses 
the template with the highest correlation. Corre- 
lation can be carried out in the space or in the 
frequency domain. Correlation is an efficient 
strategy when noise in adjacent pixels is inde- 
pendent and when members of the set of signals 
have the same energy; both of these conditions 

are violated by our stimuli. However, when 
sufficient prior information is available to sub- 
jects, they do appear to employ a cross-corre- 
lation strategy (Burgess, 1985). 

It is interesting to note that the performance 
of the spatial correlator discriminator over the 
middle range of spatial frequencies is quite close 
to the performance of the sub-ideal discrimin- 
ator. At high spatial frequencies, correlator 
performance degenerates, due to its inability to 
focus spatially on those pixel locations that 
contain the most information. A spatial corre- 
lator that optimally weighted spatial locations, 
could overcome the spatial focusing problem at 
high frequencies. (Spatial focusing is treated in 
the next section.) 

At all frequencies, the spatial correlator is 
nonideal because noise at spatial adjacent pixels 
is not independent. At low spatial frequencies, 
the. nonindependence of adjacent locations be- 
comes extreme and the correlator fails miser- 
ably. This points out that, for our stimuli, 
correlation detection is better carried out in the 
frequency domain because there the noise at 
different frequencies is independent. The quali- 
tative similarity between the correlator dis- 
criminator and the subjects’ data suggests that 
the subjects might be employing a spatial 
correlation strategy, augmented by location 
weighting at high frequencies. 

Lowest spatial frequencies suficient for letter 
discrimination. Band 2 corresponds to a 2- 
octave band with a peak frequency of 1.05 
c/object (vertical height of letters) and a 2D 
mean frequency of 1.49 c/object. At the four 
viewing distances, 1.05 c/object corresponds to 
retinal frequencies of 0.074, 0.234, 0.739 and 
2.34 c/deg of visual angle. We observe perfect 
scale invariance: all of these retinal frequencies, 
and hence the visual channels that process this 
information, are equally effective in achieving 
the high efficiency of discrimination. 

The finding that b, with a center frequency of 
1.05 c/object and a i amplitude cutoff at 2.1 
c/object is critical for letter discrimination is in 
good agreement with previous findings of both 
Ginsburg (1978) for letter recognition and 
Legge et al. (1985) for reading rate. Legge et al. 
used low-pass filtered stimuli, which included 
not only spatial frequencies within an octave of 
I c/object (b2) but also included all lower fre- 
quencies. From the present study, we expect 
human performance with low-pass and with 
band-pass spatial filtering to be quite similar up 
to 1 c/object because the lowest frequency 
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bands, when presented in isolation, are percep- 
tually useless (at least when presented alone). 

It is an important fact that our subjects 
actually performed better, in the sense of achiev- 
ing criterion performance at a lower s/n ratio, at 
higher frequency bands than bl. This is ex- 
plained by the increase in stimulus information 
in higher frequency stimuli. Increased infor- 
mation more than compensates for the subjects’ 
loss in efficiency as spatial frequency increases. 

Components of discrimination performance 

Though the performance of the bracketed 
ideal discriminator is useful in quantifying the 
informational utility of the various bands, it is 
instructive to consider the changing physical 
structure of the stimuli as well. What com- 
ponents of the stimuli actually lead to a gain in 
information with increasing frequency? Accord- 
ing to Shannon’s theorem (Shannon & Weaver, 
1949), an absolutely bandlimited 1-D signal can 
be represented by a number of samples m that 
is proportional to its bandwidth. When the 
signal-to-noise ratio in each sample si/ni is the 
same, the overall signal-to-noise ratio s/n grows 
as &. In the space domain, our filters were 
constructed (approximately) to differ only in 
scale but not in the shape of their impulse 
responses. Therefore, when the mean frequency 
of a filter band increased by a factor of 2, the 
bandwidth also increased by 2. Since the stimuli 
are 2D, the effective number of samples in- 
creases with the square of frequency, and the 
increase in effective s/n ratio is proportional to 
m. This expected improvement with frequency, 
based simply on the increase in effective number 
of samples, is indicated by the oblique parallel 
lines of Fig. 5 with slope of - 1. The expected 
improvement in threshold s/n due simply to the 
linearly increasing bandwidth of the bands does 
a reasonable job of accounting for the improve- 
ment in performance for both human and 
bracketed discriminators between b2 and b,. 

