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a b s t r a c t

Does natural selection favor veridical perceptions, those that more accurately depict the objective

environment? Students of perception often claim that it does. But this claim, though influential, has not

been adequately tested. Here we formalize the claim and a few alternatives. To test them, we introduce

‘‘interface games,’’ a class of evolutionary games in which perceptual strategies compete. We explore, in

closed-form solutions and Monte Carlo simulations, some simpler games that assume frequency-

dependent selection and complete mixing in infinite populations. We find that veridical perceptions can

be driven to extinction by non-veridical strategies that are tuned to utility rather than objective reality.

This suggests that natural selection need not favor veridical perceptions, and that the effects of selection

on sensory perception deserve further study.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Students of perception often claim that perception, in general,
estimates the truth. They argue that creatures whose perceptions
are more true are also, thereby, more fit. Therefore, due to natural
selection, the accuracy of perception grows over generations, so
that today our perceptions, in most cases, approximate the truth.

They admit that there are, on occasion, illusory percepts; but
these appear, most often, in psychology labs with contrived
displays. And they acknowledge limits to perception; visible light,
for instance, occupies a small portion of the electromagnetic
spectrum, and visible objects inhabit a modest range of spatial
scales. But they maintain that, for middle-sized objects to which
vision is adapted, the colors, shapes and motions that we see are,
most often, good estimates of the true values in the real world.

Their statements on this are clear. Lehar (2003), for instance,
argues that ‘‘The primary function of perception [is] that of
generating a fully spatial virtual-reality replica of the external
world in an internal representation.’’ Geisler and Diehl (2003) say,
‘‘In general, (perceptual) estimates that are nearer the truth have
greater utility than those that are wide of the mark.’’ Palmer
(1999), in his textbook Vision Science, asserts that, ‘‘evolutionarily
speaking, visual perception is useful only if it is reasonably
accurate.’’ Yuille and Bülthoff (1996) concur, saying, ‘‘visual
perception yinvolves the evolution of an organism’s visual
ll rights reserved.
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system to match the structure of the world and the coding
scheme provided by nature.’’

If perception estimates the truth then, they argue, a natural
model of perception is Bayesian estimation. In such a model for
visual perception, the eye receives some images, I, and the brain
then estimates the true values of scene properties, S, such as
shape and color (see, e.g., Knill and Richards, 1996). To do so, it
computes the conditional probability measure PðSjIÞ, and then
selects a value for which this conditional probability is, say,
maximized.

By Bayes’ rule, PðSjIÞ ¼ PðIjSÞPðSÞ=PðIÞ. The term P(S) denotes the
‘‘prior’’ distribution of true values of physical properties, such as
shapes and colors. The ‘‘likelihood’’ term PðIjSÞ describes how the
physical world maps to images at the eye. P(I) normalizes all
values to probabilities. These terms, as used in the computations
of the brain, are shaped by selection, so that its estimates are
accurate. As a result, the priors and likelihoods used by the brain
accurately reflect the true priors and likelihoods in the world.

This account of perception and its evolution is, no doubt,
appealing. But it depends crucially on the claim that truer
perception is fitter perception. This raises two questions. Does
evolutionary theory support this claim? And what, precisely, is
meant by true perception?

We answer the second question, in the next section, by
formalizing possible relations between perception and reality.
Then, to answer the first question, we use evolutionary games to
explore the relative fitness of these possible relations. We find
that truth can fare poorly if information is not free; costs for time
and energy required to gather information can impair the fitness
of truth. What often fares better is a relation between perception
and reality akin to the relation between a graphical user interface
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Fig. 1. Classes of perceptual strategies. Naive realist strategies are a strict subset of

the critical realist strategies. Both are strict subsets of the interface strategies. Does

natural selection necessarily favor these subsets? Or can it sometimes find

solutions in the broader class of interface strategies?
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and the hardware of a computer (Hoffman, 1998). The icons on a
desktop guide effective interaction with the computer, but the
colors, shapes and locations of the icons do not, in general,
resemble any properties of the software or hardware they
represent. An interface promotes efficient interaction with the
computer by hiding its structural and causal complexity, i.e., by
hiding the truth. As a strategy for perception, an interface can
dramatically trim the requirements for information and its
concomitant costs in time and energy, thus leading to greater
fitness. But the key advantage of an interface strategy is that it is
not required to model aspects of objective reality; as a result it has
more flexibility to model utility, and utility is all that matters in
evolution.
2. Models of perception

Evolutionary games explore the fitness of competing strategies
in frequency dependent selection, i.e., when fitness of a strategy
can vary with the types and abundances of other strategies
(Maynard Smith and Price, 1973; Maynard Smith, 1982; Weibull,
1995; Samuelson, 1997; Hofbauer and Sigmund, 1998; Fudenberg
and Tirole, 1998; Nowak and Sigmund, 2004; Nowak, 2006; Szabó
and Fáth, 2007; Sandholm, 2007; Antal et al., 2009). We are
interested here in using evolutionary games to explore the fitness
of perceptual strategies. A perceptual strategy is a relationship
between perception and objective reality. What this means,
precisely, is the topic of this section.

What this means, intuitively, is a helpful place to start. Since
before Plato, philosophers have proposed many theories of the
relationship between perception and reality. This topic, and its
terminology, are controversial. But here are a few key theories
(see, e.g., Heyer and Mausfeld, 2002; Radnitzky and Bartley, 1987;
Schwartz, 2004).

One theory is naive realism. According to one version of naive
realism, perception faithfully and exhaustively resembles reality.
We see the truth, the whole truth and, most often, nothing but the
truth. Critical realism, also known as scientific realism, weakens
this claim: perception faithfully resembles a part of reality, but
not all of reality. We see the truth, but not the whole truth, and
sometimes something other than the truth. For instance, we see
visible light but not ultraviolet or X-rays, and we can have
misperceptions, such as optical illusions. Most students of
perception today are critical realists.

The interface theory (or desktop theory) weakens the claim even
further: perception need not, and in general does not, resemble
any aspect of reality (Hoffman, 1998, 2009). Whereas naive and
critical realism assert that perception is useful because, exhaus-
tively or in part, it is true, the desktop theory asserts that
perception can be useful because it is not true. Just as a Windows
desktop hides the complexity of computer hardware, perception
hides the complexity of the reality it represents, and instead
provides a species-specific guide to action.

