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In a selective centroid task, the participant views a brief
cloud of items of different types—some of which are
targets, the others distractors—and strives to mouse-
click the centroid of the target items, ignoring the
distractors. Advantages of the centroid task are that
multiple target types can appear in the same display and
that influence functions, which estimate the weight of
each stimulus type in the cloud on the perceived
centroid for each participant, can be obtained easily and
efficiently. Here we document the strong, negative
impact on performance that results when the participant
is instructed to attend to target dots that consist of two
or more levels of a single feature dimension, even when
those levels differ categorically from those of the
distractor dots. The results also show a smaller, but still
observable decrement in performance that results when
there is heterogeneity in the distractor dots.

Introduction

When separated from a group of purple-shirted
friends in a large crowd (think Main Street, USA at
Disneyland), you might be able to locate the group as
the center of a cluster of those purple-colored shirts.
This is an example of feature-based attention, a
mechanism that makes features of interest—in this
example, the color purple—more salient, which in turn
makes instances of the feature easier to identify or
group together. What would happen, however, if the
members of your group were wearing shirts that were
varying shades of purple rather than all the same color?
Perhaps in this case the process of locating the group

might be more difficult even if no one else in the crowd
were wearing a purple shirt. Similarly, if everyone else
in the crowd were wearing yellow shirts, the localiza-
tion task would presumable be much easier than if they
were wearing a variety of colors. Duncan and Hum-
phreys (1989) began the investigation of these effects in
visual search, showing that both distractor heteroge-
neity and increased similarity between targets and
distractors lead to reduced performance.

Increasing the similarity between targets and dis-
tractors, increasing target heterogeneity, and increasing
distractor heterogeneity are all examples of manipula-
tions that make it harder for observers to attend only to
targets and to ignore distractors (Bravo & Nakayama,
1992; Maljkovic & Nakayama, 1994; Nagy & Thomas,
2003; Nagy, Neriani, & Young, 2005; Buetti, Cronin,
Madison, Wang, & Lleras, 2016). This breakdown of
feature-based selective attention is often understood
using a filter analogy, in which attention functions like
a filter that is preferentially selective for the features
defining target versus distractor items. The more
similar an item is to those features, the more salience it
will have after passing through the attention filter;
distractor items that are not similar to the target
features should receive low salience. Using this
analogy, task difficulty mirrors achievable filter selec-
tivity.

Ideally, an attention filter should allow only target
items to pass through (to subsequent processing) with
high salience. However, in a task in which there is
variation in both target and distractor items, the
participant is unlikely to be able to achieve such an
ideal attention filter. In this case, either of two possible
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problems may emerge: Some types of distractor items
may pass through with sufficient salience to alter
subsequent computations, and some types of target
items may receive lower salience than others.

The current study uses stimuli in which target and
distractor items are small, equiluminant dots that differ
from each other in hue but are all slightly brighter than
the background gray. Previous studies (Sun, Chubb,
Wright, & Sperling, 2016a) have documented that
observers can achieve highly effective attention filters
selective for specific hues. In this domain, filters that
must capture heterogeneous targets require a broad hue
passband—i.e., that region of the hue circle through
which hues pass with high amplitude or, in our terms,
high salience. Distractor heterogeneity requires broad,
flat hue stop bands: the regions on either side of the
passband through which hues pass with low amplitude/
salience. Increasing target/distractor similarity requires
that the filter have sharper transitions between the
passband and the stop bands. This explanation arrives
at the same conclusion as the studies already cited: We
expect feature-based attention tasks to increase in
difficulty to the extent that they require the participant
to achieve attention filters with wide passbands, wide
stop bands, and sharp transitions.

The purpose of the current experiment was to look
for evidence that either supports or undermines the
filter analogy of feature-based attention by observing
how performance is affected by separate manipulations
of both target and distractor heterogeneity within the
centroid paradigm.

