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This paper deals with one aspect of the problem of object recognition, viz., the recognition of configurations. A
configuration is a three-dimensional arrangement of an arbitrary number of labeled feature points. We present
a computationally simple method whereby a configuration can be recognized in an infinite variety of ortho-
graphic views after being seen in only one orthographic view. The method involves simply evaluating a polyno-
mial and requires no depth coordinates of the feature points to be given or computed. The method can, in
principle, lead to recognition polynomials for configurations viewed under perspective projections, but this has

not yet been done.

1. INTRODUCTION

William James described the visual world of the neonate
as a “blooming, buzzing confusion.”® This description is,
perhaps, hyperbole; but the visual world of the neonate
certainly lacks the neat organization into recognizable ob-
jects enjoyed by that of the adult. Precisely how human
vision organizes the visual world into recognizable objects
intrigued James, occupied several schools of psychologists,’
and remains to this day an outstanding problem and focus
of much research in psychology.®*® Researchers in com-
puter vision face an analogous problem: the automated
segmentation of digital images into objects and the recog-
nition of these objects.® Progress has been made in spe-
cial domains, e.g., the recognition of aircraft,” but the lack
of a general solution to the recognition problem remains a
major obstacle to the construction of general-purpose au-
tomatic vision systems.

The fundamental difficulty in visual recognition is
easily stated. Recognition requires matching a two-
dimensional (2D) view of an object against models of that
object and other objects stored in memory. Since one
must recognize thousands of three-dimensional (3D) ob-
jects in countless distinct views, the memory and search-
ing demands are enormous.

The solution to this problem is to discover memory-
efficient models that can easily be searched for a match.
This solution has proved elusive despite extensive explora-
tion of many candidates, including generalized cylinders,”
geons,” superquadrics,® and many others.’
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2. RECOGNITION POLYNOMIALS

In this Communication we do not solve the problem of
object recognition but report a technique that deals with
one aspect of the problem, viz., the recognition of configu-
rations. A configuration is a 3D arrangement of an ar-
bitrary number of labeled feature points. The technique
reported here is to store in memory a simple polynomial, a
recognition polynomial, for each configuration to be recog-
nized. The polynomial is like a lock, and a novel view of a
configuration is like a key. The 2D coordinates of fea-
tures in the novel view are inserted into the polynomial.
If the polynomial then evaluates to zero, the key fits the
lock and a match has been found. For a polynomial to
qualify as a recognition polynomial for some configuration
O, it must be proven that a certain conditional probability
is zero, viz., the probability that the polynomial evaluates
to zero given that the novel view depicts a configuration
other than O or some legitimate transformation of O.
Moreover, it must be proven that if the novel view does
depict O or some legitimate transformation of O, then the
polynomial will evaluate to zero.

Different classes of recognition polynomials follow from
different assumptions about (1) what is a legitimate trans-
formation and (2) what type of image projection is used.
Here we describe the class of recognition polynomials that
follow from (1) the assumption of rigidity, viz., from the
assumption that the configurations to be recognized
transform rigidly or have parts that transform rigidly,
and from (2) the assumption of orthographic projection.
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(A configuration transforms rigidly if its 3D interpoint
distances do not change.)

For concreteness and simplicity we consider first the
case in which there are only four feature points. This ele-
mentary case is easily extended to deal with any greater
number of points, as we discuss in Section 4. Suppose,
then, that we have in memory an image, M, containing four
feature points, my,...,ms. Suppose, moreover, that we
are presented with a novel image, N, which also contains
four feature points ny,...,n3. We want to know whether
M and N depict the same 3D arrangement of feature points
that are just seen from different views.

We first put an x,y coordinate system on the memory
image M, chosen so that m, is at the origin. We denote by
(i, m, ¥i,m) the coordinates, in this system, of each remain-
ing feature point m;. Similarly we put an x, y coordinate
system on the novel image N, with n, at the origin, so that
each remaining feature point n; has coordinates (x; ., y; )

Now, to check whether M and N depict the same 3D ar-
rangement of feature points, we insert these coordinates
into the polynomial R:

diyi dis dis
R = det d2,1 dz,z d2,3 ’ (1)
ds; dssz dags

where d;; = %inXjn + YinYin — XimXim — YimYim and
det means determinant. If the polynomial R evaluates to
zero, then we conclude that the novel image N is just an-
other view of the configuration depicted in the memory
image M. We are justified in doing this because of a theo-
rem that states that (a) if M and N depict different con-
figurations (i.e., configurations not related by a rigid
motion), then the probability is zero that R evaluates to
zero, and (b) if the configurations depicted by M and N are
the same (i.e., are related by a rigid motion), then R evalu-
ates to zero.?