Metaphysical solipsism claims that there is no reality beyond
my perceptions. Perceptions do not resemble reality, nor are they
an interface to reality, because there is no reality other than my
perceptions.

We now make such theories precise, beginning with a formal
structure for perceptions. We assume that a collection of
perceptions, say color experiences, can be represented as a set,
X. The relationships among these perceptions can be represented
using a subset, X , of the power set, 2X, of X together with a map
f:X � . . .� X � X � . . .� X-G, where G is some set. For instance,
if we wish to represent probabilistic relationships among color
experiences, then X can be a s-algebra and f:X-½0,1� a
probability measure; or if we wish to represent similarities
among color experiences, then f:X � X-½0,1Þ can be a distance
metric. In short, we will write ðX,X ,fÞ for a collection of
perceptions together with their relationships.

In similar fashion, we assume that the external world can
be represented by a set, W, and that its relationships can be
represented using a subset, W, of the power set, 2W, of W and
a map c:W � . . .�W �W � . . .�W-D, where D is some set. In
short, we will write ðW ,W,cÞ for the world and its relationships.

A perceptual strategy is a map g:W-X. Different perceptual
strategies differ in the properties of g.

For the simplest version of a naive realist strategy, X¼W,
X ¼W, f¼c, and g is a bijection. Perception faithfully mirrors all
of reality. Few perceptual researchers today are naive realists;
nevertheless, we analyze this strategy for theoretical completeness.

We distinguish two types of critical realist strategies: strong

and weak. Strategies of the strong type are a proper subset of
strategies of the weak type. For the strong type, X �W , X �W,
f¼cjX,X , and gjX is a bijection. (gjX denotes the restriction of g to
X.) Perception faithfully mirrors a subset of reality. For the weak
type, XgW in general, and g is a homomorphism. Perception need
not faithfully mirror any subset of reality, but relationships
among perceptions reflect relationships among aspects of reality.
Thus, weak critical realists can bias their perceptions based on
utility, so long as this homomorphism is maintained. Because this
is the view favored by most perceptual researchers, we will study
only the weak type.

For the interface (or desktop) strategy, in general XgW and g

need not be a homomorphism. Perception need not faithfully
mirror any subset of reality, and the relationships among
perceptions need not reflect relationships among aspects of
reality. Our simulations in Section 8 indicate that the homo-
morphism constraint on the weak critical realist, requiring it to
reflect aspects of the structure of reality, are typically less fit than
interface strategies, which are not so constrained.

For metaphysical solipsism, W ¼W ¼ | and g is undefined. We
will not be concerned here with metaphysical solpsism.

Given these definitions, the naive realist strategies are a subset
of the critical realist strategies, which in turn are a subset of the
interface strategies, as illustrated in Fig. 1. We wish to study
the fitness of these three classes of perceptual strategies. For this,
we turn to evolutionary games. We first consider games in which
naive realist and critical realist strategies compete, and find that
critical realist strategies can drive naive realist strategies to extinction.
The whole truth is not always more fit than partial truth. We then
consider games in which interface strategies are added to the
competition, and find that interface strategies can drive critical realist
and naive realist strategies to extinction. The truth, in whole or in
part, is not always more fit than perceptions that see no truth at all.
3. An elementary interface game

Consider an infinite population of agents, paired repeatedly at
random to compete in a two-player game. In this game, each
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agent must choose one of three territories. Each territory contains
two resources (e.g., food and water) which may, or may not, be
correlated. The quantity of each resource ranges from 1 to 100,
and their sum is the utility of that territory. (Later we consider
utility that is a nonmonotonic function of quantity.)

When an agent chooses a territory, the utility of that territory
becomes the agent’s fitness. The agent that chooses second must
select between the remaining two territories. Each agent uses one
of two perceptual strategies in its attempt to find the territory
with greatest utility.

The simple strategy, which is a critical realist strategy, observes
only one resource per territory, say food. If the quantity of that
resource is above a threshold, it sees ‘‘green,’’ otherwise its sees
‘‘red.’’ If there is only one green territory, the agent chooses that
territory. If there is more than one green territory, the agent
chooses among them at random. If there are only red territories, it
again chooses at random.

The truth strategy, which is a naive realist strategy, sees the
exact quantity of each resource in each territory, and chooses the
best available territory.

Seeing more data takes more time. So, in the simplest version
of this game, simple chooses first when competing against
truth. For more complex versions, priority of choice is settled
probabilistically.

Similarly, seeing more data takes more energy, so truth

requires more energy than simple. We subtract the cost of energy
from the utility that each agent gets from its territory.

There are, of course, infinite variations on this simple game.
The number of resources and their correlations can be varied. The
number of territories can be increased. The simple agent might see
three or more colors rather than just two. We explore some of
these variations below, using Monte Carlo simulations. But first,
to fix ideas, we start with a particularly simple variation that we
can solve in closed form. We find that the costs in time and energy
charged to truth can exceed the benefits it receives from perfect
knowledge, so that truth ends up less fit than simple. We derive
the payoffs to truth and simple with mathematical detail, in order
to make the structure of interface games quite clear.
Truth 47

63

22

71

94

11

Simple
Food = 47

Water = 63

Food = 22

Water = 71

Food = 94

Water = 11

Food > 50
Otherwise

Fig. 2. Illustration of the truth and simple perceptual strategies. In the middle are

three territories, each having a food value and water value between 1 and 100. The

perceptions of truth are shown to the left of each territory. Since truth sees the

exact values, its perceptions are identical to the food and water values of each

territory. The perceptions of simple are shown to the right of each territory. Here

simple sees the color green if the food value of a territory is 450; otherwise it sees

red. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
4. A single resource game

In this game, the external world has three territories, T1, T2, T3,
and one resource, say food, that takes discrete values in the set
V ¼ {1,2,y,m}. The possible values of food in the three territories
form our external world space W ¼ V1 � V2 � V3, where each Vi is
a copy of V. We assume that W has a measurable structure
W ¼ 2W , where 2W is the power set of W; each set AAW is an
event. Food is uniformly, and independently, distributed on each
measurable space ðVi,V iÞ, i ¼ 1, 2, 3, where V i ¼ 2Vi .

