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1. INTRODUCTION

The search is on for a general theory of perception. As the papers in this volume indicate,

many perceptual researchers now seek a conceptual framework and a general formalism to

help them solve specific problems.

One candidate framework is “observer theory” (Bennett, Hoffman, and Prakash,

1989a). This paper discusses observer theory, gives a sympathetic analysis of its can-

didacy, describes its relationship to standard Bayesian analysis, and uses it to develop a

new account of the relationship between computational theories and psychophysical data.

Observer theory provides powerful tools for the perceptual theorist, psychophysicist, and

philosopher. For the theorist it provides (1) a clean distinction between competence and

performance, (2) clear goals and techniques for solving specific problems, and (3) a canon-

ical format for presenting and analyzing proposed solutions. For the psychophysicist it

provides techniques for assessing the psychological plausibility of theoretical solutions in

the light of psychophysical data. And for the philosopher it provides conceptual tools for

investigating the relationship of sensory experience to the material world.

Observer theory relates to Bayesian approaches as follows. In Bayesian approaches

to vision one is given an image (or small collection of images), and a central goal is to

compute the probability of various scene interpretations for that image (or small collection

of images). That is, a central goal is to compute a conditional probability measure, called

the “posterior distribution,” which can be written P (Scene | Image) or, more briefly,

P (S | I). Using Bayes rule one writes

P (S | I) =
P (I | S)P (S)

P (I)
.

This formula gives a method for computing the desired posterior distribution, and is widely

referred to in vision research (Geman and Geman, 1984; Marroquin, 1989; Szeliski, 1989;

Bülthoff, 1991; Bülthoff and Yuille, 1991; Clark and Yuille, 1990; Geiger and Yuille, 1991;

Knill and Kersten, 1991; Yuille, Geiger, and Bülthoff, 1991; Freeman, 1992; Belhumeur and

Mumford, 1992; see also Nakayama and Shimojo, 1992). It provides a powerful approach

to understanding and modeling human perceptual capacities. But it has a well-known

limitation. For real vision problems the collection of images that might be obtained is very

large. (For instance, there are about 1015 possible true-color images of 1024 by 1024 pixel
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resolution.) Therefore P (I) and P (I | S) are either 0 or near 0 for most images and the

form of Bayes rule given above is either undefined or unstable. We cannot remove this

problem by conditioning on large collections rather than on small collections of images,

because the task we typically face in image understanding is to interpret a given single

image or small collection. In special cases the instability problem can be avoided by the

use of energy functionals and Gibbs distributions (Marroquin, Mitter, and Poggio, 1987;

Poggio and Girosi, 1989). What we need, however, is a general form of Bayes rule that

allows conditioning on events of probability zero and that requires no special assumptions.

Of what practical use is a general form of Bayes rule? Can instabilities that would arise

from conditioning on sets of very small measure be avoided by use of this formulation? In

many cases, yes. For example, a general (i.e., nondiscrete) formulation frequently permits

the calculation of a local value as a limit of more global statistics. The very nature of these

statistics is to wash out noise. By contrast, a single local measurement is highly sensitive

to noise. Thus we would expect that to calculate the local number as a limit of these

statistics provides a much more robust computational strategy. In addition, the existence

of general nondiscrete formulations of a theory provides a reliable foundation for the design

of discrete approximations; in fact there are many ways to discretize a nondiscrete system.

The optimal comparison and selection of these various discretizations is only possible to

the degree that the general formulation is well understood.

Observer theory gives a general form of Bayes rule. The result in the noise-free case is

a “competence observer” and in the noisy case a “performance observer.” The general form

of Bayes rule requires two technical tools: regular conditional probability distributions and

Radon-Nikodym derivatives. One goal of this paper is to provide an intuitive understanding

of these tools and their practical application to problems in vision. After using these tools

to derive a new general form of Bayes rule, we apply it to (1) the derivation of posterior

distributions of practical use in vision, (2) the development of a theoretical framework for

interrelating psychophysical experiments with computational theories, and (3) the analysis

of hierarchical and weak coupling as theories of sensor fusion.
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2. COMPETENCE: SOME BASIC IDEAS

Perception is a process of inference, or informed guessing. From phase and amplitude

differences in the acoustic waveforms at the two ears we infer the location of a sound

source. From disparities in the images at the two eyes we infer the three-dimensional (3D)

shapes and locations of visual objects. From temporal variations in pressure at the finger

pads we infer the 3D shapes and identities of haptic objects. As Helmholtz (1925) noted,

such inferences are often fast and unconscious (Ittleson, 1960; Gregory, 1973; Rock, 1977;

Marr, 1982). Indeed many of these inferences may never have been conscious at any point

in our ontogeny or phylogeny. They may be instantiated in low-level neuronal networks,

but they are inferences nonetheless.

Perceptual inferences are not deductively valid: the conclusions of perceptual in-

ferences typically go well beyond their premises. The examples just adduced illustrate

this point, as do others. Given gradients of shading in a two-dimensional (2D) image

as premises, we reach conclusions about the 3D shapes of objects. Given the activity of

chemoreceptors in the mouth and nose as premises, we reach conclusions about the safety

and palatability of food. These conclusions are not logically dictated by the premises.

Indeed, now and then a conclusion is wrong—not due to neurological malfunctions, but

due to the nondeductive character of the inferences. The result is a perceptual illusion. We

see a 3D shape in a stereogram, when in fact the stereogram is flat. We hear a train rush-

ing by, when in fact we are listening to headphones. Such illusions are not evidence that

sense data are incorrigible (Quinton, 1965), but they are powerful evidence that perceptual

inferences are not deductively valid (Fodor, 1975).

Perceptual inferences are statistical, but with a unique feature. The inferences typical

of statistical decision theory become trivial in the absence of noise. Not so perceptual

inferences. Even in the absence of noise and quantization error, perceptual inferences have

a nontrivial structure; we call this structure a “competence observer.” Even if our corneas

and lenses had no optical scatter, our retinas had infinite resolution, and our neurons had

no computational limits, still the inferences underwriting stereovision would be nontrivial,

and a stereogram could fool the visual system. The role of noise in perceptual inferences

must, of course, be carefully studied. But the essential structure of perceptual inferences

remains unaltered in the absence of noise. Describing this structure is the proper subject
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of a competence theory of perception, and a prerequisite to the proper treatment of noise

and other issues of performance.

Observer theory captures this structure in its formal definition of a competence ob-

server. A major thesis of observer theory is that the same competence structure lies at

the core of every perceptual capacity, and therefore that every perceptual capacity can be

described, in its noise-free essence, as an instance of a competence observer. This “observer

thesis” cannot be proven, since it states a relationship between a formalism (a competence

observer) and an informal concept (a perceptual capacity); but it could, in principle, be

disconfirmed by a counterexample, and is therefore an empirical hypothesis. In this regard

it resembles the Church-Turing thesis, which states that every effective procedure can be

described as some Turing machine. This thesis also cannot be proven, since it states a

relationship between a formalism (the Turing machine) and an informal concept (an ef-

fective procedure); but it could, in principle, be disconfirmed by a counterexample, and is

therefore an empirical hypothesis. Competence observers are proposed to play the same

role for the description and analysis of perceptual capacities that Turing machines play for

the description and analysis of effective procedures.

To illustrate the intuitions underlying the definition of a competence observer, we

consider first the perception of 3D structure from image motion. Experiments by Braun-

stein and others (Braunstein, Hoffman, Shapiro, Andersen, and Bennett, 1987; Braunstein,

Hoffman, and Pollick, 1990) indicate that subjects can reliably discriminate visual displays

which depict rigid motions of points from displays which depict nonrigid motions, and that

subjects can do this with as few as two views of four moving points. For displays depicting

rigid motions, subjects report seeing specific 3D interpretations, and can reliably indicate

the interpretations they see (Liter, Braunstein, and Hoffman, 1993). For displays depicting

nonrigid motions, subjects generally report seeing no rigid 3D interpretations.

A competence theory of this capacity must account for (i) the ability to discriminate

between rigid and nonrigid displays and (ii) the particular 3D interpretations that are

reported for the rigid displays. As mentioned before, this account will be idealized, in the

sense that it ignores noise and quantization error.

To account for (i) a competence theory must assign (one or more) rigid interpretations

not to every display, but only to those displays that depict rigid motions. Most displays
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do not depict rigid motion. In fact one must carefully program a display to make it

depict a rigid motion. Therefore the competence theory must assign no interpretations to

most displays. Put more formally, a competence theory for the problem of giving rigid

interpretations to motion displays must make sure that the problem is almost surely ill-

posed, and must not regularize the problem (Tichonov and Arsenin, 1977; Poggio, Torre,

and Koch, 1985). To regularize the problem (in the sense of Tichonov) would be to

require that every display have one interpretation, and this would eliminate any ability to

discriminate rigid from nonrigid displays. By contrast, making the problem almost surely

ill-posed, by requiring that almost all displays have no interpretations, restores the ability

to discriminate rigid from nonrigid displays.

To account for (ii) a competence theory must assign one or more 3D interpretations

to each display depicting a rigid motion. If subjects see just one 3D interpretation of some

rigid display, then the theory should assign that interpretation to the display. If subjects

see more than one interpretation, then a complete theory of competence should assign

a probability measure supported on these interpretations, giving the appropriate relative

frequencies or strengths of the interpretations. For displays in which subjects see just one

interpretation, the techniques of (Tichonov style) regularization theory can sometimes be

applied. For displays in which subjects see more than one interpretation, more general

techniques are required.

3. COMPETENCE: AN EXAMPLE

We now consider one specific computational theory of structure from motion in order to

motivate the definition of competence observer and to demonstrate useful computational

techniques within the framework of competence observers. There are many accounts of

structure from motion that could equally well serve this purpose (e.g., Ullman, 1979;

Hoffman and Bennett, 1986), but we consider, for simplicity, the account presented by

Bennett, Hoffman, Nicola, and Prakash (1989b). They prove the following “Two-View

Theorem”:1

1 For ease of search, we number all definitions, theorems, corollaries, and displayed
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Theorem 1. (Two-View Theorem). Two orthographic views of four noncoplanar points

(i) almost surely2 have no rigid interpretations, but (ii) have a one-parameter family of

such interpretations if they have any.

This theorem assumes that the correspondence between points in the two views is

known. We can also assume, since the projection is orthographic, that one of the points is

taken to be the origin in both views, so that only three points have variable coordinates

in each view.

The inference of structure from motion defined by this theorem is as follows. An

elementary premise for the inference is two views of three points (plus the origin, which

we will no longer mention). The set of all elementary premises is therefore the set of

all two views of three points, which is �12 (i.e., two views × three points per view ×
two coordinates per point). Here, and throughout the paper, we denote the set of all

elementary premises by D. (Here the mnemonic is D for “data,” since premises are the

data assumed for an inference.) According to the theorem, most of these premises, in fact

almost all of these premises, have no rigid 3D interpretations. However there is a small

subset of premises which have rigid 3D interpretations. These correspond to displays that

depict rigid motion. This subset, which we denote Ds and call the “special premises,” has

measure zero in �12. Thus an element d ∈ Ds represents two views of three points which

have a rigid interpretation. A generically chosen element d ∈ D represents two views of

three points which, almost surely, have no rigid interpretation.

If d ∈ D is an elementary premise consisting of two views of three points, i.e., of six

points in the plane, then an elementary conclusion, c, compatible with d is obtained by

adding a depth coordinate to each of these six points, thereby creating a 3D interpretation

for d. (Hereafter, in discussing this inference, we use “elementary conclusion” and “3D

interpretation” interchangeably.) The depth coordinate of each of these six points in each

equations in one sequence. Figures are numbered in a separate sequence.
2 We refer here to Lebesgue measure. “Lebesgue almost surely” means “up to measur-

able sets of Lebesgue measure zero.” Intuitively, a measurable set A is a subset of a space

X for which it is meaningful to assign a volume. Lebesgue measure is the standard way

to assign volumes to measurable sets of Euclidean spaces. For more on Lebesgue measure

see the Appendix, A0.
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view can vary independently of the others, so there is, for each d ∈ D, a six-dimensional

(6D) space of such conclusions c. Concretely, let d be the set of points {(xij , yij)}. (Here,

and in the following, i = 1, 2, 3 indexes the points and j = 1, 2 indexes the views.) Then c

is a set of points {(xij , yij , zij)}. We denote the 6D space of all such c by the symbol [d].

According to the Two-View Theorem, for almost every d ∈ D the 6D space [d] contains no

rigid 3D interpretations; however, for d ∈ Ds, the 6D space [d] contains a one-dimensional

subset of rigid 3D interpretations. This one-dimensional subset can be parametrized by

the angle between the image plane and the axis of rotation associated to each rigid 3D

interpretation (Bennett et al., 1989b). This angle is called the “slant” of the axis of

rotation, and its value varies in the open interval (0, π/2).

