
Journal of Mathematical Psychology 56 (2012) 427–443
Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Psychology

journal homepage: www.elsevier.com/locate/jmp

A method for analyzing the dimensions of preattentive visual sensitivity
Charles Chubb a,∗, Ian Scofield a, Chuan-Chin Chiao b, George Sperling a

a Department of Cognitive Sciences, UC Irvine, Irvine, CA 92697-5100, United States
b Department of Life Science, National Tsing Hua University, Taiwan

a r t i c l e i n f o

Article history:
Received 29 August 2012
Received in revised form
4 January 2013
Available online 10 February 2013

Keywords:
Texture perception
Preattentive vision
Histogram contrast analysis

a b s t r a c t

A fundamental question in vision science is: Which physical differences in the visual input are sponta-
neously visible andwhich are not? At present this question has only been partially answered.We propose
that spontaneously visible variations are coded in ‘‘field-capture channels’’ that compute statistics on the
raw visual input and pass them on to higher level processes. We describe a psychophysical method for
exhaustively deriving the sensitivities of perceptually-available field-capture channels and thereby deter-
mining the dimensionality of early visual processes. The description of the field-capture channels resident
in human visionwill take the form of a compendium of dimensions of preattentive visual sensitivity. Here
we demonstrate a method for deriving this compendium. In particular, we apply the method in a domain
of physical variation (textures defined by randomly scrambledmixtures of different gray levels) for which
the experimental data are available. A simulation shows that the method can (1) determine the number
of field-capture channels that are differentially sensitive to variations in the domain and (2) derive a set
of basis functions of the space of physical variations to which those channels are sensitive.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

The aim of this paper is to provide a method for deriving the
dimensionality of early visual processes and to illustrate the
method with an example texture discrimination task. The method
developed here is predicated on several assumptions about the
early processes in visual spatial discriminations. We assume that
the initial segmentation of the visual field antecedent to deriving
object boundaries, locations, or identities uses a battery of fast,
spatially parallel image transformations whose response images
reflect ‘‘the amounts of various kinds of visual substances present
in the image’’ (Adelson, & Bergen, 1991). It is convenient to imagine
these substance-sensing transformations as being implemented
in retinotopically organized neural arrays; in any one of these
arrays all neurons apply the same computation to the visual input
but at different locations in the retina. Thus each array works
continuously like a movie camera to capture a ‘‘neural image’’
(Robson, 1980) mapping the changing distribution of a particular
‘‘visual substance’’. To reflect the rapid, spatially parallel nature
of these neural image transformations, we call them field-capture
channels. The high cost in neural resources of a single field-capture
channel makes it likely that human vision has only a modest
number, suggesting that we may be able to figure out how many
there are and what they sense.

Field-capture channels serve many purposes. First, they are
used to segment the visual field into regions seen as differing in
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quality. Because we experience these differences spontaneously
without any effort of attention, the processes that produce them
are often called ‘‘preattentive’’; however, this term is misleading:
field-capture channels often come under attentional control. For
example, in deciding whether or not to trust a rock face with your
boot as you hike, you need to extract a summary statistic from the
image of the rock face that reflects the probability that the rock
facewill hold your bootwithout slipping. By contrast, a completely
different summary statistic is appropriate for selecting the softest
towel on a shelf. In each case, an effort of attention is required
to combine information from different field-capture channels to
extract from the given surface a visual summary statistic that
reflects the suitability of the surface for the use in question. Indeed
one very useful approach to studying field-capture channels is to
ask: what decision statistics can people achieve when they are
asked to judgewhich of two texture samples has the higher level of
a specified target property (e.g., higher luminance mean or higher
luminance variance)? Generalmethods for experiments of this sort
are described in Chubb (1999). For applications, see Chubb and
Nam (2000), Chubb and Talevich (2002), Nam and Chubb (2000).

Field-capture channels also play a central role in search tasks.
For example, we assume that a target in a search task can be
efficiently detected only if the observer can combine information
from his/her field-capture channels to achieve an ‘‘attention filter’’
that is selective for the target vs the distractors. We submit that
for this to be possible there must exist at least one field-capture
channel that is activated by the target more than by any of the
distractors. From this perspective, field-capture channels can be
viewed as identical to the ‘‘feature maps’’ hypothesized tomediate
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visual search (Treisman & Gelade, 1980). However, we prefer the
term ‘‘field-capture channel’’ to ‘‘featuremap’’ which suggests that
the corresponding image transformation pinpoints the locations of
distinct occurrences of some specific sort of ‘‘feature’’ (e.g., redness
or verticality); on the contrary, the transformation achieved by a
given field-capture channel may well yield graded responses to
a wide range of continuously varying image properties that are
likely to defy definition in terms of a specific, easily characterized
feature. We also view field-capture channels as enabling selective
attention to the spatial distribution of a given property. It is
precisely this sort of attention that is hypothesized to mediate
‘‘guided search,’’ (Wolfe, Cave, & Franzel, 1989). In our view, the
‘‘guiding attributes’’ (Wolfe & Horowitz, 2004) used to control
guided searchmust be synthesized by combining information from
the field-capture channels resident in human vision.

More generally, we are concerned here with visual processing
that we hypothesize can be characterized by three consecutive
processing stages: (1) field-capture channels, (2) a salience map,
and (3) detection and decision processes that operate on the
salience map. We can view the physical stimulus I as the function
that assigns to each point (x, y) in the stimulus field at each time t
the vector I(x, y, t) = (S(x, y, t),M(x, y, t), L(x, y, t)) comprising
the S-, M- and L-cone activations produced by the light hitting
point (x, y) at time t . A field-capture channel C takes the stimulus
I as input and produces as output a function C[I] that assigns a
real-valued image statistic C[I](x, y, t) to each point (x, y, t). We
assume the image statistic C[I](x, y, t) is computed (using a rule
that is invariant across different spatial locations (x, y) and times
t) from the values assigned by I to points in space near (x, y) across
times shortly before t; this statistic reflects the amount of the
specific ‘‘visual substance’’ sensed by C that exists in the stimulus
I in the neighborhood of (x, y) at time t .

We assume further that the output of the field-capture channels
in human vision provides the bottom–up input to all subsequent
visual processes. Here,we are concerned specificallywith the input
to a general purpose ‘‘salience map’’. The salience map assigns
to each point (x, y, t) a scalar that represents the importance of
the point (x, y) at time t for current computational purposes. We
conjecture that this salience map is used for a wide range of
different purposes including search, spatial localization, configural
judgments (boundaries, shapes), numerosity judgments, etc.

The purpose of the illustrative experiments described here is
to determine (1) the number of field-capture channels that are
differentially sensitive to a particular class of stimuli, and (2) the
space of discriminationswithin this class of stimuli that these field-
capture channels enable. In these experiments participants judge
the orientation of a square wave that modulates between different
types of visual texture. We assume the participant uses his/her
salience map to make this judgment. Specifically, we assume
the participant selects several field-capture channels that are
differentially sensitive to the sorts of texture to be discriminated;
then, the participant combines in his/her salience map the
responses of these field-capture channels to produce a pattern in
which the alternating bars of the square wave differ as strongly
in salience as the participant can achieve. The participant then
bases his/her orientation judgment on the pattern of activation
in the salience map. In this conceptualization, the salience map
is a structure for coordinating input from different field-capture
channels; the salience map itself contains no information about
the qualities of the textures to be differentiated. In this model,
then, there is an important distinction between seeing a difference
between a region and its background versus knowing the content
that fills the region—content is not accessible to salience.

For the moment, we leave open the question of exactly how
salience is computed from the field-capture channel outputs.
Salience is typically assumed to be a non-linear function of the
individual channel responses; for example, the salience of the
difference between two textures is sometimes assumed to be
the Minkowski length (for some exponent β) of the difference
between the vector of channel responses produced by one texture
versus the other. However, there are good reasons to mistrust the
Minkowski length as a model of salience. First, the salience of a
texture difference is likely to depend strongly on the attention
state of the participant. For example, if a participant is searching
for a patch of texture that is brighter than the background, it
is likely that salience will be more influenced by differences in
mean texture brightness than if he/she is searching for a patch
of texture that differs from its background in, say, RMS energy.
Second, although the Minkowski length seems like a natural way
to compute salience, it predicts that for any two textures A and B,
a patch of A on a background of B should be equally salient as a
patch of B on a background of A. This condition often turns out to
be false. We will make much weaker, more general assumptions
about how salience is computed from the field-capture channel
responses. Indeed, one of the main contributions of this paper is
to show how to measure functions that reflect the sensitivity of
field-capture channels without making strong assumptions about
how salience is computed.

Here, we demonstrate the methods of investigating the prop-
erties of field-capture channels using texture discrimination tasks
as an example. To force the observer to rely exclusively on his/her
field-capture channels in performing such texture discrimination
tasks (versus even more complex cognitive processes), we require
observers to discern differences between textures across space in
displays of duration 1

4 s or less-displays that are too brief to permit
eye movements within the presentation. In the context of a tex-
ture discrimination task, we assume that a target region is preat-
tentively discriminated from a background only if the two regions
differentially activate one or more field-capture channels. For ex-
ample, if they differentially activate one or more cone classes, tar-
get and background will be discriminable due to differences in
brightness or color.

Since the work of Julesz (1962, 1975, 1981) and Beck (1966,
1982), it has been recognized that human vision has field-capture
channels sensitive to purely textural properties (see also Beck,
Sutter, & Ivry, 1987; Graham, 1989; Gurnsey & Browse, 1989;
Julesz & Bergen, 1983). For example, in Fig. 1, the texture elements
(or texels) of the test patch on the left differ in orientation from
those of the background but not in spatial frequency, whereas
the texels of the patch on the right differ in spatial frequency but
not in orientation; in each case the test patch pops out from the
background. Whenever two textures spontaneously segregate, we
interpret this to mean the textures differentially activate one or
more field-capture channels.