We consider two perceptual strategies: truth and simple. The
perceptual space of truth is the measurable space ðY ,YÞ ¼ ðW ,WÞ.
The perceptual space of simple is the measurable space ðX,XÞ,
where X ¼ C1 � C2 � C3, for Ci¼{0,1} and X ¼ 2X . We think of 0 as
the percept ‘‘red’’ and 1 as ‘‘green;’’ for mnemonic convenience,
we sometimes write R instead of 0 and G instead of 1. When
simple views a territory, it does not see the actual food value of
that territory; instead it sees either red or green. It sees green if
the actual food value exceeds some boundary bAV , and red
otherwise. This is, of course, a particularly simplistic form of
perceptual categorization, adopted here for its mathematical
simplicity; this evolutionary game can be modified to use more
complex forms of perceptual categorization.

The sensory map from the world to the perceptual space of
truth is the identity map, g:W-Y . In the case of simple, for any
boundary bAV , we define a map fb:V

3-X, induced by the map
f V
b :V-C given by

f V
b ðvÞ ¼

0 if 1rvrb,

1 if bovrm,

(
ð1Þ

for any vAV . The map f V
b assigns a color to a single territory V, and

fb uses f V
b to assign a color to each of the three territories. This is

illustrated in Fig. 2.
Observe that the perceptual space of the simple strategy, as

defined above, can be written as

X ¼ f000,001, . . . ,111g, ð2Þ

or, in our R and G notation

X ¼ fRRR,RRG, . . . ,GGGg, ð3Þ

where, for instance, RRG means the first two territories are red
and the other is green.

4.1. Simple

To use evolutionary game theory to analyze the competition
between the simple and truth strategies, we must first compute
the expected payoffs to each strategy when competing with itself
and with the other strategy. These payoffs contribute to the
evolutionary fitness of each strategy.

We now compute expected food payoffs for simple. If simple is
first to choose a territory, then there are two events of interest:
G0 ¼ {0 green territories} ¼ {RRR}, and its complement G123 ¼ {1,
2, or 3 green territories}¼X�G0. If G0 occurs, then simple must
pick a red territory; otherwise simple picks a green territory, since
it always picks green if possible. The probabilities for these events
are

PðG0Þ ¼
b
m

� �3

,

PðG123Þ ¼ 1�PðG0Þ, ð4Þ

where b=m is the probability of a single red territory, and we use
the fact that the territories are independently distributed.

The expected payoff of a green territory is

EðvjGÞ ¼
mþbþ1

2
, ð5Þ
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because food is distributed uniformly on ½bþ1,m� and so has an
expectation midway between bþ1 and m. The expected payoff of
a red territory is

EðvjRÞ ¼
bþ1

2
, ð6Þ

because food is distributed uniformly on ½1,b� in red territories.
Multiplying these payoffs by their probabilities, we find the
expected payoff to simple when choosing first:

Eð1ÞS ðvjb,mÞ ¼ PðG0Þ
bþ1

2
þPðG123Þ

mþbþ1

2
: ð7Þ

where the subscript S denotes the simple strategy and the
superscript (1) indicates choosing first. Taking the derivative of
(7) with respect to the boundary, b, we find that simple maximizes
its expected payout if it has the boundary b¼m=

ffiffiffi
3
p

.
In this game, simple chooses first when competing against

truth, so its expected payoff against truth is

ESjT ¼ Eð1ÞS ðvjb,mÞ, ð8Þ

where SjT denotes simple competing against truth.
We now compute the expected payoff for simple vs simple. One

simple agent is randomly picked to choose first. We have just
computed the expected payoffs for simple choosing first, so we
now consider the payoffs for simple choosing second. In this case,
the events of interest are G01 ¼ {0 or 1 green territories} and G23

¼ {2 or 3 green territories}. For the event G01, simple must choose
red (since there is at most one green territory, and the first agent
took it) and for G23 simple chooses green. The probability
associated with each event is then

PðG01Þ ¼
b
m

� �3

þ3
b
m

� �2 m�b
m

� �
, ð9aÞ

PðG23Þ ¼ 1�PðG01Þ, ð9bÞ

where in (9a), the first term is the probability that all three
territories are red, and the second term is the probability of
exactly 1 green territory.

Using the expected payoffs for red and green territories from
(5) and (6), we compute the expected payoff for simple choosing
second to be

Eð2ÞS ðvjb,mÞ ¼ PðG01Þ
bþ1

2
þPðG23Þ

mþbþ1

2
: ð10Þ

Using (7) and (10) we can now define the expected payoff to
simple when competing against another simple agent to be

ESjS ¼
1
2½E
ð1Þ
S ðvjb,mÞþEð2ÞS ðvjb,mÞ�, ð11Þ

which is simply the average of Eqs. (7) and (10).

4.2. Truth

In this simplified game, when truth and simple compete, simple

chooses first but might not choose the best territory. The
probability that it chooses the best depends on the number of
green territories. For instance, if there is just one green territory,
then simple will choose it and get the best. Truth then chooses the
best of the remaining territories. Thus, the key events for
calculating the expected payoffs for truth when competing against
simple are G0 ¼ {RRR}, G1 ¼ {RRG,RGR,GRR}, G2 ¼ {GGR,GRG,RGG},
and G3 ¼ {GGG} with probabilities

PðG0Þ ¼
b
m

� �3

,

PðG1Þ ¼ 3
b
m

� �2 m�b
m

� �
,

PðG2Þ ¼ 3
b
m

� �
m�b

m

� �2

,

PðG3Þ ¼
m�b

m

� �3

: ð12Þ

The payoff for each event can be found using (1) ‘‘order
statistics’’ and (2) the probability that simple chooses the best
territory. The rth order statistic of a statistical sample is its
r th-smallest value. For instance, if one samples, with replace-
ment, three numbers from a uniform distribution on the integers
between 1 and 100, the first order statistic is the smallest of these
three numbers.