In the centroid paradigm, participants view a brief
presentation of a cloud of items varying in one or more
features and then use a mouse to indicate the perceived
centroid (the center of mass) of all the target items,
ignoring the distractor items (Sun et al., 2016b). When
presented with a group of items, people naturally tend
to find the center of mass of the group. For example,
McGowan, Kowler, Sharma, and Chubb (1998), Baud-
Bovy and Soechting (2001), Friedenberg and Liby
(2002), and Drew, Chubb, and Sperling (2010) have
found that participants are able to easily find the center
of mass of a cloud of target items. As it is an automatic
response that participants make, it seemed reasonable
to use it as a measure of performance. Participants
would not have to learn a new skill in order to perform
the task, nor would the results be applicable only
within the setting of the task. For this experiment, the
stimulus cloud consisted of 12 items: six targets, each
taking one of three distinct reddish hues, and six
distractors, each taking one of three distinct greenish
hues. For this research, an important advantage of the
centroid paradigm is that it supports the efficient
estimation of an influence function—an estimate of an
observer’s attention filter for a task—which is directly
analogous to a filter characteristic and characterizes

how well the observer was able to attend to each target
type and ignore each distractor type. The centroid
paradigm also allows us to study the effect of target
heterogeneity within a trial instead of between trials.
Previous visual-search experiments have been able to
study target heterogeneity only by varying the target
type across trials, since those tasks rely on the presence
of only one or no target in each trial. Because the
centroid paradigm allows us to have multiple tokens of
the target and multiple target types within a trial, we
are able to test the participants’ selectivity for each
target type when multiple types were present. If having
heterogeneity in target types does affect performance,
we should be able to observe it easily based on the
attention filters estimated for each task. More impor-
tantly, we would expect an ideal observer to deploy the
same filter for all tasks, since the set of target hues they
were meant to attend to was the same across trials
throughout the experiment. If this supposition holds, it
should be reflected in the similarity of the influence
functions across the tasks.

Each participant was tested in four different
experimental conditions in which displays differed in
target and distractor heterogeneity. Varying both target
and distractor heterogeneity allowed us to study both
the target passbands and the distractor stop bands. Any
display in which target dots were heterogeneous
contained two dots with each of the three reddish target
hues; similarly, any display in which distractor dots
were heterogeneous contained two dots with each of
the three greenish distractor hues. Any display in which
target dots were homogeneous contained six dots all of
the same hue, randomly chosen from the three reddish
target hues; similarly, any display in which target dots
were homogeneous contained six dots all of the same
hue, randomly chosen from the three greenish dis-
tractor hues. Because luminance for all dots was kept
constant, the only feature that the participants could
use to differentiate the dots from one another was the
hue.

One reason for using hues instead of other features is
that we know that participants are good at discrimi-
nating stimuli based on hue. In fact, they are better at
finding the centroid of a target hue than of a target
luminance or a target saturation (Sun et al., 2016b). In
the past, we have not asked participants to find the
centroid of multiple target hues, but we do expect them
to perform well in this task. D’Zmura (1991) concluded
that participants are able to easily distinguish between
target and distractor hues if the hues lie on separate
sides of a dividing line in color space. Furthermore,
Bauer, Jolicoeur, and Cowan (1996) found that if the
target hue is colinear with two distractor hues, search
performance suffers, but it then improves as the
distractor hues move farther away from the target hues.
Because our target and distractor hues lie on opposite
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sides of a dividing line in color space, and because the
targets are not colinear with the distractors, we expect
our participants to be able to perform well in this
experiment. We will also be able to observe how well
hues that lie closer to the divider are distinguished from
one another as targets or distractors. We may find that
as the distance in color space between target hues and
distractor hues increases, participants will be able to
distinguish them better, assign more weight to the
targets, and perform better at the task.

The four task conditions are summarized in Table 1.
In the T3D3 condition, target and distractor dots were
both heterogeneous. In the T3D1 condition, target dots
were heterogeneous and distractor dots were homoge-
neous. In the T1D3 condition, target dots were
homogeneous and distractor dots were heterogeneous.
And in the T1D1 condition, both target and distractor
dots were homogeneous. An unusual aspect of the
design of this experiment is that, although trial-to-trial
target/distractor heterogeneity varied across the four
tasks shown in Table 1, across the trials in a block the
probabilities associated with target and distractor
heterogeneity did not change. This is true because the
color used for any set of homogeneous dots was
randomly chosen from among the same set of three
colors that appeared simultaneously in heterogeneous
dot sets. Thus, until the stimulus appeared, all of the
target and distractor colors were equally likely to
appear on a trial in each task.

We chose this design because if, according to the
analogy, attention filters are endogenous—that is, if
they must be specified before the observer views a
stimulus cloud—then the same filter should be used in
both the T1D1 and T3D3 tasks. The key assumptions
required for this to be true are that in a given task
condition, the subject needs to use a fixed filter whose
sensitivity to different types of items does not depend
on whether those items actually occur in a given
display, and this filter must remain fixed across the
brief duration of a stimulus display in each of the
experimental conditions tested. If selectivity varies
across tasks, it would indicate that the simple filter
analogy does not sufficiently describe how the attention

mechanism operates. Including the T1D3 and T3D1
tasks should allow us assess the whether any break-
down in the overall comparison is due to heterogeneity
in the targets or the distractors.