The set of all elementary conclusions for this inference is simply the union, over all d

in D, of the elementary conclusions [d]. The set of all elementary conclusions is therefore

�18 (i.e., �12 ×�6). Here, and throughout the paper, we denote the set of all elementary

conclusions by C. Almost all elements of C represent nonrigid 3D interpretations. However

there is a small subset of elements of C which represent rigid 3D interpretations. This

subset, which we denote Cs and call the “special conclusions” or “special interpretations,”

has measure zero in C. Cs corresponds to a bias or a priori assumption of the observer.

For purposes of Bayesian analysis, the “prior probabilities” assumed by the observer are

probability measures supported in Cs.

The collection of all elementary premises D and the collection of all elementary con-

clusions C are related by a “rendering function.” In this case the rendering function is a

map π:C → D given by {(xij , yij , zij)} �→ {(xij , yij)}. From this definition it follows that

every 3D interpretation c that is compatible with the image data d actually gets mapped

to d by the rendering function π. We can write, therefore, that π(c) = d for any c in [d].

Equivalently, we can write π−1(d) = [d]. This structure, plus some extra structure we will

discuss shortly, is illustrated in Figure 1. A good way to check that one understands this

figure and the discussion thus far is to convince oneself that π(Cs) = Ds.

So far we have an abstract framework that permits inferences. Now we must, so to

speak, breathe life into this framework so that it will in fact perform inferences. We will

do this by means of “kernels.”3 Intuitively, given two sets X and Y , a kernel N from X

3 For a precise discussion of kernels see the Appendix, sections A1–A4.
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Figure 1. A competence observer: a canonical representation of a class of perceptual

inferences.

to Y is a device which associates to each element of X a probability measure on Y . If x is

an element of X and A is a subset of Y , then we use the notation N(x, A) to denote the

probability assigned to A by the probability measure associated, by N , to x. Sometimes

we use the notation N(x, ·) to denote the whole probability measure associated by N to x.

We model our perceptual inferences by a kernel, I. We call I an “interpretation

kernel” or “inference kernel” because it allows us to estimate conditional probabilities of

scene interpretations given images. These probabilities are estimated assuming that there

is no noise, i.e., assuming that the 3D interpretation c is in the 6D space [d] iff c is invariably

rendered as the two-view display d.

In fact, by definition of a kernel, I is an infinite collection of distinct probability

measures, one probability measure for each two-view display d that depicts a rigid motion.

The probability of a set, A, of 3D interpretations given the two-view display d is written

I(d, A) or I(A | d). For purposes of Bayesian analysis, this probability is a posterior

probability Pr(A | d) under the assumption of no noise. The corresponding prior is a

probability measure supported in Cs (the rigid 3D interpretations). The likelihood function

associated to any 3D interpretation c, rigid or not, is the conditional probability on images

given the scene c. As such this likelihood is the indicator function 1π(c), i.e., the function

which assigns the value 1 to π(c) and 0 to all other elements of D. The likelihood function

takes this simple form because we are still in the noise-free competence case. We later
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extend this discussion to the performance case.

A good way to check that one understands the discussion of I thus far is to convince

oneself that I(c | d) = 0 if c is not in [d] ∩ Cs.

The markovian kernel I expresses an infinite collection of posterior probabilities as a

single linear operator (which maps measures on D to measures on C—see Appendix, A3).

This is a powerful tool, as we shall see, for interpreting noisy images. And it provides a new

way to view perceptual inferences: as logic morphisms between spaces of probability mea-

sures, one space of measures representing premises and another representing conclusions

(Bennett, Hoffman, and Murthy, 1993). We discuss kernels later.

The Two-View Theorem determines a class of markovian kernels I, each of which

defines a possible competence observer with the given C, D, Cs, Ds, and π. For each two-

view display d ∈ Ds, i.e., for each two views of three points that has a rigid interpretation,

the posterior I(· | d) is a probability measure on the 6D space [d]. But this probability

measure is not supported on the entire 6D space. Instead it is supported on a one-parameter

subset of that space, viz., the one-parameter family of rigid 3D interpretations. The Two-

View Theorem alone does not provide the information required to select among these

posteriors in a principled manner. One candidate posterior gives equal weight to each of

the rigid interpretations in the one-parameter family. (A uniform probability density is

possible here since the parameter of the family lies in the interval (0, π/2).)

We have now described a particular competence theory licensed by the Two-View

Theorem. Psychophysical experiments suggest that this theory is psychologically plausible

as a competence theory of the ability to discriminate between rigid and nonrigid displays

(Braunstein et al., 1987, 1990). But psychophysical experiments also suggest that a uniform

posterior is not psychologically plausible in a competence theory of the particular 3D

interpretations that are reported for the rigid displays (Liter et al., 1993). Subjects do not

give equal probability to all rigid interpretations in the one-parameter family compatible

with a given two-view display. Instead, some rigid interpretations are almost always seen,

and others are almost never seen. This suggests that the competence theory just discussed

must be (1) abandoned or (2) refined to include constraints in addition to rigidity. The

second option amounts to finding a more restrictive prior (Feldman, 1992, gives strong

evidence for modal priors in perception and categorization). We consider this later.



Bennett et al. Observer Theory and Bayes Theory

4. COMPETENCE OBSERVER: THE DEFINITION

With a concrete example now in hand, we are ready to consider the abstract definition of

a competence observer (see Figure 1).

Definition 2. A competence observer O is a collection (C, D, Cs, Ds, π, I) with the

following properties (see Figure 2).

(a) C and D have measurable structures4 (C, C) and (D,D), respectively. The points of

C and D are measurable.

(b) Cs and Ds are measurable subsets of C and D respectively, i.e., Cs ∈ C and Ds ∈ D.

(So Cs and Ds inherit measurable structures Cs and Ds respectively.)

(c) π:C → D is a measurable surjective function with π(Cs) = Ds.

(d) I is a markovian kernel on Ds×Cs such that for each d, I(d, ·) is a probability measure

supported in [d] ∩ Cs. ([d] = π−1(d) is called the fiber of π over d.)

C is called the configuration space or conclusion space of the competence observer. We

can think of it as the space of possible scene interpretations. D is called the data space. We

can think of it as the space of possible image data. Cs is the set of special configurations.

Cs represents the bias of the observer, and measures on Cs correspond to the priors of

Bayesian analysis. Ds is the set of special premises. It corresponds to those image data

for which the observer is willing to assert nontrivial posterior distributions on possible

scene interpretations. In the terminology of Jepson and Richards (1992), points of Ds

correspond to “key features.” π is the perspective. It corresponds to a rendering function.

I is the interpretation kernel. It is a collection of posterior probabilities, represented as a

linear operator.

A competence observer O “works” as follows. O receives a premise d ∈ D and makes a

decision: if d is in Ds, then O gives interpretations in [d]∩Cs with (posterior) distribution

I(d, ·); if d is not in Ds, then O gives no interpretations, i.e., it remains inert. In other

4 A measurable structure on a space X is X itself together with a collection, X , of

subsets of X that includes X and is closed under countable union and complement. The

sets in X are called “events” and correspond intuitively to the possible outcomes of an

experiment or observation. For more on measurable structures see Halmos (1950).
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words, O gives interpretations only for the special premises (premises in Ds), and the

interpretations given are only special (interpretations in Cs). It is in this sense that Cs

and Ds represent a bias of a perceptual capacity.

There, in a nutshell, is the competence observer. The observer thesis asserts that each

competence theory of a perceptual capacity can be written as an instance of a competence

observer. If this thesis is correct, the competence observer provides a canonical form

for the presentation of competence theories of perceptual capacities. Several examples

of perceptual capacities presented in this canonical form can be found in Bennett et al.

(1989a).
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5. COMPETENCE: THE DECISION

The first thing a competence observer must do is make a decision: act or not. Given

a premise d, corresponding perhaps to some image data, the competence observer must

decide whether or not d is in Ds. If it is, then the competence observer must act by

assigning a posterior distribution I(d, ·). If it is not, then the competence observer does

nothing.

We consider this decision first in the noise-free case, and then consider the effects of

noise in the next section.

To do so, we return to the Two-View Theorem. In the course of their proof, Bennett

et al. (1989b) derive a polynomial f on D which vanishes precisely on Ds ⊂ D: for d ∈ Ds,

f(d) = 0; for d ∈ D −Ds, f(d) �= 0. They did so as follows. Denote the 3D coordinates of

feature point i in view j by

�ai,j = (xi,j , yi,j , zi,j), (3)

where i = 1, 2, 3 and j = 1, 2. Denote the 2D coordinates of the image of feature point i

in view j by

�bi,j = (xi,j , yi,j), (4)

where again i = 1, 2, 3 and j = 1, 2. Clearly �ai,j = (�bi,j , zi,j). Thus from the images

we know the xi,j and yi,j coordinates of the feature points, but we do not know the six

zi,j coordinates. A necessary condition for points to undergo a rigid motion between the

frames is given by the six quadratic polynomial equations

�am,1 · �an,1 = �am,2 · �an,2, 1 ≤ m, n ≤ 3, (5)

where · indicates the dot (scalar) product of vectors. These equations state that the

lengths of the vectors �ai,j and the angles between them remain constant over the two

instants of time. Although there are six quadratic equations in the six unknown zi,j ’s, the

system is nevertheless inconsistent and therefore almost surely has no solutions. That is,

for almost any choice of image data �bi,j , Equations 5 have no solutions, and thus rigid

interpretations are impossible. Only for a measure zero set of image data �bi,j do Equations

5 have any solutions for rigid interpretations. With some algebraic manipulation, one can
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show that a necessary and sufficient condition on the image data for Equations 5 to have

a solution is that

f = det


h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3


 = 0, (6)

where hm,n = �bm,2 · �bn,2 − �bm,1 · �bn,1. From (6) one can show that f is a homogeneous

polynomial of sixth degree in the xi,j ’s and yi,j ’s, i.e., in the image data (Bennett et al.,

1989b).

Having derived f , it is now trivial in the noise-free case to decide if the image data d

(= {�bi,j}) is in Ds, i.e., to decide if the image data have a rigid interpretation. One simply

plugs the �bi,j into the determinant in Equation 6. If the result is zero, then the image data

have a rigid interpretation; otherwise they do not.

6. PERFORMANCE: THE DECISION

If there is noise the decision is not so simple: if the image data d is near Ds, but not in it,

we might still decide that d has a rigid interpretation. This decision is often amenable to

the well-known tools of statistical decision theory. We will not review these tools here (see,

e.g., Savage, 1972). Instead we discuss a class of computational techniques particularly

suited to the decisions typical of perceptual capacities.

To make such a decision in a principled way we need (i) a measure of the distance

between d and Ds and (ii) the receiver operating characteristic as a function of this distance.

We consider both points, beginning with the measure of distance. For the example of

detecting rigid motion, Ds is not a linear or quadric surface to which euclidean distance

is easy to compute. Instead Ds is a sixth degree surface and distance from this surface

is hard to compute. However for purposes of our decision we do not need a measure of

distance from Ds that is well defined for all points of D. Instead we need a measure that

is well defined only nearby Ds (in the euclidean sense), since it is only for points nearby

Ds that we have a difficult decision to make. For this purpose one candidate approach is

to use the function f of Equation 6. This function is zero on Ds and its absolute value

increases with increasing euclidean distance from Ds, at least for points nearby Ds. Here
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f will have to be normalized for scale: since f is homogeneous of sixth degree, its value

nearby a point d ∈ Ds grows as the fifth power of the size of the corresponding rigid object.

Thus the value of f , suitably normalized, provides a measure of distance from Ds. But

this measure of distance will aid our decision only if the receiver operating characteristic

(ROC) based on this measure is sufficiently sensitive (Green and Swets, 1966). Recall that

the ROC is a vector-valued function. For each distance δ in the domain of the function,

there are two corresponding values in its range. These two values are the probability of

hits and the probability of false alarms that obtain if δ is used as the decision criterion

in the following manner: if f(d) ≤ δ decide that d has a rigid interpretation; otherwise

decide that d has no rigid interpretation. Typically an ROC is displayed as a graph of hit

probability versus false alarm probability, with the range variable δ left implicit. We do

so in this paper.

One could in principle derive the ROC analytically given the function f and a model

of the noise, but in practice this is difficult. Instead we ran Monte Carlo simulations as

follows. We randomly generated 10,000 nonrigid structures, projected the 3D coordinates

of each structure onto two randomly chosen image planes, and computed the 10,000 re-

sulting values of f . We then randomly generated 30,000 different rigid 3D structures (each

consisting of three points plus the origin), projected each structure onto two randomly

chosen image planes. For 10,000 of these, we randomly perturbed the coordinates of the

projected points with 0.05 percent gaussian noise.5 For another 10,000 we perturbed the

coordinates with 1.25 percent gaussian noise. The remaining 10,000 we perturbed with

5 percent gaussian noise. We then computed the 30,000 resulting values of f . Plots of

the results as standard ROC curves, shown in Figure 2, demonstrate excellent detection

properties even with 5 percent noise. In this case it is still possible to pick a decision

criterion for which the probability of hits is better than 0.95 and the probability of false

alarms is less than 0.03.