In particular, for our purposes here, order statistics allow us to
calculate the maximum value of a sample (see, e.g., Calik and
Gungor, 2004). This value depends only on the number of red and
green territories, because red and green territories have different
uniform distributions. Red territories draw from the set ½1,b�,
whereas green territories draw from ½bþ1,m�. Thus, let j be the
number of red territories (0r jr3) and k the number of green
territories (0rkr3), so that j+k is the total number of territories
(three in the example at hand). Then the cumulative distribution
function (cdf) of the rth order statistic for V is either

Fr:jðvjRÞ ¼

Xj

i ¼ r

j

i

� �
v

b

� �i

1�
v

b

� �j�i

if 1rvrb,

1 if bovrm,

8>><
>>: ð13aÞ

Fr:kðvjGÞ ¼

0 if 1rvrb,Xk

i ¼ r

k

i

� �
v�b
m�b

� �i

1�
v�b
m�b

� �k�i

if bovrm:

8>><
>>: ð13bÞ

Eq. (13a) describes the cdf of the rth order statistic for red
territories. In particular, Fj:j is the cdf of the maximum value
drawn from j red territories. Eq. (13b) does the same for green
territories. Eqs. (13a) and (13b) can be used to calculate the
expected value of the rth order statistic for red and green
territories (Calik and Gungor, 2004):

Er:jðvjRÞ ¼
Xm

v ¼ 0

½1�Fr:nðvjRÞ�, ð14aÞ

Er:kðvjGÞ ¼
Xm

v ¼ 0

½1�Fr:nðvjGÞ�: ð14bÞ

Ej:jðvjRÞ is the expected value of the best of j red territories;
similarly Ek:kðvjGÞ is the expected value of the best of k green
territories. Using (14a) and (14b) we can compute the expected
value of the best territory chosen by truth for any combination of j

red and k green territories. For this computation, the most
relevant events are again G0, G1, G2, and G3 because they allow us
to compute the probability that simple chooses the best territory
in each event. The expected payoffs for truth associated with each
event are

EðvjG0Þ ¼
2
3 E3:3ðvjRÞþ

1
3E2:3ðvjRÞ, ð15aÞ

EðvjG1Þ ¼ E2:2ðvjRÞ, ð15bÞ

EðvjG2Þ ¼
1
2 E2:2ðvjGÞþ

1
2E1:2ðvjGÞ, ð15cÞ

EðvjG3Þ ¼
2
3 E3:3ðvjGÞþ

1
3E2:3ðvjGÞ: ð15dÞ

Appendix A gives formulas for each Ei:j in these equations.
Eq. (15a) describes the event G0 consisting of 0 green (i.e., three
red territories). In this case simple chooses randomly from among
the three territories. There is a 2/3 chance that simple will not



Table 2
Selection dynamics.

Simple wins a4c and b4d

Truth wins aoc and bod

Bistable a4c and bod

Stably coexist aoc and b4d

Neutral a ¼ c and b ¼ d

Fig. 3. Stable evolutionary outcomes of the single resource game.
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choose the best territory, in which case truth will choose the best
territory. This gives us the first term in (15a). There is a 1/3 chance
that simple will choose the best territory, in which case truth will
choose the second best territory. This gives us the second term in
(15a). Eq. (15b) describes the event G1 consisting of one green and
two red territories. In this case simple chooses the green, i.e., the
best, territory, forcing truth to choose the best of two red
territories. Eq. (15c) describes the event G2 consisting of two
green and one red territories. Simple chooses randomly between
the two green territories. Half of the time simple will choose the
best territory forcing truth to take the second best territory.
Otherwise, simple will choose the second best territory allowing
truth to choose the best and giving the second term in (15c). For
(15d), describing the event G3, there are three green territories
and simple, once again, chooses randomly among them. Thus truth

will take the best territory 2/3 of the time, and the second best 1/3
of the time.

Using the probabilities for the events G0 through G3 from (12),
and their expected payoffs from (15), the expected payoff for truth

when competing against simple is

ETjSðvjb,mÞ ¼
X3

i ¼ 0

EðvjGiÞPðGiÞ: ð16Þ

When truth competes against truth, each chooses the best
territory available. Thus, to find the expected payoff we need only
compute the expected values of the best and second best
territories, viz., E3:3(v) and E2:3(v). The expected payoff to truth

when competing against truth is then

ETjT ðvÞ ¼
1
2½E3:3ðvÞþE2:3ðvÞ�, ð17Þ

where

E3:3ðvÞ ¼
3m2þ2m�1

4m
, ð18aÞ

E2:3ðvÞ ¼
mþ1

2
ð18bÞ

(see Calik and Gungor, 2004, Section 6).
5. Evolutionary dynamics

Given the expected payoffs from the previous section, evolu-
tionary game theory can be used to study the long term
interactions between simple and truth. For instance, when does
one strategy drive the other to extinction, and when do the two
stably coexist? To this end, we create a payoff matrix describing
the competition between the strategies, as presented in Table 1.

The payoff matrix is defined as follows. Simple gets payoff a

when competing against simple and payoff b when competing
against truth. Truth gets payoff c when competing against simple

and payoff d when competing against truth. The payoff to a
strategy is taken to be the fitness of that strategy, i.e., its
reproductive success. The fitness of a strategy in one generation
determines the proportion of players using that strategy in the
next generation. Asymptotically, i.e., after many generations,
there are five possible outcomes for the two strategies, presented
in Table 2, that are determined by the payoffs in Table 1.
Table 1
Payoff matrix.

Simple Truth

Simple a b

Truth c d
A strategy ‘‘wins’’ if, asymptotically, it drives the other strategy
to extinction regardless of the initial proportions of the strategies;
a winning strategy is the best response to itself and the other
strategy. Two strategies stably coexist if, independent of their
initial proportions, those proportions approach asymptotically
stable values; each strategy is the best reply to the other strategy,
but not to itself. Two strategies are bistable if their initial
proportions determine which strategy drives the other to
extinction; each strategy is the best response to itself, but not
to the other strategy. Two strategies are neutral if their initial
proportions, whatever they happen to be, are preserved asymp-
totically.