Methods

Participants

There were eight participants (four women, four
men), whose ages ranged from 20 to 30 years. All
participants had normal or corrected-to-normal vision.
Four of the participants were chosen because they had
extensive prior experience with the centroid task. The
other four had little to no experience; they were either
completely new to the task or had practiced it for only a
few hours. The procedure was approved by the
University of California, Irvine, Institutional Review
Board.

Materials

Participants ran the experiment on a Mac computer
(iMac10,1) running MATLAB’s (MathWorks, Natick,
MA) Psychtoolbox package (Brainard, 1997). The
stimuli were displayed on an LED monitor—integrally
part of the computer—with a resolution of 1,92031,080
pixels. Stimuli were viewed from a distance of 70 cm.

Stimuli

The stimulus region was 640 3 640 pixels (visual
angle: 12.858), centered on the display. Dots were
squares of 17 3 17 pixels (visual angle: 0.348) whose
locations on the display were drawn from a bivariate
Gaussian distribution centered on the middle of the
display area. The standard deviation of these locations
was 100 pixels (visual angle: 2.008). If any of the dots
overlapped or fell outside of the display area, the whole
stimulus was thrown out and regenerated. In all trials,
the cloud of dots was presented for 150 ms then
disappeared. After an additional 33 ms, a mask made
of colored dots arranged in jittered rows and columns
appeared. The mask consisted of 10 rows and 10
columns of dots, each colored with one of the six colors
used in the experiment.

The six targets and six distractors were distinguished
by their colors, which we selected from a set of eight
equiluminant hues (the ‘‘Hue’’ set studied by Sun et al.,
2016a) that were equally spaced around an ellipse in
color space. Coordinates for each color in CIE 1931 xy
color space are listed in Table 2. Colors 6, 7, and 8 were

Table 1. Four tasks varied between blocks in the experiment.
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the target hues, whereas Colors 2, 3, and 4 were the
distractors; Colors 1 and 5 were excluded to create a
clear division between the targets and distractors. Red
(Color 7) and green (Color 3) were chosen as the center
hues in the target and distractor sets, respectively,
because they are hues on the L–M axis in the DKL
model of color space (Derrington, Lennie, & Kraus-
kopf, 1983), commonly used in color research; and
during pilot sessions, these were the colors for which
participants exhibited the highest selectivity.

The actual colors for each participant were individ-
ually calibrated to be equiluminant to one another, so
that hue, not luminance, would guide the selection
process. The luminance to which these stimuli were
matched was chosen to be slightly brighter (48.11 cd/
m2) than the gray background (47.87 cd/m2), to aid in
their precise spatial localization. Subjective equilumi-
nance of the stimuli was achieved using a minimum-
motion paradigm (Antis & Cavanagh, 1983; Lu &
Sperling, 2001; Herrera et al., 2013). The hues
themselves were chosen in the same ways as those used
by Sun et al. (2016a), who demonstrated that the
attention filters for selecting one hue from among the
others were similarly selective for all eight hues in the
color circle—i.e., the eight hues functioned equally well
as targets.

Procedure

Participants were briefly presented with a cloud of
dots and then asked to click on the center of mass of
the target dots. The sequence and timing of the displays
used in the experiment are presented in Figure 1.

The experiment was divided into the four tasks
summarized in Table 1. In the T1D3 and T1D1 tasks
(in which only one target hue was presented on a given
trial), one of the three target hues (orange, red, and
magenta; Colors 6, 7, and 8) was randomly chosen for
all six target dots on a trial. Likewise, in the T3D1 and
T1D1 tasks, one of the three distractor hues (blue,
green, and yellow-green; Colors 2, 3, and 4) was
randomly chosen for all six distractor dots on a trial
(Figure 2). All blocks in each task consisted of 90 trials
that were categorized as one of three trial types—
singleton (one target dot present), target only (six target
dots present), and full set (targets and distractors
present). Task 1 had six blocks, Tasks 2 and 3 had eight
blocks each, and Task 4 had 10 blocks. The number of
blocks in each task varied due to the number of hues
that appeared in each trial in each task. Because all six
colors were presented in each trial in Task 1,
participants were able to provide enough data to
calculate sufficiently precise influence functions for
each color in only six blocks. In the other tasks, not all
hues were presented on every trial, so we needed to
have participants complete more trials, spread out
across more blocks, in order to have enough data to
provide sufficient precision in the influence functions.
Each participant completed each of the four tasks twice
in a randomized order determined by a Latin square.

