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Inferring the relative three-dimensional positions of two
moving points
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We show that four orthographic projections of two rigidly linked points are compatible with at most four interpre-
tations of the relative three-dimensional positions of the points if the points rotate about a fixed axis-even when
the points as a system undergo arbitrary rigid translations. A fifth view (projection) yields a unique interpretation
and makes zero the probability that randomly chosen image points will receive a three-dimensional interpretation.
Assuming that the points rotate at a constant angular velocity, instead of adding a fifth view, also yields a unique
interpretation and makes zero the probability that randomly chosen image points will receive a three-dimensional
interpretation.

1. INTRODUCTION

Psychophysical experiments by Johansson' and others indi-
cate that human observers can perceive the relative three-
dimensional (3-D) positions and motions of moving points
from displays containing as few as two points. This ability
is not explained by most current theoretical accounts of the
recovery of 3-D structure from two-dimensional motion be-
cause most accounts require more than two points or place
excessive restrictions on the 3-D motions that can be analyzed.
Among the analyses requiring more than two points is that of
Hoffman and Bennett,2 who prove that three orthographic
projections3 of three points that rotate rigidly about a fixed
axis are compatible with at most one 3-D interpretation (plus
an orthographic projection). Similarly, Ullman4 has shown
that three orthographic projections of four noncoplanar points
in a rigid configuration are compatible with at most one 3-D
interpretation (plus reflection). Among the analyses re-
quiring only two points but placing excessive restrictions on
the 3-D motions that can be analyzed is that of Hoffman and
Flinchbaugh, 5 who prove that three orthographic projections
of two points that are constrained to rotate rigidly in a single
plane (not necessarily parallel to the image plane) are com-
patible with at most one 3-D interpretation (plus reflection).
Similarly, Hoffman and Bennett 2 have shown that three views
of two rigidly linked points are compatible with at most one
interpretation (plus reflection) if the points are constrained
to rotate at constant angular velocity about a fixed axis that
is parallel to the image plane.

A fundamental problem in the recovery of 3-D structure
from image motion is the intrinsic ambiguity: there are al-
ways an infinite number of 3-D interpretations compatible
with the image motion, regardless of the number of successive
frames available and regardless of the type of projection (e.g.,
orthographic versus perspective). To obtain a unique 3-D
interpretation one must always exploit some constraint or
restriction on the possible 3-D motions. In this paper we

explore the constraint of rigid fixed axis motion, since work
by Ullman4 indicates that rigidity alone is insufficient to ob-
tain a unique 3-D interpretation from the motions of only two
points. We show in Section 2 that four views of two points
rotating rigidly about a fixed axis (an axis not parallel to or
orthogonal to the image plane) and undergoing arbitrary
translations (the same translation for each point) are com-
patible with at most four interpretations of the relative 3-D
positions of the points. We then note that a fifth view yields
a unique interpretation and makes zero the probability that
randomly chosen image points will yield a 3-D interpretation.
In Section 3 we show, using upper semicontinuity techniques,
that imposing the additional constraint that the points rotate
at a constant angular velocity, instead of adding a fifth view,
also yields a unique interpretation that is correct with prob-
ability one. All the proofs yield closed-form solutions.

The equations studied here are amenable to solution by the
techniques of nonlinear programming, making it possible to
use them for the design of noise-insensitive algorithms for
machine vision systems. Of course, the closed-form solutions
presented later in the paper are unsuitable as machine vision
algorithms-they are presented only to prove that in fact the
equations have a unique solution. However, the equations
themselves can be combined into an objective function that
is minimized by using any of several nonlinear optimization
techniques. An example of this is given by Reuman and
Hoffman, 6 who device noise-insensitive algorithms for the
equations studied by Hoffman and Flinchbaugh.5

2. ARBITRARY ANGULAR ACCELERATION

In this section we prove the following claim:

Four orthographic projections of two rigidly linked points
are compatible with at most four interpretations (plus re-
flections) of their relative 3-D positions and motions if the
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C2 = X12 + y2 - X32 _Y .2,

C3 = X1
2 + y 2 X42 y42 ,

(2.5b)

(2.5c)

0
Fig. 1. Geometry underlying the proofs of Sections 2 and 3.

points rotate about a fixed axis-even if the system of
points undergoes arbitrary translations. Adding a fifth
view yields a unique interpretation and makes zero the
probability that randomly chosen points will lead to any
interpretation.