Performance of all discriminators improves 
faster with frequency between 0.39 and 1.5 
c/object and between 5.8 and 22 c/object than is 
predicted from the bandwidths of the images. A 
slope steeper than - 1 means that there is more 
information for discriminating letters in higher 
frequency bands even when the number of 
independent samples is kept the same in each 
band. Once sampling density is controlled, just 
how much information letters happen to con- 
tain in each frequency band is an ecological 
property of upper-case letters. 

Increasing spatial localization with increasing 
frequency band. From the human observer’s 
point of view, the letter information in low-pass 
filtered images is spread out over a large portion 
of the total image array. In high spatial-fre- 
quency images, the letter information is concen- 
trated in a small proportion of the total number 
of pixels. In high spatial-frequency images, a 
human observer who knows which pixels to 
attend will experience an effective s/n that is 
higher than an observer who attends equally to 
all pixels. In this respect, humans differ from an 
ideal discriminator. The ideal discriminator has 
unlimited memory and processing resources, 
does not explicitly incorporate any selective 
mechanism into its decision, and uses the same 
algorithm in all frequency bands. Information 
from irrelevant pixels is enmeshed in the 
computation but cancels out perfectly in the 
letter-decision process. To understand human 
performance, however, it is useful to examine 
how, with our size-scaled spatial filters, letter 
information comes to be occupy a smaller and 
smaller fraction of the image array as spatial 
frequency increases. 

Here we consider three formulations of the 
change in the internal structure of the images 
with increasing spatial frequency: (1) spatial 
localization; (2) correlation between signals; and 
(3) nearest neighbor analysis. We have already 
noted that, in our images, the information-rich 
pixels become a smaller fraction of the total 
pixels as frequency band increases. Indeed, this 
reduction can be estimated by computing the 
information transmitted at any particular pixel 
location or, more appropriately for estimating 
noise resistance, by computing the variance of 
intensity (at that pixel location) over the set of 
26 alternative signals. 

To demonstrate the degree of increasing 
localization with increasing frequency, the vari- 
ance (over the set of 26 letter templates) was 
computed at each pixel location (x, y). Total 
power, the total variance, is obtained by sum- 
ming over pixel locations. The number of pixel 
locations needed to achieve a specific fraction of 
the total power is given in Fig. 8, with frequency 
band as a parameter. These curves describe the 
spatial distribution of information in the latter 
templates. If all pixels were equally informative, 
exactly half of the total number of pixels would 
be needed to account for 50% of the total 
power. The solid curves in Fig. 8 show that the 
number of pixels needed to convey any percent- 
age of total signal power, decreases as the 
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Fig. 8. Fraction of total power contained in the n most 
extreme-valued pixels as a function of n (out of 8100). Solid 
lines indicate the power fractions for signals; the curve 
parameter indicates the filter band. Dashed lines indicate 
power fractions for filtered noise fields. Although power 
fractions from successive bands of noise are too close to 
label, they generally fall in the same left-right 5-O order as 

those for signal bands. 

frequency band increases. These information 
distribution curves are an ecological property of 
our set of letter stimuli; different curves would 
be needed describe other stimulus sets. 

The dashed curves in Fig. 8 were derived from 
random noise filtered in each of the six fre- 
quency bands (b,--b,). The distribution of noise 
power is very similar between the various bands, 
enormously more so than the distribution of 
signal power. For our letter stimuli, stimulus 
information coalesces to a smaller number of 
spatial locations as spatial frequency increases. 