Analysis

To decompose the response errors, we followed the
procedures described by Sun et al. (2016b) to derive
an influence function f from each participant’s data in

Table 2. An example for a set of CIE 1931 xy color-space values for the eight colors used for one subject. Notes: Colors 1 and 5 were
omitted for this experiment. Colors in red ink are targets, whereas colors in green ink are distractors.
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each condition. The first step in these analyses
generates estimates of the observer’s attention filter
fu. An observer’s attention filter is the vector of
weights (one for each of the eight hues used in our
stimuli) used by the observer when performing a task
with a particular target filter u. For tasks with a single
target, the target filter takes the values 1 for the target
hue and 0 for the distractor hue(s). For the tasks with
three target hues, the target filter takes the values 1/3
for each of those hues and 0 for the distractor hue(s).

With target filter u cð Þ, the correct response T on a
given trial has x- and y-coordinates

Tx ¼
P

i u Cið ÞxiP
i u cið Þ

and Ty ¼
P

i u cið ÞyiP
i u cið Þ

; ð1Þ

where the sum is over all squares i in the display, Ci is
the hue of square i, and xi and yi are the x- and y-
coordinates of its location. Typically, however, the
response of the observer deviates from this target
location.

We assume that the x- and y-coordinates of the
observer’s response on trial t are given by

Rt;x ¼ lt;x þQt;x and Rt;y ¼ lt;y þQt;y; ð2Þ

where Qt;x and Qt;y are independent, normally distrib-
uted random variables with mean 0 and some standard
deviation r, and for some function fu(C) we have

lt;x ¼
P

i fu Ct;i

� �
xt;iP

i fu ct;i
� � and lt;y ¼

P
i fu ct;i
� �

yt;iP
i fu ct;i
� � : ð3Þ

In Equation 3, ht;i, xt;i, and yt;i are the hue and x- and
y-coordinates of the ith square in the stimulus on trial t,
and fu cð Þ is the attention filter that the observer uses to
perform the task.

The influence function f(c) shows how much weight
dots of hue c exerted on the responses produced by the
participant in a condition and is therefore an estimate
of the participant’s attention filter for that particular
hue. Additionally, we were able to characterize the
performance of each participant in each condition by
calculating two measures described by Sun et al.
(2016b): selectivity ratio and efficiency.

The selectivity ratio summarizing the influence
function f is defined as the sum of f(c) across all target
hues c divided by the mean of jf(c)j across all distractor
hues c. Taking the logarithm (base 10) of selectivity
ratios is useful because the resulting scale is closer to
equal interval. If the log10 selectivity ratio in a
condition is 1, then its target hues have 10 times as
much weight on the participant’s response as the
distractor hues do.

Efficiency reflects the proportion of dots that would
need to be processed by an ideal observer (using the
same influence function as the participant) to achieve
the same level of response error as the participant.
Specifically, the ideal observer is presented with the

Figure 1. Sequence of display events on a trial. Stimulus displays were presented for 150 ms, followed by a blank screen for 33 ms and

a mask for another 150 ms. Once the cross appeared, participants were able to move the mouse to adjust its position to the

perceived centroid of the target dots, which was selected using a mouse click. Participants were shown a feedback screen that

displayed the original stimulus cloud, a cross to show the location of the response, and a set of concentric circles to show the true

location of the target centroid.
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same sequence of stimuli as was presented to the
participant. On each simulated trial, dots are removed
independently from each stimulus display with some
probability p; then the remaining dots are given weights
(according to their different types) by the influence
function derived for the participant; finally, the
centroid of the (decimated and filter-weighted) dot
cloud is computed. The probability p is adjusted until
the ideal observer’s error matches the estimate of the
participant’s response error derived from the data.
Efficiency is then 1� p. In each trial, there are a total of
12 dots present, so an efficiency of 91.7% means that on
average, the ideal observer’s accuracy matches the
participant’s best when 91.7%, or 11, of the 12 dots
were included in the centroid calculation. Because
participants’ responses inevitably include error other
than that due to missed stimulus items, efficiency can be
understood as a lower bound on the number of items
processed by a participant under the assumption that
the participant uses the model-derived influence func-
tion.