The payoffs in Table 1 for simple and truth are the expected
values calculated previously (Eqs. (8), (11), (16), and (17)) minus
the cost of information. This cost is computed by multiplying the
cost per bit of information, ce, by the number of bits used. We think
of ce as the energy expenditure that each strategy uses to acquire
and process information, and to choose a territory. This is central to
the analysis of perceptual strategies, since processing more
information takes, on average, more time and energy. Accounting
for information costs, the entries for the payoff matrix are

a¼ ESjS�3ce,

b¼ ESjT�3ce,

c¼ ETjS�3celog2ðmÞ,

d¼ ETjT�3celog2ðmÞ: ð19Þ

Simple sees 1 bit of information per territory, since it only sees red
or green. Therefore, because there are three territories, it sees a
total of 3 bits of information. Truth sees log2ðmÞ bits of information
per territory, which for m¼100 is approximately 20 bits. There are
also, of course, energy costs for decision, not just for perception.
But for simplicity of analysis we ignore these here.

We now plot, in Fig. 3, how ce and the red/green boundary used
by simple affect the asymptotic performance of each strategy.
White is where simple wins, black where truth wins, and gray
where the two strategies stably coexist.

As seen from Fig. 3, simple drives truth to extinction for most
boundaries. Even if simple has a poor boundary (e.g., 0–10 or
90–100), truth wins only for small ce. This suggests that as the cost
of information increases, simpler perceptual strategies can
enhance survival.
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6. Environmental complexity

The evolutionary game we have studied so far is quite simple.
Now, to better understand the strengths and weaknesses of each
strategy, we increase the complexity of the external world in three
ways: we vary the number of territories, the number of resources
per territory, and the correlations between resources. One might
expect that additional complexity would favor truth but, as we
show in this section, simple can still drive truth to extinction.
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Fig. 5. Effect of correlation on the maximum cost per bit at which truth drives to

extinction an optimal simple agent in an environment with seven territories and

four resources. When r¼ 0 this maximum cost corresponds to about 11.6% of the

expected payout to truth, and when r¼ 1 it corresponds to about 1%.
6.1. Correlated resources

We first modify our simple game by adding a single resource
(e.g., water) to each territory, and then study the effects of varying
the correlation between food and water. Since truth sees every
aspect of the world, each additional resource will increase the
number of bits it sees and the energy it expends. Simple only sees
food and therefore expends no energy on perceiving water. If the
correlation between food and water is high and simple happens to
pick a territory with a large food value, then it probably also gets a
high water value; simple effectively gains information about water
without expending more energy. However, it gains little if
correlations are low. In nature, of course, both high and low
correlations are found between various resources.

As before, the quantities of food and water have uniform
distributions on [1,2,y,m]; we now assume they have correlation
r. We studied the effect of correlation on the evolutionary stable
strategies by running Monte Carlo simulations of the competition
between truth and simple. Each input to the payoff matrix was
computed as the average of 106 interactions, which was sufficient
to provide stable values.

Fig. 4 shows that as correlation increases, truth does steadily
worse when simple has a central boundary, but does better when
simple has a boundary at either extreme. The range of boundaries for
which simple drives truth to extinction also increases with increased
correlation. The increased correlation effectively gives simple free
access to more information, allowing it to compete more effectively.
Fig. 4. Evolutionarily stable strategies with increasing correlation. When r¼ 0, truth ca

which corresponds to an energy cost of about 6.8% of the expected payout to truth.
It is useful now to define the optimal boundary for simple to be
the boundary that maximizes its expected payoff against truth,
i.e., that maximizes b in the payoff matrix of Table 1. Fig. 5 shows
that, as the correlation between resources increases, a simple

agent using an optimal boundary does better against truth. In this
figure, we quantify the performance of truth by the maximum cost
per bit of information at which truth drives the optimal simple

agent to extinction. This figure assumes seven territories and four
resources per territory which, we shall see, is favorable for truth;
the effects of adding more territories and resources are discussed
in more detail in the next section.
6.2. Additional resources

We now increase the complexity of the game by adding more
resources to each territory. Fig. 6 shows that adding resources
improves the fitness of truth up to a point, but then adding more
resources beyond this slowly reduces the fitness of truth. The
fitness of truth increases initially because, with each additional
resource, simple sees a smaller proportion of the information in
n survive against an optimal simple agent so long as the cost per bit is about o0:2,
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the environment and, as a result, is less likely to choose the best
territory. This allows truth to pick the best territory more often.

As we continue to add resources, though, the territories
become more homogenous, i.e., the difference between the best
and worst territories becomes smaller. Therefore, while truth is
more likely to choose a better territory than simple, the difference
in their payouts becomes less significant. At the same time, truth’s
cost increases with each additional resource while simple’s cost
remains constant. This combination of higher costs and more
similar territories leads to the asymptotic decrease in truth’s
fitness and, in consequence, an asymptotic increase in the fitness
of simple.
Fig. 8. Expected maximum value for n territories.
6.3. Additional territories

We now return to one resource per territory and increase the
number of territories. The additional territories provide a slightly
more complex environment in which we compare the two
strategies. Both simple and truth are charged as before for each
additional bit of information they use to see the extra territories
in the environment. But while both strategies see increases in
costs, truth’s cost increases significantly faster with the increases
in information.

Fig. 7 shows that while the initial addition of territories aids
truth, the costs of seeing more than eight territories overcomes
the benefits. To understand this effect, we revisit how the
expected maximum value of n territories changes with
increasing n. Recall from Eq. (18a) that the expected maximum
value for three territories is approximately 75. If we add an
additional territory, that value jumps to about 80. As we continue
to add more territories; however, the increases in the expected
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Fig. 6. Effect of the number of resources on the maximum cost per bit at which

truth drives to extinction an optimal simple agent. In an environment with

10 resources per territory, this maximum cost corresponds to about 3.7% of the

expected payout to truth, and for 30 resources it is about 3.0%.
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Fig. 7. Effect of the number of territories on the maximum cost per bit at which

truth drives to extinction an optimal simple agent. In an environment with eight

territories, this maximum cost corresponds to about 10% of the expected payout to

truth, and for 30 territories it is about 18.8%.
maximum territory level off as shown in Fig. 8. For truth, this
means that for more than eight territories, the increase in cost
required to see the extra territories exceeds the increase in its
expected maximum payout. However, for the optimal simple, the
increase in cost required to see each extra territory (i.e., one bit)
does not exceed the increase in its expected maximum payout.
This payout grows quickly for simple because, for any fixed
boundary o100, as the number of territories increases the
number of green territories will also increase. Therefore the
optimal simple uses a higher boundary and receives a greater
payout. As a result, we see that simple maintains its evolutionarily
advantage as complexity increases.
7. Optimality in a complex environment