Many models of preattentive texture segregation have been
offered (e.g., Beck, Prazdny, & Rosenfeld, 1983; Bergen & Landy,
1991; Bovik, Clark, &Geisler, 1990; Caelli, 1985; Fogel & Sagi, 1989;
Graham, 1989, 1991; Graham, Beck, & Sutter, 1992; Grossberg
& Mingolla, 1985; Knutsson & Granlund, 1983; Landy & Bergen,
1991;Malik&Perona, 1990;Wilson, 1993). All propose that human
vision embodies a number of field-capture channels sensitive to
local pattern orientation and spatial frequency. Often the proposed
field-capture channels use spatially local linear filtering followed
by rectification. Julesz (1962) famously conjectured that all
preattentive texture discrimination used linear filtering followed
by a squaring nonlinearity. And indeed, spectral energy accounts
well for many cases of preattentive texture discrimination (Bergen
&Adelson, 1988); however,many counterexamples exist (Diaconis
& Freedman, 1981; Julesz, Gilbert, Sheppand, & Frisch, 1973; Julesz,
Gilbert, & Victor, 1978; Pollack, 1971a,b, 1972, 1973). Although
such examples and the models proposed to explain them are
suggestive, little progress has been made in actually discovering
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Fig. 1. Preattentive texture segregation driven by orientation (left) and spatial
frequency (right).

and measuring the dimensions of preattentive visual sensitivity.
The main obstacle has been lack of a systematic method. The point
of this paper is to fill this void.

Recent innovations in texture synthesis algorithms offer a
promising approach to these questions (Portilla & Simoncelli,
2000; Zhu, Liu, & Wu, 1999; Zhu, Wu, & Mumford, 1996). The
general strategy taken in this work is to synthesize image samples
equated in specified statistical properties to given target textures.
Themaximum entropy approach to this problem pioneered by Zhu
et al. (1996), requires the synthesized image samples to be
uniformly distributed within the space of all textures equated
to the target texture in the specified statistics. This requirement
is relaxed for the sake of computational efficiency by Portilla &
Simoncelli; however, their algorithm plausibly approximates this
ideal. In any case, for appropriately chosen statistical properties P ,
the synthesized image samples often appear remarkably similar
to the target textures. (See Portilla & Simoncelli, 2000, for a
fairly carefully pruned list of such properties P .) Any set P of
properties that leads to synthesized samples that are always
preattentively indiscriminable from their target textures must be
seen as sufficient to describe human preattentive sensitivity. The
difficulty has been in trying to distill such sufficient sets P of image
statistics into a minimal, i.e. necessary, core set of statistics.

The methods we describe below promise to be useful in this
effort. As we shall show, for specified subspaces of textures, these
methods do indeed enable one to derive a set of statistics both
necessary and sufficient to account for discrimination.

2. Groundwork

Themethods we describe use psychophysical tasks that require
the observer to discriminate one sort of texture from another.
Many different discrimination tasks would work: for example,
the observer might be asked to (1) identify the location of a
target patch of one kind of texture in a background of another, or
(2) identify the orientation of a square wave grating whose bars
alternated between two different kinds of texture, or (3) indicate
which of several distinct patches of texture was different from
the others. For our purposes, the particular discrimination task is
not important. What is important is the types of textures we use
and how we manipulate the differences between them. These are
described next.

2.1. Scrambles, histograms and perturbations

We always start with a particular set Ω of NΩ different mi-
cropatterns. A micropattern is a ‘‘mini-image’’ that can serve as a
Fig. 2. Four different sets of micropatterns. (a) the linear set ΩContrast , (b) another
linear set, (c) a cyclic set, (d) an unordered set.

single component in a large patch of texture; NΩ is the number
of micropatterns in Ω . Fig. 2 shows several possible micropattern
sets. It is useful to distinguish three general classes ofmicropattern
sets: linear, cyclic and unordered sets. The empirical questions of
interest and the methods of analysis are likely to differ between
these three different types ofmicropattern set. Fig. 2a and b are ex-
amples of linear micropattern sets. Fig. 2c is an example of a cyclic
micropattern set, and Fig. 2d is an example of an unordered set. Lin-
ear and cyclic micropattern sets both conform to an obvious order-
ing, whereas unordered sets do not. On the other hand, linear sets
have a unique pair of opposite, extreme elements whereas cyclic
sets do not.

A scramble is a random texture composed of micropatterns
whose frequencies in the scramble conform as exactly as possible
to a particular probability distribution. To generate a scramble
from a micropattern set Ω we first specify the proportions
p(ω) with which different micropatterns ω ∈ Ω appear in the
scramble. Then we load a ‘‘virtual urn’’ with exactly the number
of micropatterns needed to tile the stimulus region in exactly (or
as nearly as possible) the proportions p(ω); then we draw from
the urn randomly without replacement to assign micropatterns to
the texel locations of the scramble. We call the resulting image
an Ω-scramble and we call the probability distribution p the
scramble histogram. Fig. 3 shows some examples of scrambles
using micropattern set of Fig. 2a. The inset bar plots show the
histograms.

We write U(ω) for the uniform histogram on Ω , i.e., the his-
togram that assigns probability 1

NΩ
to all ω ∈ Ω where NΩ is the

number of elements in Ω . The scramble shown in Fig. 3a has his-
togram U . By default we treat real-valued functions of Ω as a col-
umn vectors, writing gTh for the inner product of functions g,
h : Ω → R. That is

gTh =


ω∈Ω

g(ω)h(ω). (1)

We shall write ∥g∥ for the Euclidean norm (or length) of g: ∥g∥ =
(gTg). Note that for any function g : Ω → R, gTU is the mean

value of g .
We call any real-valued function ρ : Ω → R a (histogram)

perturbation if ρ sums to 0. Perturbations will play a central role in
the method described below. Note that:
1. The difference between any two histograms is a perturbation.
2. Any perturbation ρ is orthogonal toU—i.e. ρ’s mean value, ρTU ,

is 0.
3. U + ρ is a histogram if and only if ρ is a perturbation whose

minimum value is greater than or equal to −
1

NΩ
. U + ρ and

U −ρ are both histograms if and only if the maximum absolute
value of ρ is less than or equal to 1

NΩ
. For this reason, we call

any perturbation ρ maximal if its maximum absolute value is
1

NΩ
. In addition, when we talk about the ‘‘maximal form’’ of a

given perturbation ρ, we mean the perturbation Aρ scaled to
be maximal.

A central question addressed by the methods we develop is the
following: For a given micropattern set Ω , what is the space of
perturbations ρ for which scrambles with histograms U + ρ vs.
U − ρ are preattentively discriminable?
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Fig. 3. Scrambles of ΩContrast , with histograms (a) U (the uniform distribution;
this assigns equal probability 1

9 to all gray levels in Ω), (b) and (c) U plus
complementary linear perturbations, (d) and (e) U plus complementary quadratic
perturbations, (f) and (g) U plus complementary cubic perturbations, (h) and (i) U
plus complementary 4th order perturbations. The linear, quadratic and cubic and
4th order perturbations used here are mutually orthogonal.

2.2. An example task

The methods we describe will work with many different dis-
crimination tasks. We describe a simple task here to aid intu-
ition. In this four-option, forced choice task, on every trial the
observer is asked to try to detect the orientation of a square
wave grating whose bars are filled with two different types of Ω-
scramble. Specifically, for a number of reasons (discussed in Chubb,
Econopouly, and Landy (1994)), it is useful to use scrambles that
are perturbed away from the uniform histogram U in opposite di-
rections. In other words, on every trial, we choose some pertur-
bation ρ and set the histograms of scrambles to be discriminated
equal to U+ρ and U−ρ. Four example stimuli are shown in Fig. 4,
one in each of the four possible orientations. The square waves
in each of the two upper stimuli alternate between the two types
of scramble shown in Fig. 3b and c. The lower left stimulus alter-
nates between the two scrambles shown in Fig. 3d and e, and the
lower right stimulus alternates between the two scrambles shown
in Fig. 3f and g. On any given trial in our example discrimination
task, the observer is given a brief display of a stimulus like one of
the four in Fig. 4 and presses a button to indicate which of the four
scramble-defined square wave orientations was present.

It will be convenient to use the terminology ‘‘ρ is discriminable
with probability p’’ to indicate that the observer responds correctly
with probability p when presented with a stimulus requiring the
observer to discriminate scrambleswith histogramsU+ρ vs.U−ρ.
More generally, any statement about discriminating a perturbation
ρ is to be taken as shorthand for the corresponding statement
about discriminating scrambles with histograms U + ρ vs. U − ρ.

2.3. A rough sketch of what is ahead

Our goal then is to determine the space of perturbations that
human observers can discriminate. The general approach we shall
take to this problem can be roughly sketched as follows. For a given
‘‘seed’’ perturbation φ, we engage the participant in a scramble
discrimination task, where on each trial the perturbation ρ to
be discriminated is highly correlated with φ. By thus fixing the
predominant quality of the scramble difference the participant is
asked to detect, we accomplish two related aims:

1. We enable the participant to optimize his/her performance for
the perturbation φ.

2. We insure that across the restricted set of perturbations ρ
tested, the visual salience of the difference between scrambles
can be well approximated by a linear function of ρ.

We can then analyze how performance depends on the (relatively
slight) deviations of the perturbations ρ away from φ; this enables
us to derive a function fφ : Ω → R (called the ‘‘expansion’’ of φ)
that reflects the influence exerted on the participant’s judgments
by each of the different types ofmicropatternsω ∈ Ω in the special
circumstance in which the participant is striving to discriminate
perturbations dominated by φ. By reiterating this procedure with
a number of different seed perturbations φk, k = 1, 2, . . . , n, we
derive a set of expansions fφk . As we shall show, if the seed
perturbations φk are chosen appropriately, then the expansions
fφk will make up a basis of the space of all perturbations that
human observers can discriminate. The relationship between this
space and the field-capture channels resident in human vision is
explored in the next section.

3. Differential sensitivity functions and spaces

3.1. Thinking about a single field-capture channel

We picture any field-capture channel M as being realized in
the brain by a retinotopically organized array of neurons; that is,
the neurons in M are arranged in the brain in an array, and the
location in the array of a neuron reflects the location in the retina
of the neuron’s receptive field. Each neuron in the M-array uses
the same (possibly complicated, nonlinear) computation to derive
its response from the pattern of light in its receptive field. This
computation defines the ‘‘visual substance’’ thatM senses.

We assume that the visual substance sensed by M is at
least moderately ‘‘fine-grained’’; that is, the neurons in the M-
array have relatively small receptive fields, and whatever lateral
interactions occur between them are restricted in the scope of
their influence. If so, then any neuron in M will be driven mainly
by input in a small region of the retina, and the resulting neural
image will carry relatively high acuity information. Otherwise,
the neural image captured by M is likely to be too blurred to
be useful.1 When an Ω scramble stimulates the M-array, any
given micropattern in the scramble is certain to influence the
responses of multiple M neurons. On the one hand, neurons close
to each other in M are likely to have overlapping receptive fields.
Thus, wherever a micropattern ω ∈ Ω occurs, it cannot avoid
impinging upon the receptive fields of multiple M neurons. In
addition, each micropattern is spatially extended; thus its impact
spreads to include neurons whose receptive fields do not overlap.