Results

Mean errors (distance between response and
centroid, measured in pixels) for full-set and target-
only trials are displayed in Table 3. Participants
performed significantly better in target-only trials
than in full-set trials for all four tasks. For
homogeneous targets, the increase in error was over
20%; for heterogeneous targets, the increase was 34%
with homogeneous distractors and 58% with hetero-
geneous distractors. From this, we can conclude that
there was substantial room for performance im-
provement in the full-set trials for any of the four
tasks. We also found that there was a cost of having
heterogeneous instead of homogeneous targets. Even
without distractors present, the error in the target-
only trials with heterogeneous targets was greater
than the error in the same trials with homogeneous
tasks, D ¼ 17.2 � 15.9 ¼ 1.3, t(7) ¼ 5.379, p ¼ 0.001,
Bayes factor (BF) ¼ 40.199.1

Figure 2. Sample stimuli for each of the four tasks. In all four tasks, orange, red, and magenta were the target colors.
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From the response-error data, we estimated the
relative amount that each of the items in the display
influenced the participant’s centroid judgment; these
values are referred to as influence functions. Figure 3
shows the influence functions averaged across all eight
subjects, each panel displaying data for one of the four
tasks. Each function reflects the attention filters for the
six hues, shown on the x-axis of the plots. Each line in
one of the panels in the figure connects the attention-
filter estimates for one of the conditions for the task
displayed in that panel. The points on each line
represent the hues that were presented in the condition.
Note that the lines serve only to identify the estimates
from a condition; they should not be seen as
interpolating the data between the data points. The y-
axes represent the weight of each hue in the task.
Influence functions are defined only up to an arbitrary
multiplicative constant. As a matter of convention, we
normalize the weights in any given influence function to
sum to 1. Thus, in an ideal filter the weight of each
target hue in the T3D3 and T3D1 conditions should be
1/3, whereas the ideal weight of the single target hue in
the T1D3 and T1D1 conditions should be 1. In all
tasks, the ideal weight of distractors was 0. Error bars
on each point represent the 95% confidence intervals
consistent with a repeated-measures analysis, with the
main effect of participants removed (Morey, 2008;
Franz & Loftus, 2012). These were calculated sepa-
rately for the targets and the distractors, as the number
of the number of target and distractor types varied
between tasks.

The influence functions in Figure 3 suggest that
participants generally were able to base their centroid

responses on the target items and ignore the distractors.
At the same time, there are clearly systematic differ-
ences across tasks that can best be summarized using
the selectivity measure, which we will do in the
following. Here we note that in the T3D3 and T3D1
tasks, the purple target (rightmost on the horizontal
axis in each panel of Figure 3) exerts slightly less weight
than the red and orange targets, which suggests that the
purple hue was harder to categorize as a red than the
orange hue: for the T3D3 task, t(7)¼�3.57, p¼ 0.009,
BF¼ 7.03; for the T3D1 task, t(7) ¼�2.87, p¼ 0.024,
BF¼ 3.31. However, this asymmetry is not found in
tasks T1D3 or T1D1, in which the targets were
homogeneous. Also interesting is that, in all tasks, the
distance in hue space between the distractor and target
in the different conditions did not have a systematic
effect on performance. We might have expected worse
performance for conditions in which the target was
closer to the distractor around the circle of hues,
namely when Colors 3 (yellow-green) and 4 (orange)
were paired or when Colors 1 (blue-green) and 6
(purple) were paired. Likewise, we would have expected
the best performance to emerge when Colors 3 (green)
and 7 (red) were paired, but none of these conditions
was significantly different from one another. This
noneffect of hue pairs confirms that performance in the
centroid task is driven not by the saliency of the hues of
the target dots but rather by whether or not attention is
allotted to the hue. The evidence indicates that none of
the hues used in the experiment was more salient than
any other.

As noted before, the important differences between
tasks are best captured using log10 selectivity and

Table 3. Mean centroid response error for each trial type in each task, averaged across participants, with confidence interval for each
mean in brackets. Notes: Errors from the target-only conditions are pooled together in tasks T1D1 and T1D3, and then in tasks T3D1
and T3D3, since distractor heterogeneity did not affect these conditions. In all tasks, error in the full-set trials was significantly greater
than in the target-only trials. From this table, we may conclude that participants were not performing at ceiling in any of the tasks in
the full set trials. Note also that there was a cost of target heterogeneity even for the for-target-only conditions.
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efficiency. These measures, averaged across partici-
pants in each task, are summarized in Tables 4 and 5.