Now suppose that we insert only the coordinates from
memory image M into the polynomial R. The result is
not a number but a new polynomial Ry (having half the
number of variables as the polynomial R) that we can store
in memory."* Ry is a recognition polynomial for the con-
figuration depicted in M. With Ry in memory, we can
discard M. Now, any time we see any novel image N, we
can insert the coordinates of features from N into the re-
maining variables of RBy. If Ry evaluates to zero, then we
conclude that N depicts the configuration encoded by the
recognition polynomial Ry.

We then imagine a memory for the recognition of con-
figurations consisting of thousands of distinct recognition
polynomials for the thousands of distinct configurations
that a system might need to recognize. To recognize a
novel image of a configuration, we insert the image coor-
dinates of its features into these recognition polynomials
to find which one evaluates to zero. It is as though our
memory is a compartment full of different locks and the
novel image is a key.'?

It might be clarifying to contrast recognition polynomi-
als to recent work by Ullman and Basri and by Poggio.”®
These authors show that generic distinct views of an ob-
ject can be generated by linear combinations of just three
views, or even just two views. They then try to recognize
a novel image by seeing whether it can be expressed as
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a linear combination of two or more views of an object
already stored in memory. There are basic differences
between recognition polynomials and the linear-
combinations approach. We mention three. First, recog-
nition polynomials require just one view to be stored in
memory, whereas the linear-combinations approach re-
quires two or more. Second, the two approaches have
a fundamentally different philosophy. The linear-
combinations approach is based on results regarding
image synthesis, i.e., theorems stating conditions in which
one view can be generated from others. The recognition
polynomials approach focuses entirely on the problem of
recognition and is not a technique for image synthesis. It
is for this reason that the recognition-polynomial approach
requires fewer views than the linear-combinations ap-
proach. Third, in the recognition-polynomial approach
the 3D configuration is stored in memory as its associated
polynomial (which, as we have noted above, can be con-
structed from a single view of the configuration). Once
the polynomial is stored, a match is obtained if, on plug-
ging the image coordinates of the novel configuration into
the polynomial, the value zero is obtained. This criterion
for recognition is much less expensive to compute than ei-
ther searches through multidimensional-parameter spaces
or solving systems of linear equations, one or the other of
which is often employed when one uses the Ullman-Basri
and Poggio approach for recognition purposes.

3. DERIVATION OF AN AFFINE
RECOGNITION POLYNOMIAL

Many distinct classes of recognition polynomials can in
principle be constructed, each class corresponding to a dis-
tinet type of transformation of configurations that one
takes to be allowable and to a type of image projection.
We presented in Section 2, for instance, a recognition poly-
nomial based on the assumption that allowable transfor-
mations of configurations consist of rigid motions and that
the image projection is orthographic. But one can also
construct recognition polynomials for many other trans-
formations, e.g., rigid motions plus uniform scalings, or
affine motions (which allow shearing as well), followed by
orthographic or weak perspective projections. The case
of perspective projections appears to be particularly diffi-
cult, and although in principle recognition polynomials can
be constructed for this case, none in fact has yet been con-
structed. It is critical to note that adopting the approach
of recognition polynomials does not, by itself, commit one
to any particular class of transformations.