1 The term ‘‘fine-grained’’ is vague by design. It is difficult to anticipate which
statistics are likely to possess important adaptive utility for human vision. For
many purposes, high spatial resolution is likely to be important, suggesting a
strong adaptive bias for field-capture channel receptive fields to be small. However,
other factors are likely to predominate in determining the particular field-capture
channels evolved by human vision. Consider, for example, a visual statistic whose
value is high for image regions filled with the texture of a particular kind of
grass favored by edible grubs. The spatial complexity of the statistic signaling this
grass might well require large receptive fields; nonetheless, the adaptive benefit
of evolving a field-capture channel selective for this statistic would be high. For
reasons of this sort, we anticipate substantial variation in the sizes of the receptive
fields of the field-capture channels in human vision.
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Fig. 4. Four example stimuli using the scrambles shown in Fig. 3. The task is a 4-option orientation judgment in which the possible orientations are illustrated in the four
panels. The two upper stimuli alternate between scrambles of the types shown in Fig. 3b and c. The lower left stimulus alternates between the two scrambles shown in
Fig. 3d and e, and the lower right stimulus alternates between the two scrambles shown in Fig. 3f and g.
Finally, M ’s neurons may laterally interact. If so, then a given
micropattern can indirectly influence the activation levels of M-
neurons by stimulating the receptive fields of M-neurons with
lateral connections to them.

When an Ω scramble stimulates the M-array, different mi-
cropatterns of the same type are likely to produce different effects
in M . The most important reason for this is that M ’s response to a
given ω ∈ Ω is likely to be somewhat context-dependent, and the
contexts of two identical micropatterns within the scramble will
almost always differ. For our purposes, all that matters about any
such field-capture channel M are the average effects produced in
M by different types of micropatterns ω ∈ Ω . We next formalize
the concept of ‘‘first-order’’ sensitivity. For this purpose (and for
much of what follows) we will need the following basic concept
from linear algebra.

3.2. The projection of a function into a subspace

Let S be a subspace of the set of all real-valued functions of Ω .
Let b1, b2, . . . , bn be orthonormal functions spanning S, and let B
be the matrix whose columns are the bk’s. Then for any function
g : Ω → R define

gS =

n
k=1


bTkg


bk = BBTg and gS̄ = g − gS . (2)

gS is called the projection of g into S. By construction gS ∈ S and
g = gS̄ + gS . In addition, it is easy to show that

1. for any function h ∈ S,
(a) gTh = gT

S h, and
(b) gT

S̄
h = 0,

2. and conversely, for any function h̄ orthogonal to S,
(a) gT h̄ = gT
S̄
h̄, and

(b) gT
S h̄ = 0.

For these reasons it makes sense to think of gS as the portion of
g that resides in subspace S and gS̄ as the residual portion of g
orthogonal to S.

The concept of a projection is illustrated in Fig. 5. In this
example, Ω = {ω1, ω2, ω3}, and for any function f : Ω → R, we
use the vector notation ‘‘f = (v1, v2, v3)’’ to indicate that f (ω1) =

v1, f (ω2) = v2 and f (ω3) = v3. In this example, g = (2, 4, 5).
We take S equal to the (1-dimensional) subspace of all f = αB, for
α ∈ R and B = (2, 4, 1). The subspace S̄ is the plane (indicated
by the inscribed rectangle) comprising all f : Ω → R orthogonal
to B. The actual values of gS and gS̄ are: gS = (2.38, 4.76, 1.19),
and gS̄ = (−0.38, −0.76, 3.81). Note that gS ∈ S, gS̄ ∈ S̄, and
g = gS + gS̄ .

3.3. The differential sensitivity function of a field-capture channel

Returning to the field-capture channel M: for any element ω ∈

Ω , define ftotal(ω) to be the mean activation produced in M by an
occurrence of ω in a scramble. Let µftotal be the mean of ftotal(ω)
taken across allω ∈ Ω . Define the differential sensitivity function of
M with respect to ω as the function

f (ω) = ftotal(ω) − µftotal . (3)

Note that the mean activation produced in M by a scramble with
histogram p is
ω∈Ω

ftotal(ω)p(ω) =


ω∈Ω

f (ω)p(ω) + µftotal


ω∈Ω

p(ω)

= f Tp + µftotal . (4)
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Fig. 5. Example illustrating the concept of a projection. In this example, Ω =

{ω1, ω2, ω3}. For any function f : Ω → R, wewrite ‘‘f = (v1, v2, v3)’’ as shorthand
for ‘‘f (ω1) = v1 , f (ω2) = v2 and f (ω3) = v3 ’’. In this example, g = (2, 4, 5); the
(1-dimensional) subspace S is the set of all f = αB, for α ∈ R and B = (2, 4, 1); S̄ is
the 2-dimensional subspace (indicated by the inscribed rectangle) comprising all f :

Ω → R orthogonal to B; gS = (2.38, 4.76, 1.19), and gS̄ = (−0.38, −0.76, 3.81).
Note that gS ∈ S, gS̄ ∈ S̄, and g = gS + gS̄ .

Thus the difference inmean activation produced inM by scrambles
with histograms p and q is f T (p − q), and in particular, for any
perturbation φ, the difference in mean M activation produced by
scrambles with histograms U + φ vs. U − φ is 2f Tφ.2

3.4. The differential sensitivity space and the null space of amicropat-
tern set Ω

In general we expect human vision to have multiple field-
capture channels that are differentially sensitive to the different
ω’s in a given micropattern set Ω . Let f1, f2, . . . , fNFCC be the
differential sensitivity functions of these field-capture channels.
(We shall be consistent in using the symbol NFCC for the number of
field-capture channels in human vision differentially sensitive to
a given micropattern set Ω .) Then we call the fk’s the differential
sensitivity functions of Ω , the space they span the Ω differential
sensitivity space and the matrix F with column k equal to fk the
differential sensitivity matrix of Ω .

In addition, we call the space of perturbations orthogonal
to all of the fk’s the Ω null space. Thus the union of the Ω

differential sensitivity space and the Ω null space is the space of
all perturbations.

For any perturbation φ, the kth entry of the vector 2F Tφ gives
the difference inmean activation produced in the kth field-capture
channel by scrambleswith histogramsU+φ vsU−φ.We call 2F Tφ
the difference vector produced by φ. Note that if φ is in the Ω null
space, then 2F Tφ = 0.

3.4.1. The analogy to color perception
Let fS , fM and fL be the functions characterizing the sensitivities

of the S-,M- and L-cone classes to quanta of different wavelengths.
Then for R, the matrix whose column vectors are fS , fM and fL, the
vector comprising the activations produced in the S,M and L cones
by a light with spectrum P is given by AP = RTP . (Thus, the three
components of AP are the integrals (approximated as sums) across
the continuumof visiblewavelengthsλof fS(λ)×P(λ), fM(λ)×P(λ)

2 Note that ftotal − f (the portion of ftotal not contained in the space of all
perturbations) is a constant function—i.e., a function that assigns the same value to
allω ∈ Ω; only constant functions are orthogonal to all perturbations. Ourmethods
do not allow us to estimate this constant component of ftotal .
and fL(λ)×P(λ).) Lightswith spectra P andQ produce distinct color
impressions only if RTP ≠ RTQ . Conversely, lights with physically
distinct spectra P and Q appear identical if RTP = RTQ , in which
case the two lights are called metamers. Note that in this case, the
function D = Q − P is orthogonal to the space spanned by fS , fM
and fL because RTD = 0.

We can view the discrimination of scrambles as analogous to
the discrimination of homogeneous lights. Within this conceptual
framework, the histogram of a scramble is analogous to the
spectrum of a light, with one caveat: the histogram of a scramble
is constrained to sum to 1 (because it is a probability distribution);
however, the spectrum of a light need obey no such constraint.
If we imagine a space of lights whose spectra are constrained
to sum to a particular fixed value, then the analogy is exact:
lights correspond to Ω-scrambles; their spectra correspond to
scramble histograms; micropatterns in Ω correspond to quanta
of different wavelengths. Just as lights with spectra P and Q are
discriminable only if RTP ≠ RTQ , scrambles with histograms p
and q are discriminable only if F Tp ≠ F Tq for F the differential
sensitivity matrix of Ω .

Analogously, if two Ω-scrambles are indiscriminable, we call
them metamers and take this to indicate that the perturbation φ
derived by taking the difference between their histograms has in-
ner product zero with the sensitivity function of each field-capture
channel that is differentially sensitive to the micropatterns in Ω;
this means φ has a zero projection into theΩ-differential sensitiv-
ity space. And conversely, if two Ω-scrambles are discriminable,
then we assume the difference ρ between their histograms has a
nonzero projection into the Ω-differential sensitivity space. This
basic fact provides the crucial leverage for the method described
below.

3.4.2. Matching methods
Maxwell (1855) demonstrated the three-dimensionality of

human vision using matching experiments. To mix the colors
in his experiment, he used a flat-topped top pie-sliced into 100
sectors. Then when the top is spun, ‘‘the sectors of the different
colours become indistinguishable, and the whole appears of one
uniform tint’’. (Maxwell, 1855, p. 275.) To enable comparison of
two different color mixtures, Maxwell used a smaller color-mixing
disk inside a larger one; this produced an annulus of one tint
hugging a central disk of another tint when the top was spun.
In most of his experiments, Maxwell used varying proportions of
three colors in the annulus (e.g., vermillion, emerald green and
ultramarine) and two in the central disk, (e.g., black and white).
He would have his participants look at the top only when it was
spinning andwould adjust the proportions of different colors in the
central disk and in the surrounding annulus based on the feedback
provided by his participants. In many cases, the participant was
trying to achieve a spinning top that appeared uniformly gray. If,
for example, the participant reported that the annulus appeared
greenish and lighter than the center, Maxwell would (1) decrease
thenumber of green sectors in the annulus, swapping them for blue
and red sectors and (2) increase the number of white sectors in the
central disk, swapping them for black sectors.