5 In our Monte Carlo simulations the x and y coordinates of points in the 10,000 nonrigid

structures were uniformly distributed within a range of ±10, so that the expected absolute

value of each coordinate was 5. All coordinates in the 30,000 rigid structures were also

restricted to a range of ±10. Thus the phrase “5 percent gaussian noise” means gaussian

noise with a standard deviation of 0.25.
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Figure 2. Receiver operating characteristic (ROC) for the function f . Three ROC curves

are shown. In order from uppermost to lowest, the ROCs are shown for 0.05%, 1.25%,

and 5% gaussian noise in the image coordinates.

This example demonstrates a general approach to the decision problem: (i) Construct

a competence observer whose set Ds has measure zero in D; (ii) Find a function which

vanishes precisely on Ds; (iii) Analytically, or via Monte Carlo simulations, determine

a critical value of this function which gives acceptable hit and false alarm rates for a

reasonable model of noise.6

Note that the function f of Equation 6 can be used to recognize 3D structures. Pick

any rigid 3D configuration of points R and any generic view of that configuration. Insert

the coordinates from that view into the first frame variables (the �bi1’s). The result is

a polynomial fR of lower degree in just the second frame variables (the �bi2’s). Now to

determine if a second image depicts a different view of R, insert its coordinates into fR

and compute the resulting value. If the value is small enough (based on the above Monte

Carlo results) then decide that the second image depicts R; otherwise decide it does not.

6 More examples of this approach are contained in Bennett, Hoffman, and Prakash

(1993a,b). These examples include affine motions and weak perspective projection. An-

other approach to detecting rigid objects is given by Thompson, Lechleider, and Stuck

(1993). Their approach, however, requires an extra step: for each new image to be an-

alyzed one must first estimate a four-dimensional vector r which minimizes the median

residual error in a set of linear equations.



Bennett et al. Observer Theory and Bayes Theory

This approach allows one to recognize any view of a (transparent) 3D structure after being

given only a single view (cf. Basri and Ullman, 1991; Poggio, 1990). For an opaque object,

one can recognize any view within one cell of its aspect graph after being given only one

view from within that cell.

One can draw a general conclusion from this section. To be able to deal with noise, the

definition of competence observer must be augmented with a function α:D → [0, 1] which,

intuitively, is related to the degree of confidence that each premise should be assigned a

special interpretation. Intuitively, we can take α(d) to be the hit rate at the point of the

ROC curve corresponding to the parameter value δ = f(d). This motivates the following

definition of performance observer (Bennett, Hoffman, Kakarala, 1993).7

Definition 7. A performance observer is a competence observer (C, D, Cs, Ds, π, I)

together with a function α:D → [0, 1]. We call α the confidence function of the performance

observer.

7. COMPETENCE: THE POSTERIOR IN THE DISCRETE CASE

In this section we derive a form of the Bayes posterior in the discrete case that will lead

naturally to a formulation of the more general case.

Given an image d ∈ D we want to assign probabilities to possible scene interpretations

c ∈ C. Thus we want to compute the conditional probability Pr(c | d). For simplicity, and

to fix ideas, we consider first the discrete case. In this case we can use Bayes rule:

Pr(c | d) =
Pr(d | c)µ(c)

λ(d)
. (8)

Here µ denotes a prior measure on scenes, Pr(d | c) is the likelihood function, and λ is

a measure on images which expresses the probability that the image d will be acquired,

assuming µ is the actual measure on scenes. This expression is well-defined only if λ(d) > 0.

7 Later we give a precise definition of α (Definition 51) and briefly discuss its relationship

to standard Bayesian decision methods. Definition 7 is different in form but equivalent in

content to the definition given by Bennett, Hoffman, and Kakarala (1993).
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(We discuss shortly how to formulate the problem in the more realistic nondiscrete situation

in which λ(d) = 0.) In the noise-free case the likelihood function Pr(d | c) takes, as we

have seen, a particularly simple form. It assigns the value 1 to π(c), i.e., to the image that

would be rendered if the scene were c, and it assigns the value 0 to all other images. We

can write this as

Pr(d | c) = 1π(c)(d), (9)

where 1π(c)(d) denotes the indicator function of π(c). This, together with our assumption

on λ, implies that

λ(d) = µπ∗(d). (10)

Here the measure µπ∗ is, by definition, the distribution of π with respect to µ defined by

µπ∗(B) = µ(π−1(B)), where B is any event in D.

For example, for the competence observer defined by the Two-View Theorem, if c =

{(xij , yij , zij)}, where i = 1, 2, 3 and j = 1, 2, then Pr(d | c) is 1 for d = {(xij , yij)}, and

zero otherwise.

Substituting (9) into (8) gives

Pr(c | d) =
1π(c)(d)µ(c)

λ(d)
, (11)

but this numerator is equal to µ(c) if π(c) = d and is 0 otherwise, so we can write

=
µ(c ∩ π−1(d))

λ(d)
,

which by (10) is

=
µ(c ∩ π−1(d))

µ(π−1(d))
,

or

= µ|[d](c),

where µ|[d] indicates the normalized restriction of µ to π−1(d), i.e., µ|[d](c) = µ(c ∩
π−1(d))/µ(π−1(d)). Thus the posterior probability Pr(c | d) is the normalized restric-

tion of the prior probability µ to the set [d]. Using the observer language of interpretation
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kernels we can write

Pr(c | d) = µ|[d](c) = I(d, c). (12)

If we replace the specific scene interpretation c with a measurable set A of scene interpre-

tations, this posterior probability becomes

Pr(A | d) =
∑
c∈A

Pr(c | d) = I(d, A). (13)

Thus for competence observers the posterior distributions contained in the interpretation

kernel I are normalized restrictions of a prior measure µ on Cs. The restriction sets are

fibers [d] of the rendering function π. For a competence observer compatible with the Two-

View Theorem, I(d, ·) may be taken to be, for example, a uniform probability measure on

the set [d]∩Cs; this measure is uniform with respect to the parametrization of [d]∩Cs by

the slant of the axis of rotation.

Note that in this derivation the prior measure µ might be improper, i.e., it might not

be a probability measure. The derivation requires, however, that 0 < µ([d]) < ∞ for each

d ∈ D.

8. COMPETENCE: THE POSTERIOR IN THE CONTINUOUS CASE

To generalize the Bayesian results to the nondiscrete case, we must use regular conditional

probability distributions (Parthasarathy, 1968; Bennett et al., 1989a). Regular conditional

probability distributions (rcpd’s) are defined precisely in the Appendix, section A5. How-

ever here we give a concrete example to illustrate the definition. Let µ be the usual joint

gaussian on �2 and let π be the projection from �2 onto the x-axis. Then the rcpd of µ

with respect to π is a kernel η(x, ·) which assigns to each point x of the x-axis a gaussian

measure on the vertical line in �2 through that point x.

The intuitions are as follows. Suppose that we are modeling a competence observer

O = (C, D, Cs, Ds, π, I) and that our prior measure on scene interpretations is a probability

measure µ on Cs. If we are given the image data d, our posterior probability distribution,

according to Equation 12, is the normalized restriction of µ to the set π−1(d) = [d]. That is,

the posterior distribution assigns to a set A of scene interpretations the probability µ(A∩
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[d])/µ([d]). But what if the probability (i.e., µ measure) of the set [d] is zero, as it most often

is in the continuous case? Then this formulation of the posterior distribution is undefined.

Unfortunately, this is precisely the case we need most. In practical situations we are given

an image d and must come up with a posterior probability on scene interpretations. This

image d, however, is usually just one of a large collection of possible images that we might

have been given, and therefore its probability, and the probability of [d], is zero or near

zero. To get the desired posterior distributions in this case, what we need is a way to get

normalized restrictions of µ to sets [d] of probability zero. Or, to put it slightly differently,

we need to be able to condition on sets of probability zero.

This is precisely the power of rcpd’s—to condition on sets of probability zero and still

get a well-defined probability measure as a result. An rcpd is a markovian kernel. In the

case at hand it is denoted mµ
π, where the superscript indicates the prior probability and

the subscript indicates the rendering function.

The application of rcpd’s to competence observers is immediate. The interpretation

kernel I just is the rcpd mµ
π. The probability measures I(d, ·) = mµ

π(d, ·) then correspond

to the posterior distributions.

9. PERFORMANCE: THE UNDERLYING PROBABILITY SPACE

Now we consider measurement noise. A general model for this noise is a markovian kernel

N :C ×D → [0, 1], (14)

where D denotes the collection of all measurable subsets8 of the space D of image data.

We interpret this kernel as follows. We fix a scene c ∈ C and let B ∈ D denote a set of

images. Then N(c, B) is the probability that the rendered image d is in the set B given

that the scene is c. (In the discrete case it is sufficient to know the probabilities when

B = {d} for all images d ∈ D; for simplicity we denote this N(c, d) instead of N(c, {d}).
It is the probability that d is the image rendered given that the scene is c.) So interpreted,

8 In the discrete case the σ-algebra is just the collection of all subsets. In the general

case the σ-algebra is a nontrivial subcollection.
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the kernel N is a collection of likelihoods and we would like to write

Pr(d | c) = N(c, d), (15)

where Pr is some appropriate probability on perceptual events. In order to do this we

must be more explicit and rigorous about the probabilistic setting.

Since each perceptual event is a pair consisting of a scene from C and an image from

D, the underlying space for perceptual events is C×D. Our fundamental probability space

then is a space (C×D, C⊗D, P r).9 If we let A ∈ C denote a measurable collection of scene

interpretations, and B ∈ D a measurable collection of images, then Pr(A×B) denotes the

probability of the perceptual event in which the true scene is in the set A and the rendered

image is in the set B. We assume we are given a prior probability µ on Cs ⊂ C and a

conditional probability N :C×D → [0, 1] expressed as a markovian kernel. This conditional

probability N reflects the effects of noise as described above and is the “likelihood function”

of Bayesian analysis. It follows by definition of conditional probability that in the discrete

case Pr assigns to a typical set A × B ∈ C ⊗ D the probability

Pr(A × B) =
∑

c∈A,d∈B

Pr(c, d) =
∑

c∈A,d∈B

µ(c)N(c, d) (16)

and correspondingly in the continuous case

Pr(A × B) =
∫

A

µ(dc)
∫

B

N(c,dd). (17)

Thus we may say that in the discrete case

Pr(c, d) = µ(c)N(c, d), (18)

while in the continuous case

Pr(dc,dd) = µ(dc)N(c,dd). (19)

In both cases, we may use the language of kernel multiplication (Appendix, A3) to observe

that

Pr(A × B) = µ(1AN)(B). (20)

9 The product σ-algebra C ⊗ D is the σ-algebra generated by all subsets of the form

A × B, A ∈ C, B ∈ D. In the discrete case the product algebra is (trivially) the collection

of subsets of C × D, but in the continuous case C ⊗ D is nontrivially related to C and D.

See, e.g., Halmos (1950).
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It follows that the marginal of Pr on C is the prior measure µ on scenes and the marginal

of Pr on D is the measure µN on images, i.e., (µN)(B) =
∫

C
µ(dc)N(c, B). As in the

noise-free discrete case, we have assumed that the prior probability on scenes is described

by a measure µ on Cs ⊂ C. In the presence of noise, however, we have obtained a different

measure λ on images. Recall from (10) and (11) that in the noise-free case this measure is

λ(d) = µ(π−1(d)) = µπ∗(d). That is, λ is simply obtained by “pushing down” by π onto

D the prior measure µ on Cs ⊂ C. But if there is noise described by a kernel N , then this

push down, as we have just seen, must instead be of the form

λ(d) = (µN)(d) =
∑
c∈C

µ(c)N(c, d) (21)

in the discrete case, and of the form

λ(dd) = (µN)(dd) =
∫

C

µ(dc)N(c,dd) (22)

in the continuous case. If N(c, ·) is the Dirac measure at π(c), i.e., if there is no noise,

then Equations 21 and 22 reduce to Equation 10.

In the discrete case, we can now make sense of Equation 15 in terms of the above

postulated probability measure Pr: the correct expression for Pr(d | c) is, with our present

notation, Pr(C × {d} | {c} × D).

10. PERFORMANCE: DERIVATION OF THE POSTERIOR

(STANDARD BAYESIAN ANALYSIS)

We now want the posterior probability, i.e., the conditional probability that the scene is

in a set A given that the rendered image is d. In the general case there is a question about

the meaning of the posterior probability since the probability of {d} might be zero. We

will deal with the discrete case first and then use our results to motivate the derivation in

the general case.