To illustrate this fact and to clarify the approach, we
briefly derive a class of recognition polynomials based on
affine transformations and orthographic projection. We
use this example because the mathematics are particularly
simple and because there is evidence for the possible rele-
vance of affine transformations to human vision.*

Suppose that there are at least five features myq,...,
my, ... in the memory configuration, and suppose that we
are presented with a novel configuration N having at least
five features no,...,n4,.... We construct a Cartesian co-
ordinate system with origin at feature m,. In this system
the 3D coordinates of each remaining feature m; we denote
(Xi, m» Yi,ms 2i,m).  Similarly we construct a Cartesian coor-
dinate system with origin at feature n,. In this system
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the 8D coordinates of each remaining feature n; we denote
(%i,n, Yi,n» 2i,n)-  The features of the memory configuration
are related to the features of the novel configuration by an
affine transformation if and only if the following equa-
tions hold:

[X1m  Yim  Zim

(Xims Yams Zam) = (b1,02,b3) |X2m  Yom 2im|;

[X3m  Yam Z3m

[X1n Y1n 21

(Xany Yans 24n) = (b1,02,b3) |X2n Yo2n Zon|* (2)
_xan Ys3n _ZSn

These six equations state that the coordinates of feature
m4, when expressed in a basis determined by features
m, ..., ms, are identical to the coordinates of feature n,
when expressed in a basis determined by features n,...,
ns. Under the assumption of orthographic projection, only
four of these six equations are useful to us, since only
four of them involve exclusively x and y coordinates.
Thus system (2) gives us four linear equations in three
unknowns, the ;’s. The system is therefore inconsistent
and almost surely has no solutions (almost surely with re-
spect to Lebesgue measure). After some algebraic ma-
nipulation one can write down the condition that the x
and y coordinates must satisfy for these equations to have
a solution (and, therefore, for the memory configuration
and novel configuration to be related by an affine trans-
formation). This condition is the polynomial equation
p = 0, where

=d aq ao]
P et[Bl Bo ®

and where

Qg = xlm(x2nx4mylm — XomXanYim — X1nX4mY2m
+ X1mX4n Yom + XinXoemYam — xlmx2ny4m),

a1 = ~ X1 (XonX3m Y1im + X2mXanYim T X1nX3m Yom

— X1mXgnYom — XinXomYam T XimXanYam),

BO = —xlm(x4my1ny2m + X4mYim Yon + XomYinYam

= XimYonYam — XomYimYan T XimY2mYan),

B1 = X1m(Xsm Y1n Yom — X8mY1mY2n = X2mY1nYsm

+ XimYonY3m + XomY1imYan — xlmyZmysn)~ 4)

The polynomial p is homogeneous of eighth degree. If we
now replace in this polynomial the variables x;, and yin
with the actual coordinates of features on a configuration
M to be remembered, we obtain a recognition polynomial
for M whose only variables are the remaining x;, and ¥i,.
At some later time we want to recognize a novel configu-
ration N. The coordinates of features of N can be substi-
tuted into these variables. If the recognition polynomial
then evaluates to zero, we conclude that N and M are the
same configuration, i.e., are related by an affine transfor-
mation. And by the derivation just given, we are almost
surely correct to do so. That is, to put it intuitively, the
probability that we are wrong is zero. If the polynomial
does not evaluate to zero, we conclude that N and M are not
the same configuration, i.e., are not related by an affine
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transformation. And the derivation just given establishes
that we are correct in so concluding.

This same process can be carried out in principle for
many distinct classes of allowable transformations and
image projections. In each case this requires that we
solve the following mathematical problem: find a polyno-
mial in the image data that vanishes if and (up to measure
zero) only if the data arose from a 8D configuration in the
allowable way. We emphasize that the mathematical tech-
niques vary significantly for the different classes of allow-
able transformations and projection types. One class that
is likely to prove useful, that appears to be quite difficult
to analyze, and that as yet remains unsolved, is the class
of rigid motions followed by perspective projection.

4. REFINEMENTS AND EXTENSIONS

The recognition polynomials discussed so far can be
viewed as elementary building blocks. Products and sums
of these polynomials generate new, more sophisticated
recognition polynomials that can use many more than four
or five feature points. Thus a recognition polynomial
need not, in general, confuse two distinct configurations
that happen to share a common four-point (or larger) sub-
configuration. Or, to put this issue another way, recogni-
tion polynomials are not restricted to using sets of four
points to establish configuration equivalences.