Correlation between signals. A more abstract 
way of describing the change of information 
with bandwidth is to note that letters become 
less confusible with each other in the higher 
frequency bands. A good measure of confusibil- 
ity is the average pairwise correlation between 
the 26 letter templates in each frequency band 
(Table 3). The average correlation between 
letter templates diminishes from 0.94 in band 0 
to 0.31 in band 5. In a band in which templates 
have a pairwise correlation over 0.9, the over- 
whelming amount of intensity variation (“infor- 
mation”) is useless for discrimination. Small 
wonder that subjects fail completely in this 
band. Overall, performance of the ideal dis- 
criminator and of observers improves as the 
correlation decreases, but there is no obvious 
way to use the pairwise correlation between 
templates to predict performance. 

Nearest neighbors. The analysis of nearest 
neighbors is a useful technique for predicting 
accuracy by the analysis of the possible causes 
of errors. We can regard a filtered image ti of 
letter i as a vector in a space of dimensionality 
8100 (90 x 90 pixels). When noise is added, the 

Table 3. Average pairwise correlations and 
nearest neighbors (Euclidean distance x lo-‘) 

Band Correlations Nearest neighbor 

0 0.94 0.01 
1 0.91 0.30 
2 0.58 1.2 
3 0.38 2.3 
4 0.33 3.1 
5 0.31 4.1 

possible positions of ti are described by a cloud 
whose dimensions are determined by the s/n 
ratio. A neighboring letter k may be confused 
with letter i when the cloud around ti envelopes 
tk. The closer the neighbor, the greater the 
opportunity for error. Table 3 gives the average 
normalized distance to the nearest neighbor in 
each of the bands. The increase in distance to 
the nearest neighbor reflects the improvement in 
the representation of signals as spatial frequency 
increases. 

We consider possible causes of lower 
efficiency of discrimination in bands below b2. 
The letters in these bands have high pair-wise 
correlations and the mean band frequency is 
less than the object frequency. This means 
that letters differ only in subtle differences of 
shading, a feature that we usually do not think 
of as shape. Observers would need to be able to 
utilize small intensity differences to distinguish 
between letters. To eliminate an alternative ex- 
planation (the smaller number of frequency 
components in the low-frequency bands), we 
conducted an informal experiment with a lower 
fundamental frequency. The fundamental fre- 
quency, which is outside the band, nevertheless 
determines the spacing of frequency com- 
ponents within the band. Reducing the funda- 
mental frequency of the letter by one-half 
increases the number of frequency components 
in the band by a factor of 4. (A 256 x 256 
sampling grid was used rather than 128 x 128.) 
These 4 x more highly sampled stimuli were not 
more discriminable than the original stimuli. 
This suggests that the internal letter represen- 
tation (template) that subjects bring with them 
to the experiment cannot utilize low-frequency 
information, even when it is abundantly avail- 
able. Whether, with sufficient training, subjects 
could learn to use low spatial frequencies to 
make letter discriminations is an open question. 

SUMMARY AND CONCLUSIONS 

1. Visual discrimination of letters in noise, 
spatially filtered in 2-octave wide bands, is 



1414 DAVID H. PARISH and GEXIR~E SPERLING 

independent of viewing distance (retinal fre- 
quency) but improves as spatial frequency 
increases. 

2. The improvement in performance with 
increasing spatial frequency results mainly from 
an increase in the objective amount of infor- 
mation transmitted by the filters with increasing 
frequency (because filter bandwidth was pro- 
portional to center frequency) which is mani- 
fested as objectively less confusible stimuli in the 
higher bands. 

3. The comparison of human performance 
with that of an estimated ideal discriminator 
demonstrates that humans achieve optimal 
discrimination (a remarkable 42% efficiency) 
when letters are defined by a 2-octave band of 
spatial frequencies centered at 1 cycle per letter 
height (mean frequency 1.5 c/letter). This high 
efficiency of discrimination is maintained over a 
32: 1 range of viewing distances. 

4. Detection efficiency was invariant over a 
range of retinal spatial frequencies in which the 
contrast threshold for detection of sine gratings 
(the modulation transfer function, MTF) varies 
enormously. The independence of detection per- 
formance and retinal size held for all frequency 
bands. 