It is possible to use matching methods to investigate the di-
mensionality of sensitivity to gray-scale scramble variations. In
fact, Chubb, Nam, Bindman, and Sperling (2007) used a matching
method to show that the space of grayscale scrambles is perceptu-
ally three-dimensional. In these experiments, participants viewed
square wave stimuli whose bars alternated between scrambles
with histograms U + ρ vs U − ρ, where on each adjustment trial
ρ was a maximal perturbation. In different experimental condi-
tions, Chubb et al. (2007) varied the basis B (analogous to the basis
of colors used by Maxwell in a given mixture condition) used to
generate ρ, and the participant sought to adjust the vector w of
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weights used to generate ρ = Bw so that the square wave alter-
nating between scrambles with histograms U+ρ vs U−ρ became
as nearly invisible as possible. Thisminimally salient,maximal per-
turbationρ was then tested in a forced-choice experiment inwhich
the participant strove to judge the orientation of a square wave
whose bars alternated between scrambles with histograms U + ρ
vs U − ρ. Chubb et al. (2007) tested four 3-dimensional subspaces
(spanning different subspaces of 4th order polynomial pertur-
bations) as well as the (4-dimensional) subspace of all fourth-
order polynomial perturbations. For each of the 3-dimensional
subspaces tested, the minimal salience perturbation yielded dis-
crimination performance significantly greater than chance; how-
ever, the minimally salient, maximal perturbation in the subspace
of all fourth-order polynomial perturbations yielded chance per-
formance (within measurement error).

In the case of color perception, Maxwell had strong a priori
reasons to think the space of homogeneous lights was perceptually
three dimensional. As his text suggests, Maxwell presumed that
any particular feedback from the observer in his experiment,
e.g., ‘‘the annulus appears too green’’, could be canceled by an
appropriate adjustment of the segment angles subtended by
the base colors he used in his top. His experiment verified
this intuition. Similarly, the experiments of Chubb et al. (1994)
and Chubb, Landy, and Econopouly (2004) study had shown that
the space of grayscale scrambles had perceptual dimension of at
most three but had not ruled out the possibility that there might
be only two dimensions of sensitivity. Chubb et al. (2007) were
able to show that there existed three-dimensional subspaces of
perturbations that contained no perturbations ρ orthogonal to the
sensitivity functions of all the field-capture channels resident in
human vision; this implies that human vision contains at least
three field-capture channels sensitive to grayscale scrambles. In
both of these cases, then, strong hypotheses existed prior to the
research that might be tested directly using a matching paradigm.

In the absence of strong prior hypotheses, however, matching
methods are likely to be of limited utility in analyzing the
perceptual dimensionality of spaces of Ω-scrambles, especially in
those cases in which |Ω| is fairly large. In any matching paradigm,
we start by specifying some subspace S of perturbations. If the
dimension of S is one greater than the dimension of the human
sensitivity space for Ω , then there will exist in S at least one
maximal perturbation ρ orthogonal to the human sensitivity space
for Ω . In this case, the scrambles with histograms U + ρ and
U − ρ will be preattentively metameric, and ρ should yield
chance discrimination performance. We would like the matching
paradigm to yield such a perturbation ρ if it exists in S.

Note that ρ is an element of the null space dual to the human
sensitivity space for Ω . Of course, if we could determine the null
space, then we would also know the human sensitivity space for
Ω . However, when Ω is large, then the null space is likely to be
of higher dimension than the sensitivity space, in which case it is
likely to be easier to measure the sensitivity space directly using
the methods described below.

4. Seed expansion

Seed expansion is a method for deriving a perturbation that is
an element of the differential sensitivity space of amicropattern set
Ω . By iterating thismethod several times, one can derive aminimal
basis of the differential sensitivity space ofΩ , thereby determining
the dimensionality of this space.

4.1. Model assumptions

Any normalized perturbation φ whose maximal form yields
near perfect discrimination can play the role of the ‘‘seed’’ in a
seed-expansion task. The correlation between φ and any other
perturbation ρ is the cosine of the angle formed between φ and
ρ (when they are considered as NΩ-dimensional vectors) which is
given by

r(φ, ρ) =
φTρ

∥φ∥∥ρ∥
, (5)

where |φ| and |ρ| are the norms (the Euclidean lengths) of φ and
ρ. In a seed-expansion task, on every trial the observer is asked to
discriminate a perturbation ρ (variable across trials) that is highly
correlated with φ, e.g., with correlation 0.9 or higher.3

Let F be the matrix whose column vectors are the (unknown)
differential sensitivity functions fk, k = 1, 2, . . . ,NFCC of the NFCC
field-capture channels enabling discrimination of Ω-scrambles.
To perform the discrimination task given stimulus produced by a
perturbation ρ, the participant must first combine the differential
activations f Tk ρ in his/her salience map. We do not know exactly
what computation the participant uses to generate this salience
signal, and we would like the method we are developing to be
robust with respect to potential variations in this computation. For
this reason, wewill impose very weak assumptions on the salience
computation.

In the context of a task in which the observer is attempting
to discriminate perturbations ρ all of which are highly correlated
with a given seed perturbation φ, we assume that the salience of
the difference between scrambles with histograms U +ρ vs U −ρ
depends on the observer’s attentional state which is determined
by φ. For example, if φ were the perturbation used to generate the
scrambles with histograms U + φ and U − φ shown in Fig. 3b and
c, we would expect the participant to be selectively tuned in to
differences in texture brightness. The participant might well use a
different salience computation if φ were the perturbation used to
generate the scrambles shown in Fig. 3d and e. Because we expect
the salience computation to depend on the seed perturbationφ, we
write ‘‘Salφ(ρ)’’ explicitly subscripted by φ to indicate the salience
of ρ in the context of the task in which the seed perturbation is φ.

How do the different field-capture channels combine to
produce salience? The answer is, we do not know. For this reason
we adopt a very general, weak model of salience that subsumes
(we hope) all the plausible candidate computations as special
cases. Specifically, we view the differential activations f Tk ρ, k =

1, 2, . . . ,NFCC as the raw material to be combined. Then we
admit the possibility that each of these pieces of raw material
may by transformed by a real-valued function Gφ,k. Note the
implication carried by the subscript k that Gφ,k may be different
for different field-capture channels, and by the subscript φ that
Gφ,k may depend on the attention state adopted by the participant
in performing the discrimination task when the seed perturbation
is φ. (For example, we might expect that the participant selects
the functions Gφ,k so as to emphasize the responses of those
field-capture channels k that are most sensitive to variations in
φ.) After using the functions Gφ,k to individually transform the
outputs of the different field-capture channels, we add these
transformed field-capture channel outputs together. Finally, we
admit the possibility that this sum of transformed field-capture
channel outputs may be further transformed by the application of

3 The correlation level of 0.9 should be taken as a rough guideline.We have found
that in practice, if the perturbations ρ all have correlation 0.9 or higher with the
seed perturbation φ, then the model assumptions described below are typically
satisfied within measurement error. On the other hand, if the correlations between
the perturbations ρ and the seed perturbation φ are too high, then it becomes
impossible to obtain a sharp estimate of the ‘‘expansion of φ’’ (defined below), the
function reflecting the degree to which the participant’s judgments are influenced
by the different micropatterns ω ∈ Ω when the participant is attempting to
discriminate the seed perturbation φ.
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a real-valued function Hφ that also may depend on that attention
state of the participant as determined by the seed perturbation φ.
In short, we assume that

Salφ(ρ) = Hφ


NFCC
k=1

Gφ,k

f Tk ρ


(6)

for differentiable functions Gφ,1,Gφ,2, . . . ,Gφ,NFCC and Hφ . Note
that Eq. (6) includes the Minkowski length as a special case. In
particular, if Gφ,k(x) = |x|β for all k, and Hφ(x) = x

1
β , then Salφ(ρ)

is the Minkowski length (with exponent β) of the vector F Tρ of
differential field-capture activations.

Finally, we assume that probability correct is a psychometric
function of Salφ(ρ). Any psychometric function that assigns chance
probability to x = 0would serve our purposes. For definiteness,we
use aWeibull function: specifically, we assume that the probability
that the observer correctly discriminates ρ is Ψ (Salφ(ρ)), where

Ψ (x) = 0.25 + 0.75

1 − e−xγ


. (7)

There are two things to note about Eq. (7). First, this Weibull
function assumes chance performance is 0.25 reflecting the fact
that our example task is a 4-option, forced-choice task. Second, this
Weibull function has only one free parameter, the exponent γ that
controls the function’s steepness. Typically, the Weibull function
also includes a second parameter that enters as a divisor to the
argument, x. This parameter will turn out to be redundant in our
model because it can be absorbed into the parameters used to
define Salφ(ρ).

Several important conceptual points are hidden behind the
assumption that Ψ (x) gives the probability correct on a trial
in which the stimulus has salience x. On any given trial, the
participant extracts from the stimulus a noise-corrupted statistic
that he/she uses to make his/her decision. (If there were no noise
in this process, then every time we presented a given stimulus,
the participant would have to give the same response.) In our
model, Salφ(ρ) is a deterministic (i.e., nonrandom) function of
φ and ρ. Thus, all the randomness in the model enters via the
psychometric function Ψ . The task we are using to illustrate the
seed expansion method requires the participant to select one of
four response options. It is natural to imagine that on a given
trial, the participant computes four internal statistics, one for each
option, and then selects the option for which the corresponding
statistic is the largest. If one made specific assumptions about
the distributional properties of these four hypothetical random
variables (e.g., that they are independent, gamma distributed with
parameters that depend in such and such ways on the stimulus),
then one might be able to derive a formula for the cumulative
distribution function Fdecision(x) characterizing the probability of a
correct response given a stimulus with salience x. However, we
do not need to solve this problem. We naturally expect Fdecision(x)
to be a smooth, sigmoidally increasing function of x constrained
to assign the value 0.25 (chance performance) to x = 0, and we
are confident that we can approximate any such function tolerably
well with a Weibull function of the form given in Eq. (7). Thus,
the choice of the Weibull psychometric function is driven not by
theoretical but by pragmatic considerations.

4.2. The gradient of salience

Let τ be the value of salience required to support a threshold
probability correct p (i.e., τ = Ψ −1(p) for Ψ given by Eq. (7)), and
let ατ be the positive scalar satisfying Salφ(ατφ) = τ .

We shall assume that for all perturbations ρ sufficiently well-
correlated with the seed perturbation φ, Salφ(ρ) can be well
approximated by

Salφ(ρ) = Salφ(ατφ + (ρ − ατφ))

≈ Salφ(ατφ) + ∆T
φ,τ (ρ − ατφ)

= τ + ∆T
φ,τ (ρ − ατφ), (8)

where ∆φ,τ : Ω → R is the gradient of Salφ at the point ατφ. I.e.,
for any perturbation ρ,

∆T
φ,τρ = lim

ϵ→0


Salφ(ατφ + ϵρ) − Salφ(ατφ)

ϵ


. (9)

The following theoremshows that if Salφ(ρ) conforms to Eq. (6),
then ∆φ,τ is an element of the differential sensitivity space of
Ω and hence is eligible to serve as an element in a basis of the
differential sensitivity space of Ω .