A product of recognition polynomials specifies disjunc-
tive condition§ to be satisfied for recognition: if any
factor of the product is zero, then the entire recognition
polynomial is zero, indicating a match. Using products,
one can, for instance, deal with the problem of occlusions,
viz., the problem that for opaque objects not all features
are visible from all viewing angles, because of either self-
occlusion or occlusion by other opaque objects. To handle
this, one uses different factors in a product to describe
different parts or aspects of the object. A sum of recogni-
tion polynomials generates a new recognition polynomial
that specifies conjunctive conditions to be satisfied for
recognition: each term of a sum must be zero if the sum
of (the squares of) the terms is to be zero, indicating a
match. Using sums, one can create more-sophisticated
recognition polynomials for each part of an object. Thus
recognition polynomials comport well with theories
proposing that human vision divides objects into parts to
facilitate recognition, theories that now enjoy substantial
psychophysical support.”® Perhaps here an analogy with
the immune system is helpful. Just as certain macro-
phages and other antigen-presenting cells first chop anti-
gens into peptides before displaying them for binding by
inducer T cells, so it is natural first to chop objects into
parts before creating recognition polynomials of the parts
suitable for binding by (i.e., recognition of) novel images.

It is of course important to know how recognition poly-
nomials perform with noisy data. This will vary with the
polynomial. The rigidity polynomial discussed above per-
forms remarkably well. The key idea here is this: the
value of the rigidity polynomial indicates how good a
match one has obtained, with a value of zero indicating a
perfect match and larger values indicating poorer matches.
In practical situations involving noise, one must compute
the value of the rigidity polynomial and then decide
whether it is close enough to zero to indicate a reliable
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Fig. 1. ROC for the recognition polynomial based on the assump-
tion of rigid objects. Three ROC curves are shown. In order
from uppermost to lowest, the ROC’s are shown for 0.05%, 1.25%,
and 5% Gaussian noise'® in the image coordinates.

match. This decision can be based on the results of
Monte Carlo experiments. In a Monte Carlo simulation
we randomly generated 30,000 different rigid configura-
tions; projected the 3D coordinates of each configuration
onto two randomly chosen image planes; randomly per-
turbed the coordinates of the projected points with 0.05%,
1.25%, or 5% Gaussian noise'®; and then computed the
30,000 resulting values of the rigidity polynomial. In a
further simulation we randomly generated 10,000 nonrigid
configurations, projected the 3D coordinates of each con-
figuration onto two randomly chosen image planes, and
then computed the 10,000 resulting values of the polyno-
mial. Plots of the results as standard receiver operating
characteristic (ROC) curves (which show the correct recog-
nition rate as a function of the false positive rate), shown
in Fig. 1, demonstrate excellent detection properties even
with 5% noise. One can readily generate similar simula-
tions for other polynomials and can use them to establish
decision criteria for recognition, i.e., to decide how close to
zero the polynomial’s value must be to indicate a reliable
match. Improved tolerance to noise can be obtained if one
stores several recognition polynomials for a configuration,
each polynomial representing a slightly different view of
the same features, and then makes the recognition deci-
sion based, e.g., on their mean value.

A notable application of recognition polynomials is to
learning—for instance, learning to recognize a configura-
tion better by seeing it from multiple views during the
training phase. As the configuration is seen in new
views, one can create a new recognition polynomial that
is, for example, a conjunction of (1) the current recognition
polynomial for the configuration and (2) the recognition
polynomial obtained from the new view alone. More for-
mally, let x, x3,...,%;,... denote distinct views of a con-
figuration, O, in which certain features are visible. Let
R(x;, - ) denote the recognition polynomial obtained by
using coordinates of features in view i as the memory con-
figuration. Consider the recognition polynomial

R(xy,%3, - ) = R(xy, - )* + R(xy, - )% 6)]
This polynomial, the two-view polynomial, is the conjunc-

tion of the two recognition polynomials R(x,, - ) and
R(x,, - ). We have found in Monte Carlo simulations that,
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when there is noise in the image data, the recognition per-
formance of the two-view polynomial is far superior to
that of the one-view polynomial. This is shown by the
ROC plotted in Fig. 2 for the affine recognition polyno-
mial. The lowest curve shows the ROC for the one-view
affine polynomial with 5% Gaussian noise.’® The next
curve up shows the ROC for the one-view affine polyno-
mial with 1.25% Gaussian noise, and the one above it for
0.05% Gaussian noise. The top ROC is for the two-view
affine polynomial with 0.05% Gaussian noise, and it shows
considerably better performance than the corresponding
one-view affine polynomial (whose ROC is the curve just
below it). Our initial analyses suggest that the improve-
ment obtains because as the number of views incorporated
into the recognition polynomial increases, the set of con-
figurations that can lead to false matches decreases, so
that discriminability increases. It remains an open ques-
tion under what conditions the n-view recognition poly-
nomials for a given configuration might converge to a
canonical polynomial for that configuration. Study of
this question might lead to invariant polynomial represen-
tations for configurations and thereby greatly reduce the
problem of searching a memory for a match.