We now give the discrete posterior distribution in the presence of noise. The result

(Equation 24 below) is a Bayes rule for the perceptual situation. If A ∈ C is a measurable

collection of scene interpretations, and d is an image, the posterior probability given that

image is the conditional probability Pr(A × D | C × {d}). From now on we shall write



Bennett et al. Observer Theory and Bayes Theory

this as, simply, P (A | d). In what follows we will often abuse notation in this way, e.g., by

writing just A instead of A×D, B instead of C ×B etc. In particular, with this notation

Pr(A) is the marginal µ(A), Pr(B) is the marginal µN(B), and P (A | d) is the posterior

we seek. (The exact meaning should be clear from the context, but we caution the reader

that the meaning in terms of the underlying probability space be always kept in mind so

as to avoid mistakes in computation.)

Theorem 23. (Discrete Posteriors). Let the measure µ be the prior distribution on

scene interpretations and let the markovian kernel N be the likelihood function. Then the

posterior probability that the true scene is in A ∈ C given that the rendered image is d, is

given by

P (A | d) def= Pr(A × D | C × {d}) =
(µ(1AN))(d)

(µN)(d)
, (24)

whenever µN(d) �= 0 and P (A | d) = 0 otherwise. The posterior satisfies, for any B ∈ D,

∑
d∈B

µN(d)P (A | d) = Pr(A × B). (25)

Moreover, the posterior probability is related to a regular conditional probability distribu-

tion as follows: Let q:C × D → D be the projection mapping q(c, d) = d. Then the rcpd

mPr
q exists and for any A ∈ C,

P (A | d) = mPr
q (d, A × {d}) = mPr

q (d, A × D), (26)

for µN -almost all d.

Proof. Appendix, A9.

Equation 24 is Bayes rule expressed in kernel notation, and relates the posterior to

the prior µ and the noisy likelihood function N . This is a formulation in terms of kernels,

equivalent to the usual form. In fact, (24) when A is the singleton {c} reduces to the

familiar form, i.e., P (c | d) = N(d | c)µ(c)/
∑

c N(d | c)µ(c). Equation 24 itself expands

out to P (A | d) =
∑

c∈A N(d | c)µ(c)/
∑

c N(d | c)µ(c). Thus the likelihood function in

Bayesian analysis is a Markovian kernel. Equations 24–26 will allow us to generalize from

the discrete to the continuous case. One checks that the last equality in Equation 24 shows
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that P (A | d) is a markovian kernel on D × Cs, since µ is supported in Cs. Of course, P

naturally extends to a submarkovian kernel on D × C.

We are now ready for the continuous case. Given the issue of zero probabilities for d,

how should we define P (A | d)? The answer lies in generalizing a property in Theorem 23:

In the discrete case, P (A | d) is the value of a markovian kernel on D×Cs (with the usual

order of arguments of kernels reversed10), satisfying Equation 25. This motivates

Definition 27. (General Posterior). The general posterior P (A | d) is any markovian

kernel on D × Cs, satisfying

Pr(A × B) =
∫

d∈B

µN(dd)P (A | d) =
∫

c∈A,d∈B

µN(dd)P (dc | d). (28)

From this and (20) it follows that P is a Bayesian posterior for the likelihood N given µ

iff

(µ1AN)(B) = ((µN)1BP )(A) (= Pr(A × B)). (29)

It is equivalent to say (by Lemma A39 of the Appendix) the following: For all bounded

measurable functions f on C and g on D,

µfNg = (µN)gPf. (30)

Notes on Definition 27:

(i) The notion of Bayes posterior as a relationship between kernels is only meaningful

given the prior µ.

(ii) (29) constrains N and P only a.e. µ and µN respectively. This means that we can

modify P (d, ·) arbitrarily for d in any set of µN measure zero without affecting (29).

Thus the notion of Bayes posterior is defined only a.e. µ and µN respectively, and

this is why, in Definition 27, we said “a” posterior rather than “the” posterior.

10 Note that a kernel on D × Cs is normally written with d ∈ D as its first argument

and A ∈ Cs at its second; in keeping with traditional Bayesian notation, however, we are

writing A first and d second in P (A | d).
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By Definition 27, to say that N is the Bayesian posterior for the likelihood P given

µN means that the last equation holds, but with the µ on the left replaced by µNP . Thus

we note that Definition 27 is symmetric provided µ = µNP . We will prove in Theorem

A below that this always holds if P is the posterior of N with respect to µ, i.e., that

the relationship of Bayesian posterior is symmetric. Thus if P is the posterior of N with

respect to µ then N is the posterior of P with respect to µN .

Proposition 31. Let π:X → Y be a measurable mapping and µ a measure on X. Then

the kernels I from Y to X and π∗ from X to Y are Bayesian posteriors of each other iff I
is the rcpd of µ with respect to π (see Appendix A5 for definition of rcpd, and Appendix

A4 for how π∗ can be viewed as a kernel). In other words, in the competence case I and

π∗ are Bayes posteriors of each other.

Proof. Appendix A36.

Do the markovian kernels which are the posteriors of Definition 27 exist in general in

the continuous case? Indeed so; the appropriate generalization of (24) is exhibited in (35)

below. To see this we need Radon-Nikodym derivatives, which we now briefly review.11

Definition 32. (Radon-Nikodym Derivative). If ν and ρ are measures on some mea-

surable space (W,W) and if, for all D ∈ W, ν(D) = 0 implies ρ(D) = 0, then ρ is said

to be absolutely continuous with respect to ν, and we write ρ << ν. If ρ << ν, the

Radon-Nikodym Theorem states that there exists a measurable function f such that

ρ(B) =
∫

B

fdν, ∀B ∈ W, (33)

as long as ν is a σ-finite measure and ρ is finite. Any function g which differs from f only on

a set of ν measure zero also satisfies (33), and is also called a Radon-Nikodym derivative of

ρ with respect to ν, and denoted dρ/dν. Thus the Radon-Nikodym derivative with respect

to ν is defined only up to sets of ν-measure zero. The Radon-Nikodym derivative f is

sometimes called the density of ρ with respect to ν.

11 For a detailed discussion of the relationship of Radon-Nikodym derivatives to condi-

tional expectation see, e.g., Chung (1974). See also Grenander (1981) for an application

of Radon-Nikodym derivatives to abstract inference.
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The perceptual Bayes rule in the general case now follows:

Theorem 34. (General Posterior). Let the measure µ be the prior distribution on

scene interpretations and let the markovian kernel N be the likelihood function. Then the

posterior probability that the true scene is in A ∈ C given that the rendered image is d is

given by

P (A | d) =
d(µ(1AN))

d(µN)
(d), a.e. d (µN). (35)

In fact, by definition of Radon-Nikodym derivative (Definition 32), this means that for any

B ∈ D, ∫
d∈B

µN(dd)P (A | d) = P (A × B). (36)

Let q:C × D → D be the projection mapping q(c, d) = d. Then we can write P (A | d) as

a regular conditional probability distribution as follows:

P (A | d) def= Pr(A × {d} | C × {d}) = mPr
q (d, A × D). (37)

Proof. Appendix, A22.

An important special case of this theorem is when the prior and likelihood have

densities. This means that there are measures λ on C and ρ on D, with µ(dc) = f(c)λ(dc)

and N(c,dd) = n(c, d)ρ(dd); we say that f(c) is the “density” of µ (with respect to λ)

and n(c, d) is the density of N(c,dd) (with respect to ρ). (The case most familiar in the

perception literature is where C and D are �n and �m for some n and m and λ and ρ are

the ususal euclidean volumes.) Then the posterior kernel P (dc | d) also has a density, say

p(c, d), with respect to λ, i.e., P (dc | d) = p(c, d)λ(dd). In terms of these densities Bayes

Rule says:

p(c, d) =
n(c, d)f(c)

Z(d)
, (38)

where Z(d) =
∫

n(c, d)f(c)λ(dc) is a normalization factor. (Again, the discrete case (25)

follows upon requiring that λ be counting measure on a finite set.)

Equation 35 is of practical importance in computing posteriors in the perceptual

situation, as we shall see in the next section. This form of Bayes rule is general. It

applies to arbitrary prior probability measures µ. It applies to arbitrary forms of noise
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N ; in particular, it is not restricted to an assumption of gaussian noise. It allows some

improper, i.e., infinite, prior measures.12 And it allows one to condition on images that

have probability zero. Thus this form of Bayes rule can be applied to many problems in

vision in which a posterior distribution is sought. In section 12 we use it to compute a

special class of posteriors that often arise in vision research.

Theorem 34 implies that P (A | d) = P (A ∩ Cs | d). One can see this directly from

(35) by noting that µ is supported on Cs, so that µ(1AN) = µ(1A∩CsN).

If the measures involved are all discrete, Theorem 34 specializes to Theorem 23. For

in that instance, integrals become sums and Radon-Nikodym derivatives become simply

ratios ((25) is the analogue of (36) in the discrete case at hand). Moreover, Theorem 34

also confirms the noise-free or competence case. Here, N(c,dd) = επ(c)(dd), i.e., the Dirac

kernel at π(c). In the proof of Proposition 31 we show that then µN = π∗µ and that

µ1AN(B) =
∫

B
µN(dd)I(d, A). Thus the Radon-Nikodym derivative P (A | d) is just the

interpretation kernel I(d, A), as expected.

By Definition 27, P (dc | d) is a markovian kernel. It will be of use later to evaluate

integrals of the form
∫

P (dc | d)f(c), where f is a bounded, measurable function on C.

Equation 35 tells us what this integral is for f = 1A. We have

Corollary 39. For any bounded, measurable function f on C,∫
c∈C

P (dc | d)f(c) =
d(µ(fN))

d(µN)
(d), a.e. d (µN).

Proof. Appendix, A24.

We reiterate a key consequence of the foregoing derivations: In the general case,

Bayesian posteriors and likelihoods are kernels. This is useful for several reasons. First,

12 Improper priors are an issue, e.g., when the measure µN assigns the value infinity to

some singleton. The general form of Bayes rule (35) will accept any (possibly improper)

prior measure µ as long as µN is σ-finite, i.e., as long as there is a measurable partition

{An} of D such that N(c, An) is integrable with respect to µ for all n. Note that in this

case (35) is still defined as a markovian kernel. For more on improper priors, see Hartigan

(1983).
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kernels are well understood mathematical objects whose properties have been extensively

investigated. Second, kernels provide a convenient computational tool in the general (i.e.,

nondiscrete) case. In particular they allow us to compute probabilities of scenes as expec-

tations of functions on the space of images; they also allow us to compute probabilities of

images as expectations of functions on the space of scenes.

With the foregoing definitions and characterization of the Bayesian posterior we can

prove several important results on the general behavior of these posteriors. For this purpose

we will introduce terminology and notation which is simplifying and suggestive.

Definition 40. Let X and Y be measurable spaces. Let µ be a probability measure on

X. Let H from X to Y be a markovian kernel. We will denote by H†
µ (or just by H† when

there is no confusion about µ) the Bayesian posterior of H for the prior probability µ. We

will also refer to H†
µ as the Bayes adjoint of H for µ, or just the adjoint for short when

µ is unambiguous. (We remind the reader that the Bayes adjoint is well defined only a.e.

µH in the sense of note (ii) after Definition 27.) According to (30), H† is defined by the

relation

µfHg = (µH)gH†f,

for all bounded measurable functions f on X and g on Y . It is very suggestive to use the

following notation. In general, on a measure space X with measure µ and functions f and

h, we denote < f, h >µ=
∫

X
f(x)h(x)dµ(x). The definition of the Bayes adjoint H† of H

with respect to µ is

< f, Hg >µ = < H†f, g >µH , (41)

which is a restatement of (30).

Notes on Definition 40

(i) We recall that the existence of H† is guaranteed by Theorem 34

(ii) The adjointness terminology is further justified below by Theorems 42, 43, and 44.

(iii) If f ∈ L2(X, µ) and g ∈ L2(Y, µH), with ‖f‖ = ‖g‖ = 1, it is natural to view f and

g as states on X and Y . The quantity < f, Hg >µ = < H†f, g >µH may then be

interpreted as a measure of the compatibility of the states f and g, or as the probability
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of simultaneous occurrence of the two states. A compatibility of numerical value 1

(perfect compatibility) occurs when f = Hg, or equivalently, when g = H†f .

Theorem 42. Given X, µ on X, and a kernel H from X to Y ,

µHH† = µ.

Proof. Appendix A37.

Intuitively, H† reverses the effect of H on the prior µ.

Theorem 43. With X, µ, and H as above,

(H†
µ)†µH = H.

Proof. We refer to (41) as the definition of the Bayes posterior. Applying this definition

first to H and then to H†
µ, we see that

< f, Hg >µ = < H†f, g >µH = < f, (H†
µ)†µHg >µHH† .

The right-hand side equals < f, (H†
µ)†µHg >µ by theorem A. Comparing this with the

left-hand side we are done.

The following theorem is very useful for the study of composite Bayesian inferences.

µ H ν=µH K λ=νK

X −→←− Y −→←− Z
H†

µ K†
ν

(HK)†µ

Theorem 44. Let X, Y , and Z be measurable spaces. Let H be a markovian kernel

from X to Y and K a markovian kernel from Y to Z. Let µ be a probability measure on

X. Let ν = µH and λ = νK = µHK on Y and Z respectively. Then

K†
λH†

ν = (HK)†µ.
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(This equation holds only a.e. λ, ν, and µ. See note (ii) after Definition 27.)