4.3. Theorem

Suppose Salφ(ρ) satisfies Eq. (6). Then∆φ,τ is a linear combina-
tion of the columns of F and hence an element of theΩ differential
sensitivity space. Specifically, (using prime notation to denote the
derivative of a function) for the scalar

cφ,τ = H ′

φ


k

Gφ,k

ατ f Tk φ


(10)

and the column vector gφ,τ of length NFCC whose kth component is

gφ,τ ,k = G′

φ,k


ατ f Tk φ


, (11)

we shall show that

∆φ,τ = cφ,τ Fgφ,τ . (12)

Proof. It will be convenient to set

qρ(x) = Salφ(ατφ + xρ). (13)

Three applications of the chain rule to the right side of Eq. (13) yield

q′

ρ(x) = H ′

φ


k

Gφ,k

f Tk [ατφ + xρ]


×


k

G′

φ,k


f Tk [ατφ + xρ]


f Tk ρ. (14)

Note that

q′

ρ(x) = lim
ϵ→0


Sal(ατφ + (x + ϵ)ρ) − Sal(ατφ + xρ)

ϵ


. (15)

Thus, in particular,

q′

ρ(0) = lim
ϵ→0


Sal(ατφ + ϵρ) − Sal(ατφ)

ϵ


= ∆T

φ,τρ. (16)

On the other hand, it is easy to verify from Eq. (14) that q′
ρ(0) =

(cφ,τ Fgφ,τ )
Tρ. We conclude that for any perturbation ρ,

∆T
φ,τρ = q′

ρ(0) = (cφ,τ Fgφ,τ )
Tρ, (17)

implying Eq. (12). �

4.4. The expansion of a seed perturbation

As above, for threshold probability p, suppose τ = Ψ −1(p)
is the salience supporting probability p correct, and let ατ satisfy
Salφ(ατφ) = τ . For any of the perturbations ρ tested in the context
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of an experiment to expand the seed φ, Eq. (8) leads to

P(correct|ρ) ≈ Ψ (τ + ∆T
φ,τ [ρ − ατφ]). (18)

It is a natural step from Eq. (18) to assume that ∆φ = ∆φ,τ is
invariant with respect to τ . In this case, setting ρ to 0 implies
τ = ατ∆

T
φφ, leading to the simplification,

P(correct|ρ) ≈ Ψ (∆T
φρ). (19)

We call the function ∆φ : Ω → R the expansion of the seed φ.
The expansion ∆φ reflects the influence exerted by different
ω ∈ Ω on the observer’s judgments in the specific variant of
the discrimination task in which the difference between the
histograms of the scrambles presented on each trial is dominated
by the seed perturbation φ. We call ∆φ the ‘‘expansion’’ of φ to
reflect the fact that although ∆φ does indeed depend on φ and
will undoubtedly be positively correlated with φ, it must also
expand outward from φ to include contributions from all NΩ − 1
dimensions of the space of all perturbations.

Eqs. (19) and (7) define a model that can be used to derive a
likelihood function. The parameters of the model are the exponent
γ in (7) and the values assigned by function ∆φ to the elements
of Ω . The number of degrees of freedom is NΩ because ∆φ is
constrained to sum to 0.

4.4.1. The likelihood function
Let φ be the seed whose expansion is to be derived. We assume

that the perturbations ρt tested across all trials t are all well-
correlated with φ. Then for any ∆φ : Ω → R and any γ ∈ R
the likelihood function for the model given by Eqs. (18) and (7) is

Λφ(∆φ, γ ) =


Correct trials t

Ψ (∆T
φρt)

×


Incorrect trials t


1 − Ψ (∆T

φρt)


(20)

where Ψ (x) is defined by Eq. (7).
As we demonstrate in our simulation, it is easy to use the

likelihood function given in Eq. (20) in the context of a Markov
Chain Monte Carlo simulation to estimate ∆φ and γ .

4.5. Iterating the seed-expansion method to derive a basis of the
differential sensitivity space

As above, let F be the NΩ × NFCC matrix whose column vectors
are the differential sensitivity functions of Ω .

If human vision has any field-capture channels with substantial
differential sensitivity to Ω , then there must exist some maximal
perturbation that yields near perfect discrimination. We select
such a perturbation and normalize it. We use this normalized
perturbation φ1 as our first seed and derive the expansion ∆φ1 .
Since ∆φ1 is an element of the Ω differential sensitivity space, it
can be taken as the first element of a basis of this space. We then
test whether there exist any maximal perturbations orthogonal to
∆φ1 that yield discrimination above chance. If not, we conclude
that the differential sensitivity space ofΩ is one-dimensional with
basis {∆φ1}. If such perturbations do exist, then we choose one.
If this perturbation supports near perfect discrimination, then we
normalize it to derive our second seed φ2. If not, then we will need
to construct a maximal perturbation comprising a weighted sum
of the new perturbation with ∆φ1 and adjust it to produce near
perfect discrimination (e.g., a success rate of 0.9 or higher).Wewill
then normalize this perturbation to derive our second seed, φ2 and
proceed to derive the expansion ∆φ2 .

We reiterate this process as many times as needed: after step
k we test whether the space of perturbations orthogonal to all
the previously derived expansions, ∆φ1 , ∆φ2 , . . . , ∆φk , contains
a maximal perturbation that yields discrimination significantly
greater than chance. If not, we conclude that ∆φ1 , ∆φ2 , . . . , ∆φk
span theΩ sensitivity space. Otherwisewe choose such amaximal
perturbation ρ. If ρ supports near perfect discrimination, then we
normalize it to derive the next seed φk+1. If not, then we construct
a maximal perturbation φ̂k+1 comprising a weighted sum of ρ and
some perturbation known to produce near perfect discrimination,
adjusting φ̂k+1 to contain as much ρ as possible while producing
near perfect discrimination (e.g., a success rate of 0.9). Then we
will normalize φ̂k+1 to obtain our next seed, φk+1 and proceed to
derive the next expansion ∆φk+1 .

This iterative procedure yields a basis ∆φ1 , ∆φ2 , . . . , ∆φn of the
Ω sensitivity space. It is possible, however, due to measurement
error accrued step by step along the way, that this basis is not
minimal. As a final step, we use singular value decomposition to
extract the principal components of the matrix whose column
vectors are the expansions∆φ1 ,∆φ2 , . . . , ∆φn . We take as our final
basis the set of those principal components whose eigenvalues are
significantly greater than zero.

5. An example application

The purpose of this section is to illustrate how we actually
derive a basis for a differential sensitivity space. As we proceed,
we will address several important practical issues not discussed in
the abstract description of the method above. In this section, we
focus on textures composed of small squares of different Weber
contrasts, as illustrated in Figs. 3 and 4.

5.1. The example field-capture channels

In order to illustrate the seed-expansion method, we need
to pick a set of hypothetical field-capture channel sensitivity
functions (which will become the columns of the matrix F ); we
also need to specify for any seed φ the functions Hφ and Gφ,k,
k = 1, 2, . . . ,NFCC used in Eq. (6) as well as the exponent γ in the
psychometric function (Eq. (7)). Given these parameters, we will
be able to simulate the seed-expansion method. In addition, we
will be able to compare the estimates of the various expansions we
derive with their actual values. To illustrate the iterative aspect of
themethod, this set of sensitivity functions should be of cardinality
greater than one.

As our example set, we take three field-capture channels
roughly consistent with previous research (Chubb et al., 1994,
2004, 2007). The sensitivity functions of these three hypothetical
field-capture channels are shown in Fig. 6. For purposes of this
paper, we will take these three functions to form a basis of the
human differential sensitivity space for scrambles of small squares
varying in gray level.

For simplicity, we will also assume that

Salφ(ρ) = 2∥WφF Tρ∥ (21)

where F is the matrix whose columns are the three differential
sensitivity functions f1, f2 and f3, and

Wφ = K

I + Rφ


(22)

for I the 3 × 3 identity matrix and Rφ the 3 × 3 diagonal ma-
trix such that Rφ(k, k) = |f Tk φ|, and the positive scalar K is cho-
sen so that the sum of the entries in Wφ is equal to 3. In this
choice ofWφ , we are imagining that the observer can partially tune
his/her salience computation to the specific discrimination task
at hand by giving higher weight to those field-capture channels
most sensitive to φ (i.e., those field-capture channels for which
Rφ(k, k) = |f Tk φ| is large). However, as reflected by the contribu-
tion of the identity matrix to Wφ , we are also imagining that the
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Fig. 6. The differential sensitivity functions of three hypothetical field-capture
channels enabling discrimination of Weber contrast scrambles. These field-capture
channels are roughly consistent with previous findings Chubb et al. (1994, 2004,
2007).

observer’s flexibility in tuning his/her salience computation is lim-
ited. Also note that Eq. (21) results from setting Hφ(x) = x1/2, and
Gφ,k(x) = (2Wφ(k, k)x)2 in Eq. (6). Finally, we assume probability
correct in our 4-option forced-choice orientation discrimination
task is given by Eq. (7) with γ = 2.5, approximately in line with
the results of Chubb et al. (2004).

5.2. Selecting the micropattern set

In this example, the domain of physical variation being investi-
gated is continuous. The first question one must answer with this
sort of physical domain is: How finely should the micropattern set
Ω sample the domain? (or equivalently, how large should we take
NΩ?) This decision should be made carefully for several reasons.

1. There are at least two reasons to make NΩ moderately large:
(a) One needs to be confident that NΩ is greater than the num-

ber NFCC of field-capture channels differentially sensitive to
Ω scrambles. Otherwise, it will be impossible either to de-
rive a basis spanning the Ω differential sensitivity space or
to determine its dimension.

(b) If one or more field-capture channels has sensitivity that
varies rapidly as a function of v, then if NΩ is too small, one
may fail to detect those variations.

2. On the other hand, there are also important reasons to keep NΩ

small:
(a) If NΩ is small, then scrambles can have higher concentra-

tions of the different kinds of micropatterns in Ω , and one
can experimentally vary these concentrations over a larger
range. As this suggests, the smaller one makes Ω , the easier
it tends to be to generate scrambles that are strongly dis-
criminable, and the easier it is to measure sensitivities to
those scrambles.

(b) The number of trials required to estimate the expansion of
a given seed using the method described above is roughly
proportional to NΩ , so the smaller one keeps NΩ , the easier
it is to derive a basis of the Ω sensitivity space.