5. A part of the loss of human efficiency in 
discrimination as spatial frequency exceeded 1 
c/object height may have been due to the sub- 
jects’ inability to identify, to selectively attend, 
and to utilize the smaller fraction of information- 
rich pixels in the higher frequency images. 

6. Finally, it is important to note that 
without the comparison to the ideal observer, 
we would not have been able to understand the 
components of human performance in the 
different frequency bands. 
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APPENDIX 

Both sub-ideal and super-ideal discriminators must compute 
estimates of the likelihood that the stimulus Us b was pro- 
duced with template t, ,, and noise n,, where k is the letter 
used to generate the stimulus, i is an arbitrary letter, and b 
indexes spatial frequency band. Let x be an index on the 
pixels of the image: 1 Q x C 8100, for the 90 x 90 images of 
the experiments. 

For the Monte Carlo simulations of the super-ideal 
discriminator, the unknown stimulus parameters, u,,~ and ui 
are computed during stimulus construction, and their exact 
values are supplied to the discriminator a priori. The 
sub-ideal discriminator, however, must estimate these par- 
ameters from the data as follows. 

Sub-Ideal Parameter Estimation 
Recall that stimulus contrast is modulated for any pixel 

x in the image: 

u&l = /Mt,&) + ndx)l + q,.&). C-41) 

The scaling constant BLb limits range of real values for each 
pixel, prior to quantization, to the open interval (-0.5, 
255.5); the addition of qi *[xl, called quantization noise, 
rounds off pixel values to ‘integers. 

For each bandpass filtered template t,.,, we first compute 
the correlatton pk., of the template to the stimulus ul;,*: 

C%(x)t,,*(x) 

(A2) 

Kr.b=Pk,i 

Finally we set: 

(A4) 

6, =; 5 h,bUk,btX) - ri,b(x)12 (A5) 
x-1 

where X = 8100, the number of pixels in the image. 

Likelihood Estimation 

With estimates of u’, and ai,b for the sub-ideal dis- 
criminator, and the a priori values for the super-ideal 
discriminator, we can formulate a maximum likelihood 
estimator. By rearranging terms of equation (Al) and 
dividing both sides by /l yields: 

uk bcx) ---t,.b(x)=nb(x)+y. 
B 

646) 

Substituting GL(,~ for l//3, and by transposing into the fre- 
quency domain, denoted by upper-case letters and indexed 
by w, we have: 

“i,buk,bh) - q,,(w) = Nb(w) + ~i,bQt.bh). (A7) 

Note that the left side of equation (A7) is simply a 
difference image between the stimulus V,,,(w) and the 
template 7’, b(o). This difference is exactly equal to the sum 
of the luminance and quantization noise only when the 
correct template is chosen (i = k). When the incorrect 
template is chosen (i # k) the right hand side of equation 
(A7) is equal to the sum of the noise sources plus some 
residue that is equal to T,,,(o) - Ti,b(~). Under the 
assumption that quantization noise can be modeled as 
independent additive noise in the frequency domain, the 
density A of the joint realization of the right-hand side of 
equation (A7) is given by: 

x exp -x~ai,buk,b(o)- Ti,b(0)i2 

afbu~+ufrlFb(w)12 1 cA8J 

where Fb(o) is simply the kernel of filter b, in the frequency 
domain. Dropping the multiplicative term in equation (A8), 
which does not depend on the template T, and taking logs, 
the ideal discriminator chooses the template that minimizes: 

c xlai.bUk,b(o)- ~,bh)i2 
(A9) 

0 a,+Z) + u’,lF&)l’ 

Finally, it is more convenient to compute the power of 
the quantization noise in the space domain (u:) than in the 
frequency domain (a;); u2 = ~5. Spatial quantization noise, 
q,, b(x), is uniformly distrcbuted on the interval [ -0.5, 0.5) 
so that u: is computed as: 

s 

0.5 
x2dx (AlO) 

-0s 
and is equal to l/12. 