The previous section focused on the effects of increasing
environmental complexity in the competition between truth and
the optimal simple agent. The simulations show that, even in more
complex environments, the optimal simple agent still drives truth

to extinction for small cost-per-bit values. We now study how the
optimal boundary for the simple agent changes with increasing
environmental complexity. We also study strategies that use
multiple, optimally placed boundaries, rather than the single
boundary used by simple.

7.1. Optimal boundary placement

As we increase complexity by adding more territories, the
boundary for the optimal simple agent shifts. With more
territories available, the probability increases that one of them
has a large food value. To increase the probability that it will
choose a more valuable territory, the optimal simple agent must
have a higher boundary, so that only territories with high food
values are labeled green. In other words, it is useful for simple to
become more discriminating in its selection of territories, as
shown in Fig. 9.

7.2. Multiple category strategies

We now study how a simple agent performs if, instead of two
categories, it has n categories; we will call this an nCat agent. For
example, a 3Cat agent might have boundaries at 70 and 40 and
would label territories 470 ‘‘green,’’ territories 440 but r70
‘‘yellow,’’ and territories r40 ‘‘red.’’ The three perceptual
categories are ordered, e.g., green4yellow4red. In addition to
this perceptual order, the agent has another order describing its
decision strategy, such as yellow4green4red, i.e., choose yellow
territories if available, then green,then red. The nCat agent is a
hybrid of simple and truth (e.g., at 100 categories the nCat agent is
identical to truth). This allows us to study how additional
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perceptual information about the environment affects the evolu-
tionary fitness of a strategy.

Fig. 10 shows the optimal placement for one through five
boundaries in a game with three territories and two uncorrelated
resources.

As the number of categories increases, the optimal nCat agent
receives more information about the environment. If the nCat

agent wished to glean the most information about its environ-
ment, it would space its n�1 boundaries evenly because the
distribution of resources in this environment is uniform. Instead,
the lower part of the scale gets relatively few boundaries while
the higher end becomes crowded with additional boundaries. This
mirrors results from Komarova and Jameson (2008) showing that
optimal boundary placement is governed to a large degree by
utility. The optimal nCat agent, in this case, has more boundaries
near the high end of the resource scale, allowing it to better
distinguish among those territories with high utility. In this
manner, the nCat agent maximizes its fitness.
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7.3. Truth seeking strategies

As we saw in the previous section, the optimal nCat agent has
categories with unevenly spaced boundaries, allowing it to be in
tune with the utility of its environment. However, since the
resources in the environment have uniform distributions, if the
nCat had categories with evenly spaced boundaries, this would
allow it to be better in tune with the truth of its environment (for
instance, in the sense of a least squares estimate of the true value
of a resource). The categories best tuned to utility need not be the
categories best tuned to truth.
In this section, we study the categories best tuned to truth, i.e.,
we study the nCat agent with evenly spaced boundaries. As the
number of boundaries increases, this agent sees a more refined
representation of the truth of its environment, and will approximate
the truth strategy as the number of boundaries approaches 100.

Fig. 11 shows the expected payoff for the nCat agent as the
number of evenly spaced boundaries increase. For the ‘‘cost per
bit¼0’’ curve, there is no increase in payoff for additional
boundaries beyond 10 boundaries.

Fig. 11 also shows that if the cost of information is greater than
0, then there is an optimal number of categories that maximizes
the expected payoff. As the cost of information increases, this
optimal number of categories decreases. Adding further cate-
gories actually decreases the expected payoff and, in consequence,
will probably decrease fitness.

One might object that Fig. 11 assumes that the cost of
information grows linearly with the number of bits, thus ignoring
the possibility that there could be an economy of scale. To
investigate this objection we ran new simulations, shown in
Fig. 12, in which the cost for information only grows
logarithmically with the number of bits. Again we see that there
is no increase in payoff for additional categories beyond about 16
categories.
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8. Interface strategies

One might argue that the simulations discussed so far suggest that
perceptions need not resemble reality to be fit. After all, the simple

strategy sees only red or green, and not the reality of its simulated
environment, viz., food and other resources with values ranging from
1 to 100. Moreover, red and green are arbitrary representations and
could just as easily be replaced by blue and yellow, smooth
and rough, pen and pencil, or even nonsense syllables such as
dax and vox; none of these resemble food, water, or 1–100 in any
way. And yet, in many simulations, simple drives truth to extinction.

However, one could counter that simple’s perceptions still
preserve a vestige of truth. Even though green and red do not
resemble the truth, if simple orders its perceptual categories
green 4 red then this reflects a true feature of the environment:
every food value that leads to a green perception is greater than
every food value that leads to a red perception. (It also happens, in
this special case, that green reflects greater utility than red; but in
general the order on perceptual categories need not be the same
as the utility order.) This homomorphism between the order in
the environment and the order on perceptual categories is why
we, in Section 3, call simple a critical-realist strategy. Thus, one
could argue that the simulations so far show only that some
critical-realist strategies, which see limited but true information
about the environment, can be fit.

This raises the question of the fitness of interface strategies: If
we eliminate the last vestige of truth in the perceptions of an
agent, i.e., if we eliminate any homomorphism between environ-
ment and perceptions, can a perceptual strategy still be fit? Here
we show that the answer is yes. Interface strategies can
outcompete critical realist strategies, and can continue to do so
when naive realist strategies are also present. But first, we briefly
discuss nonlinear utilities.
8.1. Gaussian utilities

Our simulations, so far, posit a specific linear relationship
between utility and quantity of resources, in which, e.g., 10 units
of food yield twice the payout of 5. Of course utilities in nature
need not fit this model. For a thirsty mouse, a little dew might
have more utility than a large lake. For a hungry shark, a small
tuna might have more utility than a large whale. The utility of
eating spices depends on local annual temperature (Billing and
Sherman, 1998) and the utility of geophagy, the deliberate eating
of dirt, depends on the phenolic content of local plants
(Krishnamani and Mahaney, 2000).