We have found that taking NΩ around 9 often works well. How-
ever, the particular choice will depend on factors specific to the
domain of physical variation under study. In our simulations,NΩ =

9; specifically, we let our micropattern set Ω contain nine small
squareswithWeber contrasts−1.0, −0.75, −0.5, −0.25, 0, 0.25,
0.5, 0.75, 1.0. For convenience, we identify the differentmicropat-
terns with their Weber contrasts.
5.3. Strategic considerations in choosing the first seed

In this section we use the seed-expansion method outlined in
Section 4 to estimate a basis of the Ω sensitivity space spanned
by the differential sensitivity functions shown in Fig. 6. To derive a
basis of the Ω differential sensitivity space wewill need to expand
at least three different seeds, φ1, φ2, φ3. We should find that the
space of perturbations orthogonal to all of∆φ1 ,∆φ2 and∆φ3 affords
very weak discrimination (if any).

We shall choose our first seed from among the discrete
domain Legendre polynomials, λ1, λ2, . . . , λNΩ−1 shown in Fig. 7.
These perturbations are derived by applying Gram–Schmidt
orthonormalization to the vectors vk(ω) = ωk, for k = 0, 1, . . . ,
NΩ − 1. (We throw out λ0(ω), which is the constant function
=

1
√
NΩ

and therefore not a perturbation.) For any k between 1
and NΩ − 1, the perturbations λ1, λ2, . . . , λk span the space of all
polynomial perturbations of order less than or equal to k.

We expect that human vision will have one or more field-
capture channels providing broad, well-graded sensitivity to any
linear domain of physical variation such as Weber contrast. Often
the more interesting question is whether there exist any field-
capture channels that confer ‘‘special’’ sensitivity showing some
formof abrupt variation (e.g., sharp tuning to a particular contrast).
The Legendre polynomials are useful for quickly discovering
such forms of sensitivity if they exist. In practice, it suffices to
glance at displays like those in Fig. 4 that use scrambles whose
histograms are maximally (and oppositely) perturbed by the
different Legendre polynomials. If one finds a high order Legendre
λk that is easily discriminable, this reveals immediately that human
vision has one or more field-capture channels with some form
of abrupt variation in sensitivity. To discover the form of this
sensitivity all one needs to do is use λk as a seed perturbation
and extract the corresponding expansion.4 For this reason we
typically take φ1, our first seed, to be the highest order Legendre
polynomial that presents itself as obviously discriminable. In the
current example, this is λ4. (Scrambles with histogramsU+λ4 and
U − λ4 are shown in Fig. 3h and i.)5

5.3.1. Expanding the first seed
It is crucial to use a set of perturbations ρ that are all highly

correlated (e.g., with correlation greater than around 0.9 with the
seed).

It is also crucial that the ρ’s one tests span the space of all
perturbations. In this section, we will describe a specific approach
that achieves both of these aims. We have used this method in a
number of experiments, and it seems to work well.

1. We begin by selecting an orthonormal basis b1, b2, . . . , bNΩ
of

perturbations that has b1 equal to the seed. In the current case
we let

b1 = φ1 = λ4 (23)
b2 = λ1

b3 = λ2

b4 = λ3

b5 = λ5

4 The experiments reported in Chubb et al. (1994) and Chubb et al. (2004) used
to document the existence of the blackshot mechanism amount to an application
of the seed expansion method. In these studies, Ω comprises the 17 gray levels
−1, −0.125, . . . , 1, the seed is λ3 , and the expansion is the projection of the
blackshot sensitivity function into the space spanned by λ1, λ2, . . . , λ7 .
5 The maximal form of λ4 has amplitude Amax = 0.237, and Sal(Amaxλ4) =

2Amax|Wλ4 F
Tλ4| = 2.13. In addition, Ψ (2.13) = 1.00 for Ψ given in Eq. (7) with

γ = 2.5. The corresponding computation for λ5 yields probability correct of 0.92,
and the probabilities correct are lower for λ6 , λ7 and λ8 .
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Fig. 7. Discrete domain Legendre polynomials of order 1–8. They form an orthogonal basis of the space of all perturbations of the nine Weber contrasts.
b6 = λ6

b7 = λ7

b8 = λ8.

It should be noted, however, that any choice of b2, . . . , b8 will
suffice as long as they are orthonormal and b1 = φ1.

2. Then for ϵ =
1
3 , we construct the perturbations

η+

k =
b1 + ϵbk

∥b1 + ϵbk∥
(24)

and

η−

k =
b1 − ϵbk

∥b1 − ϵbk∥
(25)

for k = 2, 3, . . . , 8.
3. Note that each of the perturbations ρ = b1, as well as ρ = η+

k
and ρ = η−

k for k = 2, 3, . . . , 8 is normalized. For each of
these perturbations ρ we collect psychometric data testing
performance at discriminating Aρ for various amplitudes A.
We will use 15 interleaved staircases to collect this data, one
for each perturbation. Specifically, the staircase for a given
perturbation ρ is structured as follows:
(a) For Amax the scalar for which the maximum absolute value

of Amaxρ is equal to 1
NΩ

( 19 in this example), we take as
our range of possible histogram amplitudes A, the 30 values
Amax
30 , 2Amax

30 , . . . , Amax.
(b) Then we start the staircase at amplitude A =

Amax
2 and pro-

ceed to observe 250 staircase trials for each of ρ = b1, η+

k
and η−

k , k = 2, 3, . . . , 8 (3750 trials total). In each staircase,
we increment A whenever either
i. fewer than two trials have been observed, or
ii. one or both of the last two trials yielded an incorrect

response,
and otherwise we decrement A (i.e., whenever the previous
two trials both yielded correct responses). (Staircases
that use this ‘‘2-up-1-down’’ update rule concentrate
observations around perturbation amplitudes that yield
performance in the neighborhood of 71% correct.)

4. Nextwe use a Bayesian estimation procedure to derive a sample
from the joint posterior density characterizing the parameters
required to fit all of the psychometric data. These parameters
are
(a) γ from Eq. (7),
(b) and the expansion ∆φ1 (whose values are constrained to

sum to 0).
The estimation method uses Markov Chain Monte Carlo
(MCMC) simulation.We refer the reader to Appendix for details.

The estimated basis function fφ1 = ∆φ1 is plotted in Fig. 8. Error
bars are 95% Bayesian credible intervals.6 The dashed line gives
the actual value of fφ1 . The dotted–dashed line gives the part of fφ1
contributed by the seed perturbation λ4; i.e., this is the projection
of fφ1 into the one-dimensional space spanned by λ4. Note that λ4
itself contributes relatively little to fφ1 .

5.3.2. Testing the local linearity assumption
Note that we have collected psychometric data for varying

amplitudes of each of the 15 normalized perturbations ρ1 = b1,
as well as ρ2k = η+

k and ρ2k+1 = η−

k for k = 1, 2, . . . , 7. These
conditions are redundant with respect to the goal of estimating
∆φ1 and thus enable us to test the basic assumption of our method
(expressed in Eq. (19)) that Salφ1(ρ) can be approximated by the
linear transformation.

It is convenient to use a likelihood ratio test for this purpose.
This general method can be used to compare two nested models
fit using a maximum likelihood criterion. In particular, suppose
the free parameters in ModelConstrained comprise a subset of those
inModelGeneral. Let Λ̃General be themaximum value of the likelihood
function for ModelGeneral across all possible values of the model

6 In this simulation, all threshold estimates are medians of estimated Bayesian
posterior distributions, and bracketing markers give the 2.5 and 97.5 percentiles of
these same distributions.
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Fig. 8. The first basis element, fφ1 . This is the expansion of the seed perturbation
φ1 = λ4 (Fig. 7). Error bars are 95%Bayesian credible intervals. The dashed line gives
the true value of fφ1 . The dotted–dashed line gives the contribution to fφ1 of the seed
perturbation φ1 .

parameters, and let Λ̃Constrained be the maximum value of the
likelihood function for ModelConstrained. As is well known (see,
e.g., Hoel, Port, & Stone, 1971), if ModelConstrained reflects the true
state of nature (this is the null hypothesis), then the statistic

X = −2 ln


Λ̃Constrained

Λ̃General


(26)

is asymptotically distributed as chi-square with degrees of
freedom equal to the difference between the number of degrees
of freedom inModelGeneral and the number inModelConstrained.

In the current situation the likelihood Λ̃Constrained is obtained by
maximizing Λφ in Eq. (20) across all possible values of ∆φ and γ .
The number of free parameters in this model is 9. (Although the
function ∆φ has nine values, it only has eight degrees of freedom
because it is constrained to sum to 0.)

For ModelGeneral we fix γ across the fifteen perturbations
ρk, k = 1, 2, . . . , 15 and introduce separate scaling parameters
α1, α2, . . . , αk to fit the data from each staircase separately. Let
Ck(A) (Ik(A)) be the number of trials on which the perturbation
presented was Aρk and the participant responded correctly
(incorrectly). Then

ΛGeneral(α1, α2, . . . , α15, γ ) =

15
k=1


norms A

Ψ


A
αk

Ck(A)

×


1 − Ψ


A
αk

Ik(A)

, (27)

and Λ̃General is the maximum value taken by ΛGeneral across all
possible values of its 16 parameters.

To find the values of each of Λ̃General and Λ̃Constrained it is
necessary to conduct a search using some optimization program.
As usual, one must be careful to check that each of these searches
has found the global maximum of the function across its entire
domain. This is likely to require starting the search at a number
of different locations in the parameter space.

In the current instance, we find that ln(Λ̃General) = −2550.103,
ln(Λ̃Constrained) = −2552.971. Thus the statistic X of Eq. (26) takes
the value 2 × (2552.971 − 2550.103) = 5.7360. Under the null
hypothesis, the probability of obtaining a value this large or greater
is 1 − Fχ2,7(5.7360) = 0.571, where Fχ2,7 is the chi-square cumu-
lative distribution function with 7 degrees of freedom. Thus, our
current data give us no reason to doubt our assumption of linearity.
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Fig. 9. The second basis element, fφ2 . This is the expansion of the seed perturbation
φ2 derived by orthonormalizing λ2 (7) with respect to the first basis element fφ1
shown in Fig. 8. Error bars are 95% Bayesian credible intervals. The dashed line gives
the true value of fφ2 . The dotted–dashed line gives the contribution to fφ2 of the seed
perturbation φ2 .