Looking at both measures, we observe effects of
target homogeneity versus heterogeneity—for selectivity,
t(7)¼ 4.39, p¼ 0.003, BF¼ 16.14; for efficiency, t(7)¼
5.799, p¼ 0.0003, BF¼ 57.54—and distractor homoge-
neity versus heterogeneity—for selectivity, t(7)¼ 3.674, p
¼ 0.008, BF¼ 7.84; for efficiency, t(7)¼ 2.381, p¼ 0.049,
BF¼ 1.93—with significantly larger effects of target
heterogeneity than distractor heterogeneity: for selec-
tivity, t(7)¼ 6.969, p¼ 0.00011, BF¼ 143.96; for
efficiency, t(7)¼ 2.451, p¼ 0.044, BF¼ 2.09. There was
also little evidence for an interaction between target and
distractor homogeneity versus heterogeneity: for selec-
tivity, t(7)¼�0.676, p¼0.521, BF¼ 0.406; for efficiency,
t(7)¼�1.274, p¼ 0.243, BF¼ 0.63.

Looking at the effects of skill level, there were
significant differences in selectivity between experts and
novices in the T3D1, T1D3, and T1D1 tasks. Experts’
log10 selectivity ratios, on average, were greater than

novices’ by 0.6 (four times larger) in the T3D1 task, t(7)
¼ 3.025, p¼ 0.023, BF¼ 3.92; by 0.7 in the T1D1 task,
t(7)¼ 3.880, p ¼ 0.008, BF ¼ 9.70; and by 1.0 in the
T1D1 task, t(7)¼ 3.881, p¼ 0.008, BF¼7.14. There was
no significant difference in performance between the
expert group and novice group on the T3D3 task—for
selectivity, D ¼ 0.318, t(7)¼ 1.861, p ¼ 0.112, BF¼
0.91—but what difference there was did show that
experts still performed better than novices on average.
There was no significant difference in efficiency
between novices and experts in any of the four tasks.
There were also no significant interactions, suggesting
that the effects of target and distractor homogeneity
versus heterogeneity generalize across skill levels. The
effects we found for target and distractor heterogeneity
are therefore not driven by practice with the centroid
task. Experts were more selective for targets overall,
but their performance in the heterogeneous conditions
worsened as much as the novices’. This suggests that
the effects are not task specific.

Figure 3. Influence functions, averaged across participants, for each of the four tasks. Task T1D1 consists of one target hue and one

distractor hue on each trial, T3D1 consists of one distractor hue and three target colors on each trial, T1D3 consists of one target hue

and three distractor hues on each trial, and T3D3 consists of three target hues and three distractor hues on each trial. The colored

squares on the horizontal axis show the approximate hue of each stimulus. The height of each data point represents the weight of

that hue for one of the stimulus conditions—a combination of target and distractor types—included in the task. The colored lines

simply connect the data points from a stimulus condition, so the points on a line indicate which colors were present in the condition,

and should not be interpreted to interpolate between those points. The solid black lines display the ideal filter for each task. Error

bars reflect a 95% confidence interval for the weight of that color computed with the main effect of subjects removed and then

adjusted to eliminate bias as described by Morey (2008) and Franz and Loftus (2012).
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Discussion

Results revealed that target and distractor hetero-
geneity both degraded performance in the centroid
task, but that target heterogeneity had a larger effect
than distractor heterogeneity. Back-transforming the
values from Table 4 to their untransformed linear scale,

we found that selectivity for T1D1 averaged over
subjects and hues was 25.1, and selectivity for T3D3
was 3.22 (Table 4); this is a large difference, a factor of
6.8. The other two conditions were of intermediate
selectivity, with selectivity reduced by almost twice as
much due to increasing target heterogeneity (i.e., T1D1
vs. T3D1: 3.6) than to increasing distractor heteroge-
neity (i.e., T1D1 vs. T1D3: 1.9). In the logarithmic

Table 4. Strength of the influence functions in terms of log10 selectivity for four tasks, together with the confidence intervals of the
values averaged across all eight subjects. Notes: In all but the T3D3 task, the value shown in each cell is the average of the values
determined separately in the conditions within the task. Values in parentheses are the selectivity ratios exponentiated to reverse the
log10 transformation.