The spice and geophagy examples illustrate that utilities of
resources can interact with each other and with other aspects of
the environment. The mouse and shark examples illustrate that,
even if such interactions are ignored, utilities can vary nonlinearly
with the quantity of resources. For now, we will omit interactions
between utilities, and simply introduce a truncated Gaussian
utility function independently on each resource in the environ-
ment. In this case, agents receive the highest payout by choosing
territories with resources falling inside an optimal midrange,
rather than by finding the greatest quantity of resources.

This poses a new problem, because perceptual information
about resource quantities is not enough to determine the payout
of each territory. In order to pick the best territory, a strategy
must know the payout associated with each possible resource
quantity. We must now charge each strategy for both seeing the
quantity and knowing the utility of each resource, and its cost
becomes

ce½trlog2ðqÞ�þck½rqnb�, ð20Þ
where ce is again the cost per bit of information, ck is the cost per
bit of knowledge about utility values, t is the number of
territories, r is number of resources, q is the number of perceptual
categories for that strategy, and nb is the number of bits used to
represent the utility of a resource quantity. In the case of truth, we
take q to be 100.

In this situation, the optimal simple agent has its boundary just
below the peak of the Gaussian curve, so that its green category
contains this maximum value.

An optimal critical realist with three perceptual categories
(red, yellow, green) and perceptual order red o yellow o green
is illustrated in Fig. 13(A); we will call it CR 3. Its decision rule
would be to prefer yellow to green, and green to red. Notice that
the order governing its decision rule is red o green o yellow
which differs from its perceptual order. Even though perceptual
orders and decision rules can differ, together they coevolve.

An interface strategy is illustrated in Fig. 13(B). It has four
boundaries, but only three perceptual categories (red, yellow,
green), so we call it IF 3. As is clear in the figure, the resource
values that get mapped to the perceptual category yellow are not
all contiguous, nor the resource values that get mapped to red.
Thus, this mapping is not a homomorphism. However, it is better
tuned to what really matters in evolution, namely utility. This
kind of mapping is not possible for the critical realist because its
perceptions must be homomorphic to relationships in reality. This
restriction limits the flexibility of the critical realist to be tuned to
utilities.
8.2. Three strategy games

We now have the framework to directly compare the three
perceptual strategies described at the start of this paper. Taking
truth to be a naive realist strategy, CR 3 to be a critical realist
strategy, and IF 3 to be an interface strategy, then, by including
all three strategies in one population, we can evaluate the fitness
of each strategy relative to the others by simulating their
evolutionary dynamics through successive generations.
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In our games involving three strategies, the agents are
repeatedly paired at random to compete. This gives a 3�3 payoff
matrix and, unlike in two-player games, we cannot immediately
calculate which strategy survives and which goes extinct. Instead
we compute the time derivatives of the frequencies of each
strategy using the replicator equation (Hofbauer and Sigmund,
1998; Nowak, 2006; Taylor and Jonker, 1978),

_X i ¼ Xi½fið
~X Þ�fð~X Þ�, ð21Þ

where fð~X Þ is the average fitness and, for each strategy i, Xi

denotes its frequency, _X i its time derivative and fið
~X Þ its fitness.

Here, fið
~X Þ ¼

Pn
j ¼ 1 Pijxj where Pij is the payoff matrix, and

fð~X Þ ¼
P

ifið
~X Þxi.

We plot the resulting dynamics as a flow field on a 2-simplex
(see Fig. 14), where each vertex i represents a population
composed entirely of strategy i, each point on the edge opposite
to vertex i represents a population devoid of strategy i, and each
interior point represents a population containing all three
strategies.

In Fig. 14, the vertices represent the naive-realist (truth),
critical-realist (CR 3), and interface strategies (IF 3), competing in
an environment with a Gaussian utility structure.

We assume that the truth agent assigns a utility to each of the
100 possible resource values, so that nb in (20) is log2ð100Þ; since
CR 3 and IF 3 only need to order their three categories, their nb in
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(20) is log2ð3Þ. We also assume that ck¼ce/10, making energy
costs of perception and knowledge of utility roughly on a par.
Instead of varying over the cost per bit, ce, as we have done in
previous figures, we compute the cost to truth as a percentage of
truth’s expected payout averaged over competitions with all three
strategies. The cost to CR 3 and IF 3 is then computed from (20)
and truth’s cost. In this way, the cost for each strategy can be
directly compared to the expected payoff for truth.

As shown in Fig. 14, for low costs truth dominates and for
higher costs IF 3 dominates; in fact, IF 3 dominates for costs
44:25%, truth dominates for costs o4:29%, and in between they
coexist. For these competitions, CR 3 is driven to extinction so
long as the initial population contains IF 3 agents. In populations
with no IF 3 agents, CR 3 dominates truth for costs 49:3%, is
dominated by truth for costs o9:9%, and in between they coexist.

In order to show that IF 3 does not drive truth and CR 3 to
extinction only in this isolated case, we ran simulations with
additional territories and resources. We first increased the
number of territories. In an environment with 30 territories and
one resource per territory, IF 3 drives CR 3 and truth to extinction
for costs 42:8% of truth’s expected payoff.

We then increased the number of resources. In an environment
with three territories and 30 resources per territory, IF 3 and CR 3
each have three categories per resource but use nb ¼ log2ð100Þ, so
that they can adequately represent the expected utility of each
category. In this case IF 3 drives CR 3 and truth to extinction for
costs 40:5% of truth’s expected payoff. These simulations show
that, due to the large costs required for truth to see more complex
environments, IF 3 is in fact more fit than truth in these
environments with increased complexity.