Proof.
< f, HKg >µ = < f, (HK)g >µ

= < H†
µf, Kg >µH

= < K†
µHH†

µf, g >λ=µHK .

By Definition 41, this means

K†H† = (HK)†. (45)

11. COMPUTING POSTERIORS: A CLASS OF EXAMPLES

We now use Theorem 34 and the assumption of simple noise to derive an explicit expres-

sion for the posterior distributions in a special class of cases that includes the Two-View

Theorem observer and many other observers of interest in computer vision.

Theorem 46. (Some Useful Posteriors). Let the set of scene interpretations, C, be a

euclidean space �j and let the set of special scene interpretations, Cs, be a measurable

subset of C. Let the set of images, D, be a euclidean space �k and let the special images,

Ds, be a measurable subset of D.13 Let the rendering function, π:C → D, be measurable.

Let the prior measure on scene interpretations be µ, and the measure on images be λ

(= µN). Let the noise kernel N be constant on fibers of π, and in fact be modeled

by independent, identically distributed gaussian random variables with mean zero and

standard deviation σ. Thus, for any scene interpretation c and set D of images,

N(c, D) =
1

(
√

2πσ2)m

∫
D∈D

exp
(−‖π(c) − d‖2

2σ2

)
λ(dd), (47)

where m is the dimension of D. Then the posterior probability that the scene interpretation

13 This implies that each of these sets is a standard Borel space and that therefore rcpd’s

exist (see Appendix A8).
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is in the set A given that the image is d is the following:

P (A | d) =
d(µ(1AN))

d(µN)
(d) =

∫
Cs∩A

exp
(

−‖π(c)−d‖2

2σ2

)
µ(dc)∫

Cs
exp

(
−‖π(c)−d‖2

2σ2

)
µ(dc)

. (48)

Proof. Appendix, A25.

We now have an explicit form for the posterior distribution P (d, A) for a large class

of observers of interest to researchers in computer vision. This class includes the rigid

motion observer based on the Two-View Theorem (Theorem 1). If we wish to pick a “best”

interpretation on the basis of the posterior distribution we have several standard options

(see, e.g., Papoulis, 1984; Gelb, 1974). For instance, we can choose the interpretation with

the maximum posterior probability, the so-called MAP (maximum a posteriori) estimator;

if the prior is uniform, this is called the maximum likelihood estimate (see Witkin, 1981,

for an early use of maximum likelihood estimates in vision).

12. THE BAYESIAN OBSERVER DIAGRAM

So far we have developed several different threads: competence observers, performance

observers, and standard Bayesian estimation. Each has its own meaning and applications

in the study of perception. Each is also associated with a compound structure embodying

various mathematical objects such as measures, mappings, and kernels. It is the pur-

pose of this section to tie these constructs together. We will introduce one diagram, the

“Bayesian Observer Diagram” (henceforth “BOD”), which displays their relevant mathe-

matical structures and the precise relationships between them.

The BOD consists of probability measures related by arrows representing kernels. The

point here is that kernels operate on measures to produce other measures (Appendix A3).

Thus we can move around the diagram by successively applying kernels to a given measure.

The BOD diagram is shown in Figure 3.

The objects at the corners of the diagram are, as we have noted, probability mea-

sures. The measures at the upper corners are probabilities on the conclusion space C.
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Figure 3. Bayesian observer diagram showing the relationship of observer theory to stan-

dard Bayesian analysis.

The measures at the lower corners are probabilities on the data space D. Each edge of

the diagram consists of arrows in both directions. There are also two arrows in opposite

directions along a diagonal of the diagram. These arrows, as mentioned above, represent

kernels. The left vertical edge corresponds to a competence observer (Definition 2). The

measure µ is a probability measure on conclusions which expresses the prior probability

on scenes adopted by the competence observer. I is the interpretation kernel of the com-

petence observer (i.e., the noise-free posterior used by the competence observer). We can

also think of I as describing the conditional probabilities induced by µ, given points of D.

For each noise-free image, I gives a probability measure on scene interpretations that are

compatible, via the function π, with that image.

Recall that π is the “image rendering function” of the observer. It assigns to each

conclusion (or “scene”) c in C the unique image data π(c) = d, in D, which is compatible

with c. The downward arrows denoted π∗ on each edge of the BOD are kernels. The kernel

π∗ assigns to any probability measure ν on C the probability measure νπ∗ on D, which is

defined as follows. The function π can be thought of as a random variable on C taking

values in D; the probability νπ∗ is then the usual “distribution” of this random variable.

The kernel F expresses the effect of noise at the level of the conclusion space C. In

this sense it associates to any noise-free prior µ of the competence observer a probability
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measure µ′ on C. We can think of µ′ as the “fuzzy” analog of µ, for the particular noisy

circumstances described by F .

If we view F as the likelihood function for the prior µ, then R is the corresponding

Bayesian posterior. Given the meaning of F as a fuzzing kernel, we can think of R as

“retracting” noisy interpretations back onto noise-free interpretations. F∗ and R∗ express

the effects of F and R at the level of the data space D.

The right edge of the BOD corresponds to a performance observer (Definition 7). I ′

is its interpretation kernel. As in the competence observer of the left edge, we can think

of I ′ as describing the conditional probabilities induced by µ′, given points of D. For each

noisy image, I ′ gives a probability measure on scene interpretations that are compatible,

via the rendering function π, with that image.

The kernel N models noise in the rendering process. Intuitively, N(c, d) gives the

probability that the image d is rendered given that the scene is c. Because of noise this

probability will in general be nonzero even if d is not π(c). In many concrete situations

where we can express probability measures as densities with respect to some underlying

measure, the density function associated to N is commonly known as the “likelihood

function.” The kernel P is the Bayesian posterior for the prior µ and the likelihood N . In

most cases, the likelihoods and posteriors referred to in the Bayesian literature correspond

to N and P . This means that traditional Bayesian analyses refer to just the diagonal of

the BOD.

Note that π, F , and N can be specified independently of µ, whereas the definitions of

the kernels R, P , R∗, I, and I ′ are all contingent on µ.

The BOD is convenient in that it collects and displays all the relevant mathematical

structures that figure in both an observer-theoretic and Bayesian analysis of perception.

However, the real benefit of the diagram for purposes of conceptualization and analysis

follows from the mathematical properties of the diagram itself. In particular, we will

prove shortly that one can construct a consistent BOD and that every pair of opposite

arrows represents Bayes adjoints (with respect to the measures indicated at the appropriate

vertices). As a matter of general terminology, any diagram is said to be “consistent” if,

whenever it is possible to move an object indicated at a vertex of the diagram by means

of two different sequences of arrows which end at the same vertex, then the two results



Bennett et al. Observer Theory and Bayes Theory

are equal. (Note that consistency is weaker than the general mathematical notion of

commutativity of diagrams.)

We now consider the BOD in detail. There are several entities we have already

encountered:

1. Competence Observer

a. µ on C is the prior probability on scene interpretations.

b. π:C → D is the rendering function.

c. µπ∗ is the distribution on images in the noise-free case.

d. I:D×C → [0, 1] is a markovian kernel describing noise-free posterior probabilities.

In fact I is an rcpd of µ.

Thus the left side of the BOD is simply a competence observer with prior probability µ. As

we have discussed before, this observer is a canonical description of a perceptual capacity

under the assumption that there is no noise. The diagram contains three other entities we

have already encountered:

2. Standard Bayesian Analysis

a. N :C×D → [0, 1] is a markovian kernel describing the effect of noise on the image

rendering process; it models the likelihoods of standard Bayesian analyses.

b. µ′π∗ = µN is the noisy distribution on images.

c. P :D × C → [0, 1] is a markovian kernel describing the Bayesian posterior

probabilities when there is noise. According to Theorem 34, P (A | d) =

[d(µ(1AN))/d(µN)](d).

Thus the diagonal of this diagram—µ, N , µ′π∗, and P—describe the Bayesian analysis of

perception when there is noise. The prior measure µ on scene interpretations gets pushed

down via the likelihood N to a measure µ′π∗ (= µN) on images. The posterior P assigns

scene interpretations to these images in a manner consistent with the prior measure µ.

The diagram also contains a performance observer, which we now describe:

3. Performance Observer

a. µ′ is a probability measure on C such that µ′π∗ = µN , and is not, in general,
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Figure 4. The two observers in the Bayesian observer diagram.

supported in Cs. This measure describes the actual distribution of scene inter-

pretations perceived by subjects.

b. I ′ is an rcpd of µ′ with respect to the rendering function π.

This right side of the BOD—µ′, π, µ′π∗, I ′—together with a significance function α, is a

performance observer (Definition 7). The final new entities are the following:

4. Fuzzing and Retraction

a. F :C × C → [0, 1] is a markovian kernel given by F = NI ′. This kernel “fuzzes

up” the ideal prior µ in a way which matches the scene interpretations perceived

by subjects in actual noisy circumstances. N and F are both models of noisy

circumstances, but F is at the level of scenes and N relates scenes and images.

Thus N and F must be compatible in the sense that N = Fπ∗.

b. F∗:D × D → [0, 1] is a markovian kernel which is the “pushdown” of F . Thus

F∗ = IFπ∗ = IN . This kernel fuzzes up the ideal distribution µπ∗ on images to

match the actual distribution, µ′π∗.

c. R:C × C → [0, 1] is a markovian kernel given by

R = F †
µ,
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i.e., R is the Bayes adjoint of F for the prior probability µ. (The dagger notation

is as given in Definition 40.) By Theorem 42 we then have µ′R = µ, i.e., R

“retracts” the noisy measure µ′ back to the Bayesian prior µ.

d. R∗:D × D → [0, 1] is a markovian kernel which is the “pushdown” of R. Thus

R∗ = I ′Rπ∗. This kernel “retracts” the noisy distribution on images back to the

noise-free distribution, µπ∗. In fact we will prove, as part of Theorem 49 below,

that R∗ is the Bayesian posterior for the likelihood F∗ with respect to the prior

measure µπ∗.

Figure 5. The Bayesian likelihoods and posteriors in the BOD.

Thus the BOD ties together two observers—competence and performance—and displays

their relationship with standard Bayesian estimation. A competence observer is a compe-

tence theory of a perceptual capacity in the noise free case. A performance observer is a

point at which empirical data makes close contact with the formalism, allowing the com-

petence observer to be constrained by experiments. These two observers are displayed in

Figure 4. The likelihoods and posteriors of standard Bayesian estimation are highlighted

in Figure 5.

What are the minimal data that are required to construct a consistent BOD? The
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minimal data must include the measurable mapping π from C to D, and hence the kernel

π∗. We also must have a prior measure on the configuration space. Because of the sym-

metry of the BOD, this measure can be either µ or µ′. If we choose µ we need a model of

“noise” F that allows us to construct µ′. If instead we choose µ′, then we need a model R

for retracting µ′ to µ. Thus there are two possible sets of mathematically minimal data:

One is π∗, µ, and F ; the other is π∗, µ′ and R. This is the essence of the following theorem.

Theorem 49. If the spaces C and D are standard Borel spaces, then given {π∗, µ, F}
or given {π∗, µ′, R} one can canonically construct a consistent BOD in which each pair of

opposite pointing arrows corresponds to a pair of kernels which are Bayes adjoints of each

other.

Proof. See Appendix A40.

This theorem establishes the existence of consistent BODs. One consequence is that

we now see from the BOD that, assuming consistency, µN = µπ∗F∗. Thus, assuming

consistency and that the prior µ is a correct model of the situation, we can always view

the noise N as “simple noise”: N is noise-free projection π∗ followed by a noise kernel

F∗ acting only on the image space D. Hence in order to undo the noise N we need only

clean up noise in the image space D via the kernel R∗. We can then use I, the noise-free

interpretation kernel, to produce our scene interpretations. This observation justifies the

noise-free competence observer as an essential aspect of standard Bayesian analysis applied

to perception.

13. PSYCHOPHYSICAL TESTS OF COMPETENCE THEORIES

Suppose we have a computational model for a visual process. And suppose we wish to

test whether this model is psychologically plausible. Then we can first write a description

of the model as a competence observer. This observer is the theoretical entity we will

evaluate on the basis of psychophysical data. But here we face a problem: the competence

observer cannot handle noise, whereas the psychophysical data we collect are doubtless
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tainted with noise. We must therefore construct a model of performance based on the

competence theory we wish to test and the best knowledge we have about the noise likely

to obtain. This noise can occur at several levels: (1) in the generation and presentation

of stimuli to a subject, (2) in the perceptual processes internal to that subject, (3) in the

response processes internal to the subject, and (4) in the response apparatus used by the

subject. It is the performance model that we directly test by our psychophysical data and

which, in turn, allows us to accept or reject our proposed competence theory. The BOD

discussed in the last section deals with the first two levels of noise: in the stimuli and in the

subject’s perceptual processing. The last two levels, response noise internal and external

to the subject, can together be modeled by a “response kernel,” M , that maps perceptual

conclusions to possible experimental outcomes. Here we shall not concern ourselves with

this kernel except to note that it is markovian and does not respect the fibres of the

rendering function π. Instead we focus on the BOD and its relation to psychophysical

data.