Table 5. Efficiencies for four tasks, together with the ranges of the values averaged across all eight subjects. Notes: Just as in Table 4,
the value shown for each task (except for T3D3) is the average of the values determined separately in the conditions within the task.
Values in parentheses are N3 Efficiency, which gives the lower bound on the estimate of the total number of dots (out of a possible
12) that the participants must have processed on average for the task.
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analysis, the interaction is small and not reliable,
suggesting that separate effects of target and distractor
heterogeneity combine multiplicatively (additively in
the log domain) to produce the overall selectivity. This
two-factor log-linear model accounts for 99.5% of the
variance in log10 selectivity. For efficiency, the two-
factor linear model accounts for 97.7% of the
systematic variance.

In none of the tasks did the distance between the
hues of targets versus distractors around the hue circle
have an effect on performance. We also found that in
the T3D1 and T3D3 tasks, the weights of the targets
were smaller for the purple targets, which suggests that
it was more difficult for the participants to categorize
purple as a reddish hue than it was for them to
categorize orange as a reddish hue; however, this effect
was found only when target heterogeneity was high.

Although we have strong evidence that target
heterogeneity affects performance, we were concerned
that running each task in separate blocks may have
allowed participants to optimize their strategy in a way
that improved performance when the targets or the
distractors were homogeneous. In response to this
concern, we had five of the participants complete a
control experiment in which trials from all four tasks
were mixed together. If participants were in some way
optimizing the filter used for each task based on the
knowledge of the task, then they would be expected to
perform worse when conditions were mixed in the same
block. If they were using a fixed response computation
throughout the experiment, then their performance in
the mixed task should not differ from that in the
separately blocked tasks. We found that mixing the
conditions did not measurably change performance.

Another concern was that numerosity may have
affected performance. Research conducted in our lab
suggests that when the tokens of one hue in a stimulus
cloud are substantially more numerous than the tokens
of any of the types of a set of mixed-hue distractors,
participants are able to find the centroid of dots of that
more numerous hue with high efficiency and selectivity
(Sun, Chubb, Wright, & Sperling, 2018), even when
they do not know beforehand what that hue will be.
Unlike the top-down effects of selective attention that
we have been discussing, this appears to reflect a
stimulus-driven (bottom-up) form of selective atten-
tion. In the current experiment, the tokens of the target
hue were more numerous than tokens of the distractor
types in the T1D3 task. Given the results of Sun et al.,
this numerosity difference might have been expected to
produce a bottom-up effect that would increase the
salience of the targets, improving performance in that
task. Analogously, in the T3D1 task the tokens of the
one distractor type were more numerous than those of
any of the target types. This numerosity difference
might have been expected to increase the salience of the

distractors, perhaps harming performance. The pres-
ence of either of these effects would have shown up in
the analyses as an interaction. However, because we did
not find a significant interaction between target and
distractor heterogeneity in the current experiment for
either log10 selectivity or efficiency, we conclude that if
numerosity did have either of these effects, they were
not large enough to be discernible in our design.

To assess the implication of these results, consider
that a common interpretation of the analogy that
attention operates like a filter—one in which the
characteristics of the filter are endogenously deter-
mined—leads to the expectation that participants
would use the same filter, one with a broad passband
for reddish stimuli, in all four tasks of this experiment.
This interpretation suggests that selectivity ratios and
efficiencies should not vary across tasks. Contrary to
this expectation, performance was better when targets
were homogeneous, even though participants could not
predict the target to which they would have to attend
on each trial. Similarly, when distractors were homo-
geneous, they were easier to ignore. This is consistent
with findings from previous research demonstrating
that search times increased as variation in the distractor
group increased (Bundesen & Pedersen, 1983). We
conclude that the simple analogy of an endogenous
filter cannot solely explain the phenomena of feature-
based attention.

One way to explain these results and save the general
analogy that attention operates like a filter is to posit a
mechanism in which the filter is generated dynamically,
starting from an endogenously determined goal, to
reflect the actual statistics of the overall scene being
processed, or possibly even just local patches of the
scene (Foley, 1994; Zenger & Sagi, 1996; Lee, Itti,
Koch, & Braun, 1999; Ren & Malik, 2003; Danelljan,
Hager, Shahbaz Khan, & Felsberg, 2015). If this
suggestion is correct, it may have been important that
all of the targets were slightly brighter than the
background. We made this choice because experience
in our lab suggests that centroid performance for hue
targets is reduced when the dots are equiluminant with
the background. This luminance increment may have
allowed the stimulus items to be discriminated from the
background so that their histogram could be computed
and an optimal filter constructed for the particular set
of target and distractor tokens appearing on that trial.