Proof. Call the two points 0 and A. Let ai be the vector
(in three dimensions) between 0 and A in view i (i = 1, . . .,
4), and, without loss of generality, let 0 lie on the origin in each
view as shown in Fig. 1. Because the two points are in a rigid
configuration we expect that the length of the vector from 0
to A remains constant over all four views. Consequently we
can write

al ,* a, = a2* a 2 , (2.1a)

al* a, = a3 * a 3 , (2.1b)

a, * a, =- a4 * a4. (2.1c)

In addition we expect that the vectors ai should all lie on a
cone whose vertex is at 0. Consequently we can write that
the heads of the vectors ai are coplanar:

(a, - a2) - [(a, - a3) X (a, - a4)] = 0. (2.2)

To solve these four equations it is useful to express the as's
in terms of components. Let ai = (xi, yi, zi). Assume that
the line of sight lies along the z axis. Then the xi's and yi's
are known directly from the views. The four zi's are unknown
and must be solved for.

Equations (2.1) can be expressed in terms of components
as

z12 - z2
2 + c1 = 0, (2.3a)

Z-2 - Z3
2 + C2 = 0,

Z12 - Z4
2 + C3 = 0.

(2.3b)

(2.3c)

Equation (2.2) can be expressed in terms of components
as

C4 Z1 + C5 Z2 + C6 Z3 + C7 Z4 = 0, (2.4)

where

C4 = X3Y4- x 2y 4 - x 4y 3 + X2Y3 + X 402 - X3 y2, (2.5d)

C5= Xly 4 - X3y 4 + X~y3 - Xly 3 - X~y, + X3 y1, (2.5e)

c6 = Y- 4- X4y2 + XlY2 + Xy, - x 2y1, (2.5f)

C7 =xly3-x 2 y 3 + x3y2-x1y2-x3y1 + X2Y. (2.5g)

Use Eq. (2.3) to eliminate Z2 , Z 3, and Z 4 from Eq. (2.4):

C4 Z 1 c5 (z, 2 + cl)"/ 2 C C6 (Z12 + C2 )1/2 + C7(z1 2 + C3)1/2 = 0.
(2.6)

Recalling that x + y = 0 if (x + y)(x - y) = 0, we can rewrite
Eq. (2.6) as a product of eight polynomials. Expanding and
simplifying this product (with the help of MACSYMA) we find
that

diz, 8 + d 2z,6 + d 3z14 + d4z12 + d5 = 0, (2.7)

where the di's are functions entirely of the image data (x's and
y's). Equation (2.7) is nonhomogeneous of fourth degree in
z1

2 and can be solved in closed form for z,2. Knowing zl, one
can solve for the remaining zi's by using Eqs. (2.3). This
shows that in general four views of two points spinning rigidly
about a fixed axis are compatible with at most four interpre-
tations plus reflections.

A fifth view yields a unique interpretation (plus reflection)
for the following reason. The tips of the vectors ai (i.e., the
points Ai) all lie on some circle in ]i3. This circle projects to
an ellipse in the image. Five points uniquely determine an
ellipse. The ellipse, in turn, determines two circles in ]?3 that
are reflections of each other. Note that the projection of the
point 0 must lie on the line passing through the minor axis of
the ellipse for there to be an interpretation. The probability
of this happening for randomly chosen points in the plane is
zero. Consequently the probability is zero that randomly
chosen points will lead to a 3-D interpretation.