First we note that the Bayesian posterior P does not model what subjects actually

perceive in noisy displays. The reason is straightforward. P gives positive probabilities

only to sets of scene interpretations which have positive probability in the prior probability

used to define the competence observer. If the prior probability is supported in Cs then

the Bayesian posterior, as we have seen, only leads to interpretations in Cs (see Definition

27 and the remark after Theorem 34). Intuitively, this stipulates that, even when there

is noise in the stimuli, one can only see scene interpretations that are strictly compatible

with the special interpretations of the competence theory in question. But this is too

restrictive. We sometimes perceive scene interpretations that are close to, but not strictly

compatible with, the prior of our competence theory. If, for instance, our prior is restricted

entirely to rigid motions, and we view a display depicting a nearly, but not exactly, rigid

motion, then we should not be straitjacketed into seeing a rigid motion or seeing nothing.

We should see a nearly rigid motion. And in fact we do. Thus the Bayesian posterior is

too restrictive for the job.

The interpretation kernel I ′ of a performance observer, on the other hand, is not too

restrictive. It has the flexibility to assign positive probabilities to scene interpretations

outside of Cs.
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What then is the relation between the Bayesian posterior P and the performance

observer’s I ′ in modeling perceptions under noise? When we perceive a nearly rigid mo-

tion we can, in many cases, also visualize a rigid motion that is “close to” the perceived

motion. This idealized rigid interpretation is modeled by the Bayesian posterior P , and

the “close to” relation by the retraction kernel R. Hoewever, the nonrigid motion actually

perceived is modeled by I ′ of a performance observer. Thus the upper left of the BOD

deals with idealized perceptions, the upper right with actual perceptions. This suggests

that psychophysical experiments which test subjects’ actual perceptions constrain I ′ of a

performance observer; psychophysical experiments which test subjects’ idealized percep-

tions constrain P of standard Bayesian analysis. The design of the experiment and the

instructions to subjects will determine whether the data collected bear most directly on

the actual or idealized perceptions of subjects. Here, as in all aspects of experimental

design, care must be taken to assure that the appropriate type of data is collected.

How do detection experiments fit into the BOD? Detection experiments constrain the

confidence function α of the performance observer on the right of the BOD (see Definition 7

and the immediately preceding discussion). We summarize our discussion in the following

hypothesis (see Figure 6):

Hypothesis 50. Psychophysical experiments which test subjects actual perceptions

constrain the distributions I ′(d, ·) of a performance observer. Psychophysical experiments

which test subjects idealized perceptions constrain the distributions P (d, ·) of standard

Bayesian analysis. Detection experiments constrain the significance function α of a per-

formance observer.

Which performance observer shall we use to test our competence observer via the

BOD? It should be a performance observer that is compatible with the competence ob-

server in the sense that it has the same spaces C, D and rendering function π. Moreover

it should be related to the competence observer by the models of noise appropriate to

the experimental situation. That is, referring to Figure 6, it should be related to the

competence observer by maps N and F appropriate to the experimental situation. And

finally its significance function α should be appropriate to the experimental situation. A

performance observer which is properly related to a competence observer by these criteria
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Figure 6. Psychophysical experiments which test subjects’ actual perceptions constrain I ′

of a performance observer; tests of idealized perceptions constrain P of standard Bayesian

analysis; detection experiments constrain the significance function α.

we call a performance extension of that competence observer. A change in the noise, i.e.,

a change in N and F , leads to a change in the performance extension. This leads to the

following definition.

Definition 51. A performance observer O′ is an extension of a competence observer

O if (1) O and O′ satisfy14 the BOD, with O being the competence observer and O′ the

performance observer, (2) N and F are proper models of the noise in the experimental

situation, and (3) α(d) = R∗(d, Ds), where R∗ is the Bayesian posterior for F∗ of the

BOD, as discussed in section 12. (Note that α is the standard Bayesian posterior used for

Bayesian classification in the one category case.)

This definition extends and improves a similar definition given by Bennett, Hoffman,

14 We say that an object or map satisfies a diagram if it permits the diagram to be

consistent.



Bennett et al. Observer Theory and Bayes Theory

and Kakarala (1993). We use this definition in practice as follows:

1. Construct a performance extension of the competence theory.

2. Collect psychophysical data regarding subjects’ (a) detection abilities or (b) actual

perceptions, or (c) idealized perceptions.

3. Compare the detection data with the ROC’s predicted by the significance function α.

Compare psychophysical data on the actual perceptions with the relevant measures

I ′(d, ·) of the performance extension. Compare psychophysical data on the idealized

perceptions with the relevant measures P (d, ·) of the standard Bayesian analysis.

4. Carry out standard statistical tests to decide if the comparisons in step 3 are satisfac-

tory.

5. Conclude that the psychophysical data confirm (disconfirm) the competence theory if

the statistical tests in 4 are satisfactory (dissatisfactory).

In many cases our knowledge of the experimental situation leads us to a unique F ,

and the procedure outlined above can be used without modification. If our knowledge of

the experimental situation does not lead us to a unique F then we cannot determine a

unique performance extension for the competence observer.

14. AN EXAMPLE TEST

We have outlined how, in principle, psychophysical data can be used to test competence

theories of perceptual capacities. One practical example of this method applied to a

theory of visual surface interpolation is given in Bennett, Hoffman, and Kakarala (1993).

(This example tests I ′ of a performance extension.) For another brief practical example,

which tests P of standard Bayesian analysis, we return again to the competence theory

motivated by the Two-View Theorem (described in section 3). Recall that this competence

observer takes two distinct orthographic views of four points as a premise. If the two views

have no rigid interpretations the competence observer does nothing. If they have a rigid

interpretation then they have, in fact, a one-parameter family of interpretations. The

Two-View Theorem gives no basis for choosing among the rigid interpretations in the one-

parameter family, so we constructed the competence observer to give all the interpretations
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equal probability.

A psychophysical test of this competence observer was conducted in a series of experi-

ments by Liter, Braunstein, and Hoffman (1993). In one experiment they showed subjects

a two-view display depicting dots in rigid motion. Subjects were simultaneously shown

rigid 3D interpretations uniformly sampled from the entire one-parameter family compat-

ible with the two-view display. Subjects selected that 3D interpretation which, up to the

resolution of the monitor, best matched their idealized perception of the two-view display.

In this way Liter et al. obtained psychophysical data relevant to testing hypotheses about

the distribution P (d, ·) for various two-view displays d.

The noise in the experimental situation was primarily due to roundoff and quantization

errors in the displays. The uniform nature of this noise N , together with the assumption

of a uniform prior µ on the one-parameter family, led Liter et al. to conclude that the

posterior P of the subject should also give all interpretations in the one-parameter family

equal probability. Thus Liter et al. concluded, in effect, that the distributions P (d, ·)
should be uniform.

They then tested the hypothesis that the subjects’ choices reflected a uniform distri-

bution on the one-parameter family. Their data led them to reject this hypothesis and

therefore to reject P and, in consequence, to reject the psychological plausibility of both

this competence observer and its performance extension. They found instead that subjects’

choices were heavily biased towards certain of the rigid interpretations in the one-parameter

family and away from others. For instance, subjects seemed to prefer “compact” rigid in-

terpretations, i.e., interpretations in which the 3D structures were about as deep as they

were wide. This led Liter et al. to suggest that subjects were using constraints in addition

to rigidity to guide the interpretation process. Exactly what these constraints are is not

yet known, but as hypotheses about the constraints are formulated we can construct com-

petence observers to formalize them and performance observers to submit them to further

psychophysical tests. And through a repeated cycling of theory and experiment we can

hope eventually to converge on a psychologically plausible competence observer.

The psychophysical studies of Liter et al. investigate the posterior P but not the

significance function α. This function has been investigated by Braunstein, Hoffman, and

Pollick (1990). They had subjects observe two-view and multi-view displays, and judge
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whether or not the displays depicted rigid motion. They found that the ability of subjects

to detect rigid motion, as measured by their d′ scores, was well above chance. However

subjects’ performance fell well short of that predicted by the ROC curves developed in

section 6. This once again suggests that further work is needed to arrive at psychologically

plausible competence observers and performance extensions for the perception of structure

from motion.

17. SUMMARY

The tools of Bayesian estimation provide a powerful approach to understanding and mod-

eling human perceptual capacities. The discrete formulation of Bayes rule is now widely

used for this purpose. However in many situations of practical interest to vision researchers

the discrete formulation of Bayes rule is inappropriate because it does not allow one to

condition on a measure zero event (such as obtaining a specific image out of a continuum

of possible images). This paper remedies this defect by deriving a general form of Bayes

rule that allows one to compute posterior distributions even when the conditioning event

has measure zero. In the noise-free case this general form of Bayes rule is equivalent to

the competence observers of observer theory (Bennett et al., 1989a). The consideration of

noise leads to the development of performance observers. The relationship between these

observers, standard Bayesian estimation, and psychophysical data can be summarized in

a single commutative diagram, called the BOD. The BOD provides a useful framework for

interrelating psychophysical experiments with computational theories.
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POSTLOGUE 1: MODULARITY AND COUPLING

To describe human vision by competence and performance observers is to impose a mod-

ularity. We carve the visual system into interacting components and use observer theory

to describe each component and its interactions. Observer theory does not tell us a priori

how to carve things up. It only provides a language for describing the units that result

from such a carving. It is an empirical issue how best things should be carved.

This section gives a brief idea about how observers might be coupled or made to

interact. Suppose that we have two competence observers O1 = (C1, D1, Cs1, Ds1, π1,

I1) and O2 = (C2, D2, Cs2, Ds2, π2, I2). One way that O1 and O2 might be coupled is

hierarchically. That is, if the conclusions of O1 are used as the premises for O2, then we can

create a new observer O which goes from the premises of O1 directly to the conclusions of

O2. If O1 infers the 3D positions of feature points given their image motion, and O2 infers

a 3D interpolating surface given the 3D position of feature points, then O would directly

infer a 3D interpolating surface given the image motion of the feature points. Formally, if

C1 and D2 are the same space, then we can use the definition of kernel product to define

a new interpretation kernel I = I1I2 on π1(π2(Cs2)) ∩ Ds1 × C2, where

I(d, A) = (I1I2)(d, A) =
∫

c∈C1

I1(d, dc)I2(c, A). (52)

In this case we can write a new competence observer O which is the hierarchical coupling

of O1 and O2 by

O = (C2, D1, Cs2 ∩ π−1
2 (π−1

1 (π1(π2(Cs2)) ∩ Ds1)), π1(π2(Cs2)) ∩ Ds1, π1 ◦ π2, I), (53)

where I is given by (52). This observer has the same effect as first executing observer O1

and then executing observer O2.

Another way we might connect O1 and O2 is via weak coupling (Clark and Yuille,

1990; Bülthoff and Yuille, 1991; Knill and Kersten, 1991). We first create the product

observer

O = O1 × O2 = (C1 × C2, D1 × D2, Cs1 × Cs2, Ds1 × Ds2, π1 × π2, I1 × I2) (54)

where, for A1 ∈ C1 and A2 ∈ C2, π1 × π2(A1, A2) = (π1(A1), π2(A2)), and where, for

d1 ∈ D1 and d2 ∈ D2, I1 × I2(d1, d2; A1 × A2) = I1(d1, A1)I2(d2, A2). We describe the
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noise affecting O1 by a kernel N1 on C1 ×D1 and the noise affecting O2 by a kernel N2 on

C2 × D2. We denote the prior distribution on scene interpretations for O1 by µ1 and the

prior distribution for O2 by µ2. We denote their respective posterior distributions by P1

and P2. Using this notation we have the following definition and theorem.

Definition 55. Weak Coupling. Let O = O1 ×O2 be a product observer. Let the prior

measures for O1 and O2 be µ1 and µ2 respectively. Let their likelihoods be given by the

kernels N1 and N2 respectively. Then O is said to be a weak coupling of O1 and O2 if its

prior µ and likelihood N satisfy

µN(dd1,dd2) = µ1N1(dd1)µ2N2(dd2). (56)

Theorem 57. Posterior For Weak Coupling. Let O be a weak coupling of O1 and O2.

Let the posterior distributions for O1 and O2 be given by the kernels P1 and P2. Then P ,

the posterior distribution of O, is given by

P (A1 × A2 | d1, d2) = P1(A1 | d1)P2(A2 | d2), (58)

where A1 × A2 ∈ C1 × C2.

Proof. Appendix A41.