In summary, these competitions between naive realist, critical
realist and interface strategies show that natural selection does
not always favor naive realism or critical realism, and that in
many scenarios only the interface strategy survives.
9. Discussion

Perceptual researchers typically assume that ‘‘it is clearly
desirable (say, from an evolutionary point of view) for an
organism to achieve veridical percepts of the world’’ (Feldman,
2009, p. 875). They assume, that is, that truer perceptions are
ipso facto more fit. Although they acknowledge that natural
selection can shape perception to be a ‘‘bag of tricks’’ or heuristics
(Ramachandran, 1990), they assume that these tricks or heuristics
are short cuts to the truth.

We tested this assumption using standard tools of evolu-
tionary game theory. We found that truer perceptions need not be
more fit: Natural selection can send perfectly, or partially, true
perceptions to extinction when they compete with perceptions
that use niche-specific interfaces which hide the truth in order to
better represent utility. Fitness and access to truth are logically
distinct properties. More truthful perceptions do not entail
greater fitness.

One key insight here is that perceptual information is not free.
For every bit of information gleaned by perception there are
typically costs in time and energy. These costs can of course be
defrayed. To reduce costs in time, for instance, neurons can
process information in parallel. But each additional neuron in a
parallel architecture requires additional energy. Costs in time and
energy can trade off, but not be eliminated.

A second key insight is that perceptual information is shaped
by natural selection to reflect utility, not to depict reality. Utility
depends idiosyncratically on the biological needs of each
particular organism. Idiosyncracies in utility will necessarily lead
to concomitant differences in perception, even for organisms that



Table 3
Payoff matrix (cost ¼ 0).

CR 3 IF 3 Truth

CR 3 60.15 59.05 58.11

IF 3 63.19 61.77 60.83

Truth 65.72 64.46 63.43

Table 4
Payoff matrix (cost ¼ 1%).

CR 3 IF 3 Truth

CR 3 60.12 58.02 58.08

IF 3 63.15 61.73 60.80

Truth 65.08 63.82 62.78
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inhabit precisely the same environment and use precisely the
same number of bits of perceptual information.

We do not wish to overstate our findings. Our simulations do not

find that natural selection always drives truth to extinction. They
show instead that natural selection can drive truth to extinction.
However, this still calls into question the standard assumption
of perceptual researchers that natural selection favors veridical
perception. In consequence, perceptual researchers now face a
question. Are there empirically plausible conditions in which natural
selection favors true or partially true perceptions? Among the
conditions of interest are those concerning environments, compet-
ing perceptual strategies, and costs for time and energy.

For the environments and perceptual strategies used in our
simulations, we find that naive realist and critical realist strategies
go extinct except for certain cases in which the costs for
perceptual information are small (as the figures in the previous
section illustrate). This finding might reflect a general and
important feature of perceptual evolution, or it might be an
artifact of our particular simulations. To decide which is the case, a
much wider range of simulations is required. For instance, in our
simulations the environment is probabilistically invariant over
time, but in nature the environment is constantly in flux. Our
simulations assume infinite populations and complete mixing,
but in nature the populations are finite and competitions are
constrained by the spatial locations of potential competitors. Our
simulations involve only a rudimentary form of foraging, whereas
in nature a wide variety of foraging strategies are possible
(Goldstone et al., 2005; Roberts and Goldstone, 2006; Sernland
et al., 2003). Our simulations assume that a perceptual strategy is
a deterministic map from the world to perceptual experiences;
but in nature this map is, in general, probabilistic rather than
deterministic. Our simulations assume that perceptual categories
have precise boundaries, and thus precise conditions for member-
ship; but psychologists find that membership in a category can
depend on degree of similarity to a prototype (Rosch, 1983) or by
means of a similarity range parameter (Jameson and Komarova,
2009). Our simulations assume that a perceptual strategy is fixed
for the lifespan of an organism, but in nature many organisms are
equipped with learning mechanisms and conspecific interactions
that allow their perceptual strategies, within certain endogenous
limits, to change over their lifespan (Barrett, 2009; Hutteger, 2007;
Komarova et al., 2007; Skyrms, 2004). Our simulations use
classical computations and classical perceptual strategies, but
biological systems can apparently use quantum computations, e.g.,
in photosynthesis (Engel et al., 2007), and evolution might exploit
quantum computation to sift through quantum and classical
strategies (McFadden, 2000). Our simulations have involved truth

and simple strategies in many of the competitions, but the real
interest for future simulations is in competitions between critical-
realist and interface strategies.

Nevertheless, the evolutionary simulations presented here
demonstrate that naive-realist and critical-realist strategies can
be driven to extinction when they compete with interface
strategies that hide the truth. More simulations, in the directions
outlined above, are needed to determine if there are plausible
environments in which critical-realist perceptions can survive.
Table 5
Payoff matrix (cost ¼ 10%)

CR 3 IF 3 Truth

CR 3 59.76 58.66 57.73

IF 3 62.80 61.38 60.44

Truth 59.27 58.01 56.97
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Appendix A. Truth vs simple payoffs

The expected payoffs for truth when competing against simple

are shown in their analytical form below, as calculated from
Eq. (14b). These equations are used in Eq. (15d), to calculate the
expected payoffs for truth associated with the events G0, G1, G2,
and G3.

E3:3ðvjRÞ ¼
3b2þ2b�1

4b
,

E2:3ðvjRÞ ¼
bþ1

2
,

E2:2ðvjRÞ ¼
4b2þ3b�1

6b
,

E3:3ðvjGÞ ¼
3ðm�bÞ2þ2ðm�bÞ�1

4ðm�bÞ
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m�bþ1
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þb,

E2:2ðvjGÞ ¼
4ðm�bÞ2þ3ðm�bÞ�1

6ðm�bÞ
þb,

E1:2ðvjGÞ ¼
ðm�bþ1Þð2m�2bþ1Þ

6ðm�bÞ
þb:

Appendix B. Payoff matrices for three-strategy games

The payoff matrices for Fig. 14 were computed from Table 3
minus a cost of 1% or 10% of truth’s expected payout averaged over
competitions with all three strategies. Each entry to the payoff
matrix was computed as the average of 100,000,000 interactions.
The exact payoff matrices used for Fig. 14 are displayed in Tables 4
and 5, which clearly show that truth’s payoffs decrease the most
with the increase in cost. Costs are computed using Eq. (20).
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