5.3.3. Deriving the second basis function
To find our second seed we project the Legendre polynomials

λ1, . . . , λ8 into the space of perturbations orthogonal to fφ1
to obtain normalized perturbations g1, . . . , g8 and seek the
highest k for which the maximal form of gk yields near perfect
discrimination. In the current example, this is g2 (whose maximal
form yields probability 0.998 correct discrimination). We take the
normalized perturbation

b1 = φ2 = g2 (28)

as our second seed. This function (scaled to reflect its contribution
to the second expansion) is shown by the dotted–dashed line with
triangular markers in Fig. 9. We then fill out the basis b2, . . . , b8
with an arbitrary set of orthonormal functions all orthogonal to b1.7

Fromhere, the procedure formeasuring the second expansion is
identical to the procedure we used to measure the first expansion.
For details, see Steps 2–4 of Section 5.3.1.

The estimate of the expansion fφ2 = ∆φ2 of φ2 (obtained by our
simulated experiment) is given by the black line in Fig. 9. The error
bars are 95% Bayesian credible intervals, and the true value of fφ2
is shown by the dashed line with circular markers.

5.3.4. Deriving the third basis function
The third seed φ3 is the normalized projection of λ1 into the

space orthogonal to fφ1 and fφ2 . The maximal form of this per-
turbation yields virtually perfect performance (probability correct
= 0.999). As before, we set b1 equal the seed to be expanded (φ3).
Then we choose an arbitrary set of other perturbations b2, . . . , b8
so as to make the set of bk’s orthonormal. The procedure for deriv-
ing the expansion fφ3 is identical to the procedure used for each of
the first two expansions.

The estimate derived of the third expansion fφ3 is shown by
the black line in Fig. 10. Error bars give 95% Bayesian credible
intervals. The dotted–dashed line with triangular markers shows
the contribution of the seed perturbation φ3 to the expansion fφ3 ,
and the dashed line with circular markers shows the true value
of fφ3 .

7 Specifically, we use the Matlab command, ‘‘Others = null([ones(1, 9); ones
(8, 1) ∗ b1(:)

′

]);’’ This produces an orthonormal basis of the space orthogonal to
both the constant function U and the seed perturbation, b1 .
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Fig. 10. The third basis element, fφ3 . This is the expansion of the seed perturbation
φ3 derived by orthonormalizing λ1 (7) with respect to the first and second basis
elements fφ1 (Fig. 8) and fφ2 (Fig. 9). Error bars are 95% Bayesian credible intervals.
The dashed line gives the true value of fφ3 . The dotted–dashed line gives the
contribution to fφ3 of the seed perturbation φ3 .

5.3.5. Testing the residual space of perturbations
After each iteration of the seed-expansion method, one must

check that there still exists some perturbation orthogonal to the
previously obtained basis functions that affords discrimination
above chance. We have not emphasized this stage in previous iter-
ations because themaximal form of each of the perturbations used
as a seed yields obvious discrimination. For ρ equal to the maxi-
mal form of φk, k = 1, 2, 3, a glance at a square wave modulating
between scrambles with histograms U + ρ and U − ρ would im-
mediately reveal that discrimination will be superthreshold in our
standard task.

However, the space of perturbations orthogonal to fφ1 , fφ2 and
fφ3 yields no obvious candidates for a fourth seed. A good guess
at such a fourth seed can usually be derived by projecting λ1
(or some simple power function) into the space of perturbations
orthogonal to all of the previous expansions. In the current case,
this yields the normalized perturbation g shown by the dashed
line in Fig. 11. The maximal from of the perturbation g yields
discrimination performance that is subthreshold but significantly
greater than chance (proportion correct= 0.478). On the onehand,
the fact that the maximal form of g yields greater-than-chance
performance indicates that there exist field-capture channels with
some sensitivity to g . On the other hand, g cannot play the role of
the seed perturbation in the seed expansion method, because the
level of performance supported by its maximal form is too low. In
order to measure an expansion, we need a seed that supports near
perfect discrimination. Thus, to investigate the residual sensitivity
to g , we will need to mix g with some other perturbation that
supports near perfect discrimination. In the current case, we
normalize the perturbation

fφ2
∥fφ2∥

+ g to derive our fourth seed, φ4.
The maximal form of φ4 yields proportion correct discrimination
0.973. The choice to use fφ2 in this role is dictated by the fact
(as revealed by a glance at Figs. 8–10) that the credible intervals
are larger for our estimate of fφ2 than for either of the other two
expansions. Thus in using fφ2 to enrich φ4, we focus selectively on
the region of Ω sensitivity space about which we have the poorest
information.

We use the same method as in each of the three previous cases
to derive the fourth expansion fφ4 . That is, we select an arbitrary
orthonormal basis b1, b2, . . . , b8 of perturbations with b1 = φ4
and follow steps 2–4 of Section 5.3.1. The resulting expansion fφ4
is shown in Fig. 12.
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Fig. 11. The fourth seed. The normalized perturbation g shown by the dashed
line is derived by orthonormalizing λ1 (See Fig. 7) with respect to the first
three expansions. The maximal form of this perturbation yields discrimination
performance that is too poor to allow g to be used as a seed in the seed expansion
method but significantly greater than chance, showing that there exist field-capture
channels that are differentially sensitive to g . To explore the sensitivity to g , we
take a mixture of g with enough fφ2 to produce a normalized perturbation φ4
whose maximal form yields near perfect discrimination performance. Specifically,
φ4 is derived by normalizing the perturbation

fφ2
∥fφ2 ∥

+ g . The maximal form of this
perturbation yields proportion correct 0.973.
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Fig. 12. The fourth basis element, fφ4 . This is the expansion of the seed perturbation
φ4 derived by orthonormalizing λ1 (7) with respect to the first and second basis
elements fφ1 (Fig. 8) and fφ2 (Fig. 9). Error bars are 95% Bayesian credible intervals.
The dashed line gives the true value of fφ4 . The dotted–dashed line gives the
contribution to fφ4 of the seed perturbationφ4 . Note that even though there are only
three field-capture channels in the example simulation, it is possible to derive the
expansion of a fourth seed perturbation. Indeed, one can derive the expansions of
as many different seed perturbations as one desires. However, all of these different
expansions must reside (within measurement error) in the three-dimensional
subspace spanned by the sensitivity functions plotted in Fig. 6.

We might reiterate this process one or even two more times.
However, the fact that we were unable to find a perturbation
orthogonal to all of fφ1 , fφ2 , and fφ3 that supported strong
discrimination performance suggests that the space orthogonal to
fφ1 , fφ2 , fφ3 and fφ4 should be a subspace of theΩ null space.We can
investigate this questionmore carefully by extracting the principal
components of the expansions fφ1 , fφ2 , fφ3 and fφ4 as described in the
next section.

5.4. Extracting a basis

To derive a basis of the sensitivity space, we proceed to use
singular value decomposition. In deriving credible intervals for
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Fig. 13. Means and associated 95% Bayesian credible intervals for the principal
components of the 9 × 4 matrix whose columns are the four expansions. Each
principal component has been scaled by its corresponding eigenvalue. The dashed
lines give the true values of the four functions. Note that the estimate of the
fourth principal component (plotted with circles) does not differ significantly from
0whereas each of the other three estimates does. This supports the claim that theΩ

sensitivity space is the three-dimensional space spanned by estimates of the three
curves marked with tokens other than circles.

each of the four expansions (plotted in Figs. 8–10 and 12) we
used MCMC simulation to produce 40,000 samples drawn from
the posterior distribution characterizing each expansion. For k =

1, 2, . . . , 40,000, we apply singular value decomposition to the
matrix Mk whose columns are the kth samples of expansions 1
through 4. For each k, this yields the (unique) decomposition

Mk = SkVkDT
k (29)

where

1. Sk is the 9 × 4 matrix whose columns are the orthonormal
‘‘principal components’’ ofMk,

2. Vk is the diagonal matrix whose ith diagonal element gives the
eigenvalue associated with the ith principal component, and

3. Dk is the 4 × 4 orthonormal matrix whose jth row gives the
‘‘loadings’’ of the four principal components in the jth column
vector ofMk; this matrix is irrelevant for our purposes.

Fig. 13 plots the means and associated 95% Bayesian credible
intervals for the four columns of the matrix SkVk, k = 1, 2, . . . ,
40,000. The ith column (i = 1, 2, 3, 4) of this matrix gives the ith
principal component scaled by its eigenvalue. The dashed lines give
the true values of the eigenvalue-scaled principal components,
which we will simply call ‘‘principal components’’ from now on.

Note first that the estimated principal components fit the real
ones within measurement error. Crucially, the fourth principal
component does not differ significantly from 0 whereas the other
three all do. The analysis we have performed has thus confirmed
that the Ω differential sensitivity space is three dimensional.
Specifically, it is the space spanned by the three curves in Fig. 13
with non-circular markers.

6. Discussion

6.1. Moving beyond scrambles

In the past decade several very effective texture synthesis
methods have been developed (e.g., Portilla & Simoncelli, 2000;
Zhu et al., 1999, 1996). Given a sample T of some target texture,
each of these methods uses a stochastic process to derive a new
random image R equated to the original texture in a specified set P
of statistics. If the method used to derive R draws uniformly from
the set of all images equated to T in statistics P , it is said to be a
‘‘maximum entropy’’ procedure. Maximum entropy methods are
preferred above others because only these methods yield textures
whoseproperties are purely entailed by the constraint thatRmatch
T in statistics P . Such procedures have been explored by Zhu et al.
(1999, 1996). By contrast, the method of Portilla and Simoncelli
(2000) is not amaximum entropy procedure; however, it plausibly
approximates this ideal and is much more efficient than available
maximum entropy methods. Portilla and Simoncelli (2000) start
with an Nrows × Ncols image whose pixels are initialized to jointly
independent, standard normal random variables; the procedure
then iteratively nudges that image through NrowsNcols-dimensional
space so as to arrive at an image equated to T in statistics P . Portilla
and Simoncelli (2000) have worked hard to derive a fairly trim
set P of statistics that seems to be sufficient to describe human
preattentive sensitivity. That is, for all textures T that they have
tested, the synthesized images R produced to match T in statistics
P end up being preattentively indiscriminable from T , or nearly so.
However, despite the efforts of Portilla and Simoncelli (2000) to
trim the fat from the set P , there is no guarantee that P is minimal.
On the contrary, it seems highly likely that P is far from minimal.
The challenge, then, is to distill the sufficient set P into a core set
of necessary statistics.