This theorem states that if the sources of noise are independent for two observers,

then the posterior distribution associated to the product of the two observers is in fact the

product of their individual posteriors. This sometimes, though not always, leads to a linear

combination of cues from the two observers. There is evidence that a linear combination

rule is sometimes used in human vision (Dosher, Sperling, and Wurst, 1986; Bruno and

Cutting, 1988; Maloney and Landy, 1989). Nonlinear combination rules have also been

formulated (Bülthoff and Yuille, 1991; Bennett, Hoffman, and Murthy, 1993).

POSTLOGUE 2: RELATION TO REGULARIZATION AND GIBBS
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To illustrate our general Bayesian formalism, we briefly describe a “Gibbsian random

field” analysis of shape from shading given by Bülthoff and Yuille (1991). They adopt

the Bayesian approach as a way of imposing constraints via a prior probability. Observer

theory also calls, as we have seen, for the introduction of prior assumptions via probability

measures on a set of special scene interpretations. In Bülthoff and Yuille’s paper, as here,

the particular model of noise in the perceptual modality determines the likelihood function

and Bayes theorem then provides the posterior distribution. We will see that our approach

helps to identify some of the issues involved in their analysis and indeed we pose a number

of questions regarding the mathematical meaning of their work. We do not present any

answers to the questions raised here, preferring to leave that to later research. We conclude

here that in order to put their Gibbsian random field theories on a rigorous footing, yet

another level of generalization seems to be required – a level beyond that to continuous

systems discussed in the present paper.

Even in its nondiscrete form Bayes theorem has not, to our knowledge, been discussed

or applied in the vision literature, in spite of the fact that the underlying competence the-

ories are (usually) inherently continuous. Bennett, Hoffman, and Prakash (1989a) showed

that there is a sense in which continuous systems cannot be modeled to arbitrary precision

by discretized versions; a study of the continuous system itself is necessary for its proper

understanding(15) The Bülthoff-Yuille analysis of shape from shading is about such an

inherently continuous system and so deserves the approach of this paper.

We now present the Bülthoff-Yuille argument, modifying the language (though not

the content) somewhat so as to accord with the notation of this paper. We proceed

heuristically, as they and others have, interspersing comments on points of rigor.

From a given light source �s, they wish to infer a surface normal vector field �n, as-

suming Lambertian reflectance. Here �n = �n(�x) is a function of the image position �x in

the image rectangle R. The constraint they impose is smoothness of the vector field �n.

Their prior measure thus assigns higher probabilities to smoother surfaces. They use the

prior “density” c−1
S e−βES(�n) where β is a positive real number, and ES is an “energy” or

“cost” functional on the surface field16 – the subscript S refers to the prior constraint of

(15) This is a consequence of the fact that discretized approximations need not converge,

in some sense, to the required values unless controlled by a knowledge of the actual system.
16 The denotation is, respectively, from statistical mechanics or operations research.
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smoothness: ES(�n) is smaller, and the probability is therefore larger, for smoother fields

�n(�x). Bülthoff and Yuille present their analysis in terms of densities; a rigorously correct

theory would display full measures. Thus a prior measure on the surface normal vector

fields would be of the form

Pr(d�n) = c−1
S e−βES(�n)d�n, (59)

where d�n is some underlying measure on the set of vector fields. Following Horn, they take

ES(�n) = λ

∫
|S�n(�x)|2d�x, (60)

where λ is another real parameter and S is some appropriate differential operator on the

space of vector fields, such that smoother surfaces have lower energy. The quantity cS is

a normalization constant. The prior (59), then, is meant to be a measure on the space of

vector fields on R. This space is infinite-dimensional. Therefore one needs to first ascertain

what reasonable measurable structures can be imposed on it, and what bona fide (i.e., σ-

finite) measures exist on it. In particular, we need to be able to assert the existence of a

measure d�n which is concentrated on smooth vector fields, in order that a density of the

sort they propose makes sense.

Next, they assume a likelihood function that represents Gaussian simple noise applied

to the competence theory: Let I(�x) be the image intensity at �x ∈ R2. A Lambertian

competence theory requires that I(�x) = �s · �n(�x). In observer language, the rendering

function π takes �n to π(�n) = �s · �n, a function on the image rectangle R. Define

ED(I, �n) = −
∫ (

I(�x) − �s · �n(�x)
)2

d�x. (61)

The subscript D stands for data. The likelihood is then the “probability” of the data I,

given the scene �n:

Pr(dI | �n) =
e−βED(I,�n)dI

cD(�n)
. (62)

Here β is the same parameter as before and cD(�n) is the normalization. Note that this

noise is not quite the Gaussian noise we discussed in section 12—the underlying space is

a now an infinite-dimensional space of functions and is not some �n. But Bülthoff and

Yuille assume that this noise behaves similarly to a Gaussian, in that the normalization

cD(�n) is independent of the particular surface field �n. Thus we will write simply cD for

the normalization.
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Bayes theorem (34) then tells us that the posterior probability that the surface field

belongs to some collection A of surface fields, given the image scalar field I, is

Pr(A | I) =
∫

Pr(d�n)1A(�n)Pr(dI | �n)∫
Pr(d�n)Pr(dI | �n)

(I) (63)

=

[∫
A

d�n e−β(ED(I,�n)+λES(�n))
]
dI[∫

d�n e−β(ED(I,�n)+λES(�n))
]
dI

(I), (64)

where the normalizations cancel out and the right hand sides are to be interpreted as

Radon-Nikodym derivatives. Now, proceding as in section 11, it is clear that

Pr(A | I) =

∫
A

d�n e−β(ED(I,�n)+λES(�n))

Z
, (65)

where the normalization Z is

Z =
∫

d�n e−β(ED(I,�n)+λES(�n)), (66)

an integral over all possible surface fields.

This is the posterior proposed by Bülthoff and Yuille. The discretized versions of

the above expressions seem straightforward to implement. In the discrete case the image

rectangle R is a finite set of points in �2 and there is a finite set of possible unit normal

vectors and image intensities at each point. In this case the measures d�n and dI can be

defined as the usual (Lebesgue) uniform measures on finite-dimensional spaces. Let us

denote the particular level of discretization by the subscript k, with k → ∞ indicating the

limiting passage to the continuum. Then, at level k, the underlying measures are d�nk and

dIk. The likelihood is then indeed a Gaussian. However, even in this case it is not clear

how the normalizations cD(�n),k can be independent of the fields �n, considering that the

image fields I can never be negative. This assumption is clearly an approximation. How

controlled is this approximation, as the discretization gets finer?

The question of controlling approximations becomes yet more vexed as we consider

the definability of the measures in the limit of the continuum. There is, in fact, no pair of

measures that the discretized uniform measures d�nk and dIk can converge to – there is no

nontrivial σ-finite uniform measure on infinite-dimensional spaces of vector or scalar fields.

Perhaps a way out of this impass is to define the discretized densities in terms of other,

possibly nonuniform, measures d�nk and dIk. For then the hope is that these measures may
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be chosen so that the result (65) (which indeed holds true at discrete level k), converges

as k goes to infinity, to some appropriate kernel Pr(A | I), i.e.,

∫
A

d�nk e−β(ED,k(I,�n)+λES,k(�n))

Zk
−→ Pr(A | I). (67)

It is, after all, the existence of this kernel that we want. But the convergence process needs

to be well enough controlled so that Pr(A | I) is concentrated on smooth vector fields. How

do we do this? Are there other ways to define prior measures, likelihoods, and posteriors in

this infinite-dimensional situation? What is the structure of Bayesian analysis for random

fields? We do not answer these questions here, only referring the reader interested in such

questions involving infinite-dimensional integration to Simon (1979).

We make a final remark about regularization and Bayesian observer analysis. The

motivation for the Gibbsian random field prior density, given above, was to regularize the

situation so as to obtain a unique answer.16 Probabilistic approaches, such as the Bayes-

observer theoretic approach, allow for a consideration of multistability in a most natural

fashion: instead of the maximum a posteriori estimate based on a unimodal prior, which

leads to a unimodal posterior kernel, choose a multimodal prior (or measure on the space

of conclusions); this is intended to make manifest the multistability in the posterior.

16 Actually, the question of whether the prior of (59) is indeed unimodal (in some rea-

sonable sense) in the continuous limit is moot.
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APPENDIX

This appendix contains technical definitions and proofs of theorems whose statements

appear in the body of the paper.

Definition A0. (Lebesgue Measure). Lebesgue measure on �n is a translation invariant

measure which assigns to each measurable set A ⊂ �n a real number equal to its n-volume.

Any measurable set of positive codimension in �n, i.e., any measurable set whose dimension

is strictly less than n, has Lebesgue measure zero in �n. The phrase “Lebesgue almost

surely” means “except for a set of cases whose total Lebesgue measure is zero.” Unless

otherwise indicated, the phrases “almost surely,” “almost all,” “almost every,” and “a.e.,”

mean, in this paper, “except for a set of Lebesgue measure zero.” The phrase “a.e. µ”

means “except for a set of µ measure zero.”

Definition A1. (Kernels). Let (U, U), (V, V) be measurable spaces. A kernel on U

relative to V or a kernel on V × U is a mapping N :V × U → � ∪ {∞}, such that

(i) for every v in V , the mapping A → N(v, A) is a measure on U , denoted by N(v, du);

(ii) for every A in U , the mapping v → N(v, A) is a measurable function on V , denoted

by N(· , A).

N is called positive if its range is in [0,∞] and markovian if it is positive and, for all v ∈ V ,

N(v, U) = 1; N is submarkovian if N(v, U) < 1. If U = V we simply say that N is a kernel

on U . In the text, all kernels are positive unless otherwise stated.

Definition A2. (Kernel Products). If N is a kernel on V × U and M is a kernel on

U × V, then the product NM(v, D) =
∫

U
N(v,du)M(u, D) is also a kernel on V × V.

Definition A3. (Kernels As Linear Operators On Measures). Let ν be a measure on

U , and let M be a kernel from U to V . Then we define νM to be the measure on V given

by νM(D) =
∫

U
ν(du)M(u, D) for measurable sets D ⊂ V .

Remark A4. (Remarks On Kernels). A measurable function g on U yields a new

kernel gM by means of gM(u, D) = g(u)M(u, D). A special kind of kernel is the one on V
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relative to V called the Dirac kernel at v. This kernel is denoted ε(v,dv′) and defined by

ε(v, B) = 1 if v ∈ B and 0 otherwise. For the Dirac kernel the measure in (i) above is the

usual Dirac measure εv(dv′), while the mapping in (ii) above is the “indicator function”

1B(v), which equals 1 if v ∈ B and 0 otherwise.

As an example of kernels, we consider a measurable map π:U → V . If µ is a measure

on U , we have defined µπ∗ to be the distribution of π with respect to µ, i.e., for a measurable

set B ⊂ V , (µπ∗)(B) = µ(π−1(B)). However, we can also think of this as the result of a

kernel called π∗ from U to V operating on µ. In fact, π∗(u, B) is 1π−1(B)(u).

Definition A5. (Regular Conditional Probability Distribution). Let (U, U) and (V, V)

be measurable spaces. Let p:U → V be a measurable function and ν a positive measure on

(U, U). A regular conditional probability distribution (abbreviated rcpd) of ν with respect

to p is a kernel mν
p :V × U → [0, 1] satisfying the following conditions:

(i) mν
p is markovian;

(ii) mν
p(v, ·) is supported on p−1{v} for p∗ν-almost all v ∈ V ;16

(iii) If g ∈ L1(U, ν), then∫
U

gdν =
∫

V

(p∗ν)(dv)
∫

p−1{v}
mν

p(v, du)g(u). (A6)

In view of (A1)–(A4), condition (iii) may be simply written as the kernel product formula

ν = (p∗ν)mν
p .

In practice it is sufficient to verify (iii) in the case when g is the characteristic function of

a measurable subset A ⊂ U , i.e., we may replace (iii) by

(iii’) If for all A ∈ U
ν1A = (p∗ν)mν

P 1A.

In the special case that U and V are discrete spaces, integrals become sums and

measures become weight functions. Thus, for the discrete situation, the appropriate version

of (iii) above is ∑
U

g(u)ν(u) =
∑
V

(p∗ν)(v)
∑

p−1{v}
mν

p(v, u)g(u). (A7)

16 Again, p∗ν(dv) is defined by p∗ν(B) = ν(p−1(B)), B ∈ V.
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It is a theorem that if (U, U) and (V, V) are standard Borel spaces then an rcpd mν
p exists

for any probability measure ν (Parthasarathy, 1968). In general there will be many choices

for mν
p any two of which will agree a.e. p∗ν on V (that is, for almost all values of the first

argument). If p:U → V is a continuous map of topological spaces which are also given

their corresponding standard Borel structures then one can show that there is a canonical

choice of mν
p defined everywhere. This is the case typical of image understanding.