3. CONSTANT ANGULAR VELOCITY

In this section we prove the following claim:

* Given four orthographic projections of two points rotating
rigidly and at a constant angular velocity about a fixed axis,
there is a unique interpretation (plus reflection) for the 3-D
structure and motion that is compatible with the projec-
tions. Furthermore the probability is zero that four views
of two points chosen at random will lead to an interpreta-
tion.
Referring again to Fig. 1, it is clear that the constraint of

constant angular velocity can be expressed by the following
equations:

(3.1a)

(3.1b)a, a 2 = a 3 a4.

In terms of components these become

Z1Z2 - Z2 Z3 + d6 = 0,

Z1Z2 - Z3 Z4 + d 7 = 0,

(3.2a)

(3.2b)

Ci`Xi2 + y 2
- X22- Y22 ,
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d 6 = X1X2 + YlY2 - X2X3 - Y2Y3,

d7 = X1X2 + Y1Y2 - X3X4 - Y3Y4-

Equations (3.2), (2.3), and (2.4) give a system of six poly-
nomial equations in the four variables zi. In this section we
prove that generically this system of equations has no solu-
tions, thus demonstrating that the probability is zero that
(eight) randomly chosen image points will have a 3-D inter-
pretation. The proof consists in providing a single choice of
four views of two points [i.e., eight (x, y) pairs] for which the
system has no solutions. Next we prove that if the system of
equations has solutions, then generically the number of so-
lutions is one (plus a reflection), thus demonstrating that the
3-D interpretation is unique. Again the proof consists in
providing a single choice of four views of two points for which
the system has one solution. Proof by concrete example in
this fashion is licensed in both cases by the upper semicon-
tinuity of the number of solutions to a parameterized family
of algebraic equations in projective space, i.e., the fact that the
number of solutions is an upper semicontinuous function of
the parameters for the Zariski topology (see Appendix A for
a brief explanation of upper semicontinuity).7 -10

Parenthetically, we should point out an easy way to find
solutions common to Eqs. (2.3), (2.4), and (3.2). Use Eqs.
(2.3a) and (2.3b) to eliminate 2 and 3 from Eq. (3.2a):

+Z,(z, 2 + Cl)1/2 [(Z12 + Cl)(Z,2 + c2 )]1/2 + d 6 = 0- (3.4)

Expanding and simplifying Eq. (3.4) gives

d8z4 + dz 2 + d1o = 0, (3.5)

where

d8 = C2
2-4d6,

(3.3a) that they have but one solution for the following set of image

(3.3b) data:

x = 3.968492,

x2 = 2.415874,

X3= 1.263478,

X4 = 0.6503015,

y = 8.457234,

Y2 = 6.894401,

Y3 = 4.500000,

Y4= 1.562834. (3.8)

For these data the common solutions are (Z,, Z2, Z3 , Z4 ) =

(-6.53653, -8.75390, -10.3997, -11.2754) and (6.53653,
8.75390, 10.3997, 11.2754). This proves the uniqueness of the
3-D interpretation under these equations. (See Appendix A
for more detail.)

4. CONCLUSION

We conclude that four views of two points undergoing arbi-
trary 3-D translations are compatible with at most four in-
terpretations of the relative 3-D positions of the points if the
points are rotating rigidly about a fixed axis. A fifth view
yields a unique interpretation and makes zero the probability
that randomly chosen points will receive a 3-D interpretation.
Assuming that the points rotate at a constant angular velocity,
instead of adding a fifth point, also yields a unique interpe-
tation that is correct with probability one.

It should be reiterated that the examples examined in
Section 3 are not merely for illustration but actually constitute
rigorous proofs because of the upper semicontinuity result
cited in that section.