A remarkable property of the polynomials discussed so
far is that they allow recognition of 3D configurations
with the use of only 2D image data—no depth information
need ever be stored or computed for successful recognition
to occur. From just one 2D view of a configuration one
can construct a polynomial that recognizes any other view
of the configuration (as long as relevant features are
visible). As attractive as this might be, it may at times be
desirable to construct recognition polynomials based on
richer primitives than 2D coordinates. This can be done.
Computer-vision systems, for instance, now routinely in-
corporate stereo and motion, for example, into the compu-
tation of the 3D structure of visible objects. This 3D
shape information can be used to construct recognition
polynomials. Consider, for instance, the assumption of
rigid motion with uniform scaling. Let vectors m; denote
the 3D coordinates of features on a configuration, M, com-
mitted to memory. And let n; denote the 3D coordinates
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Fig. 2. ROC for the recognition polynomial based on the assump-
tion of affine objects and orthographic projection. Four ROC
curves are shown. In order from lowest to uppermost, the ROC’s
are shown for 5%, 1.25%, and 0.05% Gaussian noise® in the image
coordinates for the one-view affine recognition polynomial. The
fourth (uppermost) ROC is for 0.05% Gaussian noise for the two-
view affine recognition polynomial.
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of a novel configuration. For the two configurations to be
related by a rigid motion plus a uniform scaling s, the fol-
lowing equation must hold:

mi'mj—szni-nj=0, (6)

where i,j range over the features. The sum of (the
squares of) these quadratic polynomials with the m;
coordinates inserted is easily seen to be a recognition
polynomial for M. This can be done as well for other as-
sumptions, such as rigid motion alone or affine motion.
One can create recognition polynomials in this manner
for 3D molecular structures (or, say, rigid parts of molecu-
lar structures), allowing the recognition of each molecular
structure from arbitrary orientations, scales, and motions
of its parts.

Since recognition polynomials require the coordinates
of features, these features must be isolated and their coor-
dinates obtained before recognition polynomials can be
invoked. Automatic feature extraction is the subject of
extensive investigations elsewhere® but is simply assumed
here. Suppose, then, that n feature points have been
found and that we want to insert them into a recognition
polynomial that requires n points. There will be n! ways
to do this, at most one of which is correct and leads to a
value of zero. If n is small, an exhaustive search is fea-
sible. Otherwise one must constrain the search by re-
stricting it to subsets of the features and testing these
features with simpler recognition polynomials.

Before recognizing an object, one must first find it in
the image. There is now substantial evidence that human
infants can organize their visual world into discrete ob-
jects well before they have acquired a repertoire of object
models that could aid the process and that rigidity of mo-
tion is a key principle in their organization.® Recognition
polynomials, based on the assumption of rigid motion,
have been used successfully to model a process of configu-
ration discovery. Given a moving sequence of images, one
uses the rigidity polynomial (formula 1) to find maximal
subgroups of rigidly moving features within the images.
Each maximal subgroup corresponds to a rigid configura-
tion. Approached this way, the process of configuration
detection parallels the process of configuration recogni-
tion: one frame from the motion sequence would serve
as the memory image M and a distinct frame as the novel
image N.

Recognition polynomials thus provide an efficient
means of detecting and recognizing visual configurations.
Their simplicity makes them amenable to implementation
in parallel architectures, reducing the need for serial
search and accelerating the recognition process. They
promise practical applications in automated vision and
neural networks. And, although no claim can now be
made for the plausibility of recognition polynomials as a
model of human visual processing, recognition polynomi-
als may suggest psychophysical experiments that can
advance our understanding of how human vision makes
sense of a “blooming, buzzing confusion.”
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