Remark A8. (Some Properties Of RCPD’s). It is a theorem that if (U, U) and (V, V)

are standard Borel spaces (e.g., euclidean spaces) then an rcpd mν
p exists for any probability

measure ν (Parthasarathy, 1968). In general the choice for mν
p is not unique: any two

choices will agree a.e. p∗ν on V (that is, for almost all values of the first argument of the

kernel). If p:U → V is a continuous map of topological spaces which are also given their

corresponding standard Borel structures one can show that there is a canonical choice of

mν
p defined everywhere.

Proof A9. (Proof of Theorem 23). By the definition of conditional probability,

P (A | d) = Pr(A × {d} | C × {d}) =
Pr(A × {d})
Pr(C × {d}) (A10)

=
∑
c∈A

µ(c)N(c, d)
(µN)(d)

=
∑
c∈A

µ(c)1A(c)N(c, d)
(µN)(d)

=
(µ(1AN))(d)

(µN)(d)
, (A11)

where we are assuming that µN(d) �= 0. Equation (25) is now a matter of straightforward

computation, left as an exercise.

Next, recall Definition A5 of rcpd’s. In the present instance, the set U of Definition

A5 is C ×D, V is D, ν there is now P , and π is q. Now consider Equation A7. Take g to

be the function 1A(c)1B(d). With these identifications, Equation A7 yields

Pr(A × B) =
∑
D

µN(d)
∑

C×{d}
mP

q (d, (c, d′))1A(c)1B(d) (A12)

=
∑
d∈B

µN(d)mP
q (d, A × {d}.) (A13)

On the other hand, for fixed A, we have
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Pr(A × B) =
∑
d∈B

Pr(A × {d}) (A14)

=
∑
d∈B

Pr(C × {d})Pr(A × {d} | C × {d}) (A15)

=
∑
d∈B

µN(d)P (A | d), (A16)

where we have used Equation 16 and the definition, Equation 24, of P . Thus the two

functions of d, P (A | d) on the one hand and mP
q (d, A × {d}) on the other, possess the

same sums with respect to the measure µN . It is an elementary fact of measure theory

that, since the sums over arbitrary B are the same, the two functions must be equal, up

to sets of µN -measure 0.

Finally, Definition A5(ii) shows that mP
q (d, A × {d}) = mP

q (d, A × D).

Remark A17. (Variation of Equation 24). Equation 24 can also be written as

P (A | d) =
(µ(1AN)I)(π−1(d))

(µNI)(π−1(d))
(A18)

We can do this since, for any d ∈ D, I(d, π−1(B)) is 1 if d ∈ B and is 0 otherwise, i.e.,

I(d, π−1(B)) = 1B(d). This means that for any measure ν on D we can write

ν(B) =
∫

ν(dd)I(d, π−1(B)) (A19)

= νI(π−1(B)) (A20)

Incidentally, a computation similar to that for Equation 24 shows that for any subset B

of D,

P (A | B) =
(µ(1AN))(B)

(µN)(B)
=

(µ(1AN)I)(π−1(B))
(µNI)(π−1(B))

(A21)

Proof A22. (Proof of Theorem 34). We need to show first that the quantity in the

right-hand side of (35) exists. Suppose µN(B) = 0. Then the positivity of µ and of

N show that µ(1AN)(B) ≤ µN(B) = 0, so the derivative does exist. Next, does the

proposed quantity satisfy Definition 27? Yes – immediate, given the definition of Radon-

Nikodym derivatives. Finally, is the quantity a markovian kernel? That it is, for fixed A,

measurability in d is part of the definition of derivative here. Moreover, the dominated
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convergence theorem shows that, for any d for which it is defined, A → d(µ(1AN))

d(µN)
(d) is

indeed countably additive. This kernel is markovian since d(µ(1CN))

d(µN)
(d) = dµN

dµN
(d) = 1, for

all d. The proof of (34) is just a transcription of that for the discrete case, with sums over

weight functions replaced by integrals over measures.

Remark A23. (Remark on Theorem 34). It follows from Theorem 34 that Equation

A21 still holds in the continuous case.

Proof A24. (Proof of Corollary 39). First, observe that the displayed equation of

Corollary 39 holds whenever f is a linear combination of indicator functions. Every non-

negative bounded measurable function is an increasing limit of linear combinations of

indicator functions. By the Monotone Convergence Theorem, the displayed equation of

Corollary 39 holds for non-negative functions, and since every function is a difference of

two non-negative functions, it holds for all functions.

Proof A25. (Proof of Theorem 46). Given the assumptions of Theorem 46 we can

write, for B ∈ D,

µN(B) =
∫

C

µ(dc)N(c, B) (A26)

=
∫

Cs

(
1

(
√

2πσ2)m

∫
B

exp
(−‖π(c) − d‖2

2σ2

)
λ(dd)

)
µ(dc) (A27)

since µ is supported in Cs. Thus

µN(dd) =
1

(
√

2πσ2)m

[∫
Cs

exp
(−‖π(c) − d‖2

2σ2

)
µ(dc)

]
λ(dd) (A28)

by Fubini’s theorem. A similar derivation shows that

µ(1AN)(dd) =
1

(
√

2πσ2)m

[∫
Cs∩A

exp
(−‖π(c) − d‖2

2σ2

)
µ(dc)

]
λ(dd). (A29)

µ and λ are of course chosen so that the integrals exist. According to Theorem 34, to find

P (A | d) we now need to compute the Radon-Nikodym derivative

d(µ(1AN))
d(µN)

(d). (A30)
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Letting

F (d) =
1

(
√

2πσ2)m

∫
Cs

exp
(−‖π(c) − d‖2

2σ2

)
µ(dc) (A31)

and

FA(d) =
1

(
√

2πσ2)m

∫
Cs∩A

exp
(−‖π(c) − d‖2

2σ2

)
µ(dc). (A32)

Then (A28) and (A29) say

µ1AN(dd) = FA(d)λ(dd); µN(dd) = F (d)λ(dd). (A33)

Notice that for nontrivial priors µ, F (d) > 0 ∀d, so that

µ1AN(dd) =
FA(d)
F (d)

· µN(dd). (A34)

Hence, recalling Definition 32 of Radon-Nikodym derivative, we have finally

d(µ(1AN))
d(µN)

(d) =

∫
Cs∩A

exp
(

−‖π(c)−d′‖2

2σ2

)
µ(dc)∫

Cs
exp

(
−‖π(c)−d′‖2

2σ2

)
µ(dc)

. (A35)

This expression for P (A | d) exists generically since the denominator is generically not

zero. We will also write this posterior in the form of a kernel, P (d, A). Note that in this

derivation we do not have to use a gaussian. We could use any kernel which descends.

Proof A36. (Proof of Proposition 31). Let us assume that I is the posterior for π∗.

We now prove that I is the rcpd of µ with respect to π. From Definition 27 we have

(µ1Aπ∗)(B) = ((µπ∗)1BI)(A).

If we let B = Y we get: for any set A in X

µ1Aπ∗1Y = µπ∗I1A.

But π∗1Y = 1π−1(Y ) = 1X , hence

µ1A = µπ∗I1A
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which shows that I is the rcpd of µ with respect to π.

Now let assume that I is the rcpd of µ with respect to π. We now show that I is

the posterior of π∗ with respect to µ. We let A be a measurable subset of X and B a

measurable subset of Y . By Definition 27, we want to show that

µ1Aπ∗1B = µπ∗1BI1A.

The right hand side is

RHS =
∫

y∈B

µπ∗(dy)
∫

X

I(y, dx)1A(x)

=
∫

Y

µπ∗(dy)
∫

X

I(y, dx)1A∩π−1(B)(x)

= µ(A ∩ π−1(B)).

The left hand side is
LHS =

∫
X

µ(dx)1A(x)π∗(x, B)

=
∫

X

µ(dx)1A(x)1π−1(B)(x)

= µ(A ∩ π−1(B)).

We must also show that under these hypotheses π∗ is the posterior of I with respect to

µπ∗. But we have remarked after Definition 27 that that definition is symmetric provided

that µ = µNP , i.e., in this case µ = µπ∗I. This follows from the definition of rcpd.

Proof A37. (Proof of Theorem 42.) For any A ∈ X we have

µHH†(A) =
∫

y∈Y

µH(dy)H†(y, A)

=
∫

y∈Y

µH(dy)
dµ(1AH)

dµH
(y)

=
∫

y∈Y

µ1AH(dy) a.e. ν s.t. π∗ν = µH

= µ1AH(Y )

=
∫

x∈X

µ(dx)1A(x)H(x, Y )

=
∫

x∈X

µ(dx)1A(x)

=
∫

A

µ(dx)

= µ(A).
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Proof A38. (Proof of Theorem 44.) We first prove the following lemma.

Lemma A39. Let X and Y be measurable spaces, µ a probability measure on X, and

H a markovian kernel from X to Y . The condition

(µ1AH)(B) = ((µH)1BH†)(A)

for all measurable A ⊂ X and B ⊂ Y (which defines H†) is equivalent to

µfHg = (µH)gH†f

for all bounded measurable functions f :X → � and g:Y → �.

Proof. Because kernels act linearly on functions, the first equation immediately implies

that the second holds for the case where f and g are simple functions, i.e., finite linear

combinations of characteristic functions of sets. Then since every measurable function is

a limit of simple functions and since our operator H, being markovian, is bounded we can

conclude by, e.g., the Lebesgue dominated convergence theorem.

We want

K†H† = (HK)†,

where we have suppressed the subscript measures since there is no ambiguity. By Lemma

A39 above this means that for every bounded measurable f :X → � and g:Y → �

µf(HK)g = λgK†H†f.

We now work on the right hand side. Let us temporarily denote h = H†f . Then, noting
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that λ = νK the right hand side is

RHS = (νK)gK†h

which by Lemma A39 is

= νhKg

Here h and Kg are functions on Y , and ν, a measure on Y , operates on their product.

Interchanging the order of multiplication, we write this as

= ν(Kg)h

which we recall is

= ν(Kg)H†f

= (µH)(Kg)H†f

which by Lemma A39 is

= µfH(Kg)

= µf(HK)g

which is the left hand side.

Proof A40. (Proof of Theorem 49). If we are given {π∗, µ, F}, then we let I be the

canonical rcpd of µ given π. We let N = Fπ∗. We let P = N†
µ. We let R = F †

µ. We

let µ′ = µF . We let I ′ be the canonical rcpd of µ′ given π. We let F∗ = IFπ∗. We let

R∗ = I ′Rπ∗. The constructions of µπ∗ and µ′π∗ are obvious from their names. This is

a canonical construction of the BOD. We now show that each pair of opposite pointing

arrows corresponds to a pair of kernels which are Bayes adjoints of each other. First,

since I and I ′ are defined to be rcpd’s of µ and µ′ with respect to π, it follows from

Proposition 31 that I and π∗ are Bayes adjoints with respect to µ and that I ′ and π∗

are Bayes adjoints with respect to µ′. (F, R) and (N, P ) are, by definition, pairs of Bayes

adjoints with respect to µ. Now N = Fπ∗ by definition; hence, by Theorem 44, P = I ′R.

Thus the upper triangle of the BOD is consistent. By definition, F∗ = IFπ∗ = IN . Also

R∗ = I ′Rπ∗ by Definition, and R∗ = Pπ∗. Hence by Theorem 44, R∗ is the Bayes adjoint

of F∗ with respect to µπ∗. Thus all pairs of opposite arrows in the BOD correspond to

Bayes adjoints (in either direction, thanks to Theorem 43). For consistency of the BOD we

note that µπ∗F∗ = µπ∗IN = µN , and that µNR∗I = µNPπ∗I = µ by two applications
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of Theorem 42. All other consistency relations follow from the Bayes adjointness of pairs

of opposite arrows by Theorem 42 or by the definitions of the various kernels as the

appropriate composites.

The construction of the BOD given the minimal data {π∗, µ′, R} and the proof of its

consistency and adjointness is similarly straightforward.

Proof A41. (Proof of Theorem 57). It suffices to show that

∫
B1×B2

P1(A1 | d1)P2(A2 | d2)µN(dd1,dd2) =
∫

B1×B2

P (A1 × A2 | d1, d2)µN(dd1,dd2),

(A42)

for any B1 ∈ D1 and B2 ∈ D2. By Definition 55 of weak coupling, the left hand side of

(A42) becomes

LHS =
∫

B1

P1(A1 | d1)µ1N1(dd1)
∫

B2

P2(A2 | d2)µ2N2(dd2) (A43)

which by Theorem 34 becomes

= µ11A1N1(B1)µ21A2N2(B2). (A44)

But by Theorem 34, the right hand side of (A42) can be written

RHS = µ1A1×A2N(B1 × B2) (A45)

=
∫

C1×C2

µ1(dc1)µ2(dc2)1A1(c1)1A2(c2)N1(c1, B1)N2(c2, B2) (A46)

which by Fubini’s Theorem becomes

=
∫

C1

µ1(dc1)1A1(c1)N1(c1, B1)
∫

C2

µ2(dc2)1A2N2(c2, B2) (A47)

= µ11A1N1(B1)µ21A2N2(B2) (A48)

which equals (A44) and we are done.
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