A different way to understand these results would be
grouping, a bottom-up mechanism that can segregate,
precategorically, similar items in a visual scene. With
low target heterogeneity, the targets would all be
clustered into a single group because of their shared
reddish hue, and the resulting group could be easily
selected. With high target heterogeneity, the targets
would be clustered into three groups, each of which
would have to be identified separately; their three
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locations would then need to be maintained until the
locations could be merged, presumably by a different
process than that used to find the centroid of a selected
group of dots, to produce the overall centroid. Error
introduced in maintaining or merging the centroids of
these separate groups could explain the reduced
selectivity and efficiency in the T3D1 and T3D3 tasks.
Similarly, when distractors are homogeneous (in the
T1D1 and T3D1 tasks), the distractors would be
clustered into a single group that would be easier to
ignore.

Future work will have to look for evidence to select
between these and other possible mechanisms in order
to better understand how feature-based attention
operates. One important question to address would be
how far apart stimulus items can be in feature space
without incurring the centroid-calculation costs ob-
served here, and whether this distance depends on the
arrangement of the targets and distractors. So, for
example, Bauer et al. (1996) have shown that there is a
substantial increase in slope for visual search when the
target and multiple distractor types are close to being
colinear in color space; Sun et al. (2016a) have
demonstrated a similar effect in the context of the
centroid task.

A final issue that is of particular interest to those of us
working with the centroid task is whether the results
produced with this procedure reflect the operation of
feature-based attention more generally or something
particular to the centroid task. We used the centroid task
for this research because the manipulation of both target
and distractor heterogeneity is quite natural within the
context of this task—although it is possible to manip-
ulate within-trial distractor heterogeneity in a visual-
search task, this cannot be done for target heterogeneity
(Bundesen & Pedersen, 1983; Duncan & Humphreys,
1989; D’Zmura, 1991; Bravo & Nakayama, 1992; Bauer
et al., 1996; Nagy & Thomas, 2003; Nagy et al., 2005).
The results from this study provide some evidence that
these effects of heterogeneity are not limited to this task,
as we did not find a significant interaction between
practice and target and distractor heterogeneity.

Although it is perhaps not a common task, locating
the centroid of spatially separate objects is something
that the visual(-motor) system appears to do naturally
(McGowan et al., 1998; Baud-Bovy & Soechting, 2001).
This tendency to locate the center of mass plays a role
in grasping, as shown by Goodale et al. (1994).
Participants in that study were asked to grip objects
with their thumb and index finger, and the line joining
the two contact points tended to pass close to the center
of mass of the object. We speculate that the feature-
based processes underlying centroid percepts are
similar to the parallel search processes ascribed to
visual search by Dosher, Han, and Lu (2010) or, more
recently, Buetti et al. (2016), wherein the location of

target items is easily extracted if the target is dissimilar
from the distractors. Also, this parallel process does not
rely solely on whether or not an item ‘‘pops out’’ from
its distractors but rather involves attentive filtering that
is influenced by the observer’s goals. Ultimately,
however, it may require neurophysiological studies to
resolve this question of generality.

Conclusions

In this experiment, we tested the filter analogy for
feature-based attention by varying target and distractor
heterogeneity and seeing whether this variation affected
participants’ ability to pick the centroid of the target
dots. Assuming the filter analogy could best describe
attention, performance would have been consistent
across all four tasks. We found, however, that
participants achieved the highest log10 selectivity and
efficiency for the task with no heterogeneity in the
target and distractor groups, and the lowest for the task
with the highest heterogeneity in both groups. This
indicates that the simple filter analogy does not
accurately describe the mechanism that drives atten-
tion. Instead, the mechanism that is used may be more
similar to a grouping mechanism.

Keywords: feature-based attention, centroid task,
target/distractor heterogeneity
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Footnote

1 The Bayes factor is the Bayesian alternative to
classical hypothesis tests based on the ratio of the
probability of the alternative hypothesis compared to
the null hypothesis (Goodman, 1999). The value was
computed with version 0.9.8 of the BayesFactor
package, available online at http://pcl.missouri.edu/bf-
one-sample (Rouder, Speckman, Sun, Morey & Iver-
son, 2009).
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