Although we have focused on discrimination of scrambles in
the current paper, the formalism we have developed transfers
directly to investigating discrimination of synthetic textures. We
will sketch how this works. First, however, to build a bridge
from scrambles to synthetic textures, we need to foreground one
aspect of the scramble experiments that we have not previously
emphasized. In all of the scramble experiments we have been
discussing, the scramble with histogram U plays the role of our
‘‘base’’ texture: all pairs of scrambles to be discriminated in the
experiments we have described deviate symmetrically from the
scramble with histogram U . That is, on every trial, the observer
is asked to discriminate a scramble with some histogram U +

ρ from the scramble with complementary histogram U − ρ. It
should be noted, however, that one might well use some other
histogram Y instead of U to define the ‘‘base’’ texture in a scramble
experiment; and if one did, the results might change: one might
obtain a different sensitivity space using Y than usingU . Implicit in
the logic of the seed expansion method is the understanding that
one’s results are conditioned by the base texture one is using. In
effect, what we derive in an iterated seed expansion experiment is
the human sensitivity space for perturbations away from the base
texture used in the experiment.

Let us now imagine how the apparatus we have developed
might be used to study discrimination of synthetic textures.
For concreteness we imagine an experiment that makes use of
the Portilla–Simoncelli algorithm. Suppose the number of Por-
tilla–Simoncelli (P–S) statistics is N . Just as any Ω-scramble is de-
fined by its histogram, any P–S texture is defined by the N values it
assigns statistics P . Analogous to the histogram U that has defined
the base scramble in all the experiments we have considered, we
first need to choose some specific V0 ∈ RN to define the ‘‘base’’ P–S
texture in our experiment. In this context, any vector ρ ∈ RN can
play the role of a perturbation, and one can measure the discrim-
inability of the textures with statistics V0 + ρ vs. V0 − ρ. We will
use the same shorthand as we did for scrambles: we will say the
perturbation ‘‘ρ is discriminable with probability p’’ if the partic-
ipant achieves success rate p in discriminating the synthetic tex-
tures with statistics V0 + ρ vs. V0 − ρ; and if p is high, we say ‘‘ρ is
easily discriminable’’.

Extending the analogy to a full-blown seed expansion exper-
iment, let B = {b1, b2, . . . , bM} be a set of orthonormal vectors
in RN and let Span(B) be the space of all linear combinations of B.
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The question we address in this hypothetical experiment is, how
many field-capture channels are differentially sensitive to the tex-
ture variations that can be produced by linearly combining the
perturbations in B in the neighborhood of V0, andwhat sorts of sen-
sitivity do they confer?

The crucial assumption we need to make is that the mean acti-
vation produced in any given field-capture channel by a texture
varies slowly as a function of the P–S statistics of the texture;
more specifically, we must assume that the mean response of any
field-capture channel is approximately a linear function of P–S statis-
tics within any neighborhood small enough that the corresponding
textures support only subperfect discrimination. Formally: if two
textures with P–S statistics V1 and V2 support subperfect discrimi-
nation in a standard task,8 then we assume that the following con-
dition holds to a good approximation for any field-capture channel
C: for some fC ∈ RN , the mean activation produced in C by the
texture with P–S statistics equal to AV1 + (1 − A)V2 is equal to
Af TC V1 + (1 − A)f TC V2 for A ranging from 0 to 1.

If this ‘‘local linearity’’ condition holds, then the experimental
methods presented in this paper can be used to (1) determine
the number of field-capture channelswhose differential sensitivity
functions have non-zero projections into the space spanned by B =

{b1, b2, . . . , bM}, and (2) derive a basis of the sensitivity space SV0,B
spanned by those projections. The procedure is exactly analogous
to the onedescribed in Section4. One starts by finding anormalized
perturbation φ1 ∈ Span(B) that can be scaled so as to be easily
discriminable. Then one extracts the expansion fφ1 ∈ Span(B) of
φ1. Under the local linearity assumption, fφ1 is an element of SV0,B.
Next, one selects another seed perturbation φ2 ∈ Span(B) such
that (1) φ2 is orthonormal to fφ1 , and (2) φ2 can be scaled to yield
near perfect discrimination; then one extracts the expansion fφ2 ∈

Span(B) of φ2. The same logic applies to support the conclusion
that fφ2 ∈ SV0,B. One iterates this procedure as many times as
necessary to a obtain amatrix FV0,B whose columns (the successive
expansions) can be confidently taken to span the sensitivity space
SV0,B. The principal components of FV0,B whose eigenvalues are
significantly greater than 0 provide an orthonormal basis of the
sensitivity space SV0,B.

Why is this important? First, the dimension DV0,B of SV0,B
places a lower bound on the number of field-capture channels
that are differentially sensitive to P–S statistic variations in the
neighborhood of V0. Moreover, if the perturbations b1, b2, . . . , bM
are chosen judiciously, then one may have reason to believe that
DV0,B is actually equal to the total number of field-capture channels
that are differentially sensitive to V0. Second, the specific patterns
of sensitivity reflected by SV0,B are likely to provide important
insights into the computations performed by the field-capture
channels resident in human vision.

By reiterating this iterated seed expansion procedure across
a number of different base textures (characterized by different
vectors of P–S statistics) onemight hope to derive data sufficient to
enable a complete theory of human preattentive visual sensitivity.

6.2. Summary

A basic question in visual perception is: which physical
variations in the pattern of light presented to the retina
are spontaneously visible? At present, this question has only
been partially answered. In this paper, we have described and
demonstrated a method that can be used to answer this question
for the space of textures that can be made by taking random
arrangements micropatterns drawn in different proportions from

8 For example, a task inwhich the observer is presentedwith four texture patches
presented in a square array and must pick the odd man out (the one with P–S
statistics different from the other three).
a given set Ω . Such textures are called scrambles. If human vision
has field-capture channels M1, M2, . . . ,MN that are differentially
sensitive to scrambles, then the methods we have described can
be used to derive a basis of the space spanned by the functions
f1, f2, . . . , fN that give the sensitivities of these field-capture
channels to the different micropatterns in Ω . Basis elements
are extracted one at a time using a new method called ‘‘seed
expansion’’ (see Section 4). We used the method in a simulated
experiment, showing how to derive a complete basis of the
differential sensitivity space of a micropattern set Ω by iterative
seed-expansion. By applying the methods we have described
across a range of differentmicropattern setsΩ it should bepossible
to derive the field-capture channels that observers have available
to process these patterns.

Finally, we have described how the methods developed here
might be applied to analyze human sensitivity to variations
between textures other than scrambles. This is a vast and exciting
domain that remains to be explored.
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Appendix. Concerning the Bayesian analysis of psychometric
data

In this appendix, we describe the details of the Bayesian
method used to estimate the joint posterior density of the vector
comprising the parameters used to fit the psychometric data
collected in using the seed expansion method. This may be of use
to readers seeking an introduction to Bayesian model estimation
in psychophysical applications.

The estimation method uses Markov Chain Monte Carlo
(MCMC) simulation. For simplicity, we will use uniform prior
distributions on all parameters. In any MCMC process using
uniform priors, one starts with some arbitrary guess V at the
parameter vector (which will ultimately be thrown away) and
sets 1S = V ; then one iterates the following steps some large
number N of times. (We will use pre-subscripts to indicate sample
number in the MCMC process and ordinary subscripts to indicate
the coordinate within a given sample.) In using this method to
estimate the expansion fφk and the Weibull function exponent
γ , a given parameter vector comprised guesses at the values
fφk(ω), ω = −1.0, −0.75, . . . , 1.0 and γ . Each parameter vector
was also constrained to have the values fφk sum to 0. For n =

2, 3, . . . ,N , randomly select a candidate parameter vector C in the
neighborhood of n−1S. Then9 for

nR =
Λ(C)

Λ(n−1S)
(31)

• if nR ≥ 1, set nS = C;
• otherwise set

nS =


C with probability nR
n−1S with probability 1 − nR.

(32)

In practice, to keep the computation within range of floating point
representation, one never actually computes Λ(C) or Λ(n−1S);
rather, one computes LogLC = ln(Λ(C)) and LogLn−1S = ln(Λ
(n−1S)), and then sets nR = exp


LogLC − LogLn−1S


.

The classical result (e.g., Hastings, 1970) is that in the limit as
N → ∞ this algorithm yields a sample from the posterior density.

9 If the prior density fprior were nonuniform, then we would have

nR =
Λ(C)fprior (C)

Λ(n−1S)fprior (n−1S)
. (30)



442 C. Chubb et al. / Journal of Mathematical Psychology 56 (2012) 427–443
Priors

The bounds of the uniform densities one uses to define the
priors matter very little provided they are sufficiently inclusive so
as not to cut off any part of the posterior density. In the current
simulations, the prior density of fφk(ω) was taken to be uniform
between −1000 and 1000 for all nine Weber contrasts ω = −1.0,
−0.75, . . . , 1.0, and the prior density of γ was taken to be uniform
on the interval from 0 to 1000. As candidate parameter vectors
C were drawn, the program checked to make sure that each
coordinate value Ck was within the upper and lower boundaries
of its prior density.

Adaptive candidate selection

As noted above, on the nth iteration of the MCMC process,
one randomly selects a candidate parameter vector C in the
neighborhood of n−1S. The window used to perform this sampling
(i.e., how one defines the sampling neighborhood) dramatically
influences the efficiencywithwhich one can estimate the posterior
joint density of the parameters. We adjust this sampling window
adaptively after each 1000 iterations of the MCMC process.
Specifically, let Slast1000 be the matrix whose columns are the 1000
most recent parameter vectors added to the list by the MCMC
process. We first subtract the mean of these 1000 parameter
vectors from each vector in Slast1000 to generate a matrix Dlast1000.
We use singular value decomposition to extract (1) the matrix Q
whose columns are the (orthonormal) principal components of
Dlast1000 as well as (2) the diagonal matrix V whose kth diagonal
entry is eigenvalue of the kth column of Q . In each of the
subsequent 1000 iterations of the MCMC process, we draw each
successive candidate parameter vector kC by setting kC =k−1 S +

QVX where X comprises a vector of independent normal random
variables with mean 0 and standard deviation 1

30 . In essence, we
use the last 1000 parameter vectors to approximate the posterior
density as an elliptical cloud, and take steps scaled to the axes of
this cloud. This method succeeds in achieving an MCMC process
that moves efficiently to scribble in the joint posterior density.

Starting values, burn-in, and number of iterations

By default, our routine initializes the first 9 values of 1S
(corresponding to fφk ) to 0 and the last value of 1S (corresponding
to γ ) to 2. Other starting points were tested; all yielded similar
estimates of the posterior joint density. 50,000 iterations of the
MCMCprocesswere performed, the first 10,000 of thesewere used
to allow the MCMC process to ‘‘burn in’’ (i.e., to find its way to the
region of parameter space within which the joint posterior density
assigns itsmass), and the last 40,000were taken as a representative
sample of the posterior joint density characterizing the parameters
fφk , and γ .
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