(3.6a) APPENDIX A

d = cc 2
2

- 2cd 6
2

-c 2 d6
2 , (3.6b)

dio = d64- 2cc 2 d6
2 + c12c 2

2 . (3.6c)

Equation (3.5) is a second-degree nonhomogeneous equation
in zi2 and gives two solutions (plus reflections) for zl. Having
explicit values for z 1, it is an easy matter to compute the re-
maining z's using Eqs. (2.3) and then to check if the solutions
satisfy Eqs. (2.4) and (3.2b). We wrote a computer program
that does just this and then used it to analyze the two test
cases discussed below. This ends the parenthetical re-
mark.

To prove that generically Eqs. (2.3), (2.4), and (3.2) have
no solutions we note that they have no solutions for the fol-
lowing choice of image data:

x= 5.280761, y, = 8.863270,

X2= 4.523088, Y2 = 8.457234,

X3 = 3.169634,

X4 = 2.165064,

Y3 = 6.894401,

Y4 = 4.500000.

This proves that the probability of "false targets," i.e., the
probability that randomly moving points will be assigned a
3-D interpretation by Eqs. (2.3), (2.4), and (3.2), is zero.

To prove that if these equations have solutions then gen-
erically they have but one solution (plus reflection), we note

Our technique of proof for the claim of Section 3 is based on
the principle of upper semicontinuity, which may be stated
for our purposes as follows:

Let S be a system of algebraic (polynomial) equations in
complex projective space of arbitrary dimension. Suppose
that the coefficients of the equations in S depend algebraically
on some parameters, which vary in a complex space C. Then
the function assigning to each point P C (i.e., to each set
of values of the parameters) the number N(P) of solutions
(including multiplicities) to the equations S for that choice
of parameter values is upper semicontinuous in the Zariski
topology on Cn.

In the Zariski topology the closed sets are algebraic varieties
(solution sets of polynomial equations). Recall that a function
is upper semicontinuous if the locus of points where it assumes
a value greater than or equal to some given value is a closed
set. Hence the upper semicontinuity principle translates into
the following: Given any integer m, the set T of points P 
Cn, where N(P) > m is the solution set of a family of polyno-
mial equations.

The importance of this principle here follows from the fact
that proper Zariski closed subsets of C (proper algebraic
varieties in C) have measure zero in C, and similarly those
points on the variety having real coordinates form a measure
zero subset of the set of all points in C with real coordinates,
i,e., of Rn c Cn, Thts tho probahility is zero that a randomly
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chosen real point of Cn will lie on a given proper algebraic
variety.

In our case, the system of equations S is the system con-
sisting of Eqs. (3.2), (2.3), and (2.4), and the parameter space
is C8 with coordinates (xi, yi) i = 1, .. .,4. From the upper
semicontinuity principle we can conclude that the locus V e
C5 consisting of those (xi, yi) for which Eqs. (3.2), (2.3), and
(2.4) admit of at least one solution is an algebraic variety in
C8. Therefore to show that the probability of false targets is
zero, we only have to show that V is a proper subvariety of C8,
i.e., it suffices to produce one point in C8 that is not in V. This
was done in Section 3.

The proof of uniqueness also uses upper semicontinuity
techniques. Let Tm and V be as above. We have To = C5,
and T1 is the variety in C5 that we called V. In our case, since
solutions come in pairs corresponding to reflection about the
image plane, T1 = T2, T3 = T4, and so forth. To prove that
the probability of unique interpretation is one, we want to
show the following: If V(R) denotes the set of points in V
with real coordinates, and T4 (R) denotes the set of points in
T4 with real coordinates, then T4(R) has measure zero in
V(R).

As with false targets, the proof is based on producing a point
in V(R) that is not in T4 (R)-which was done in Section 3.
This implies (by the upper semicontinuity principle) that T4
is a proper algebraic subvariety of V. One cannot conclude
from this alone that T 4 has measure zero in V, for it is a priori
possible that V may be reducible, i.e., it may consist of several
components, say of equal dimension, one or more of which
constitute T4. It can be shown in our case, using the approach
of Hoffman and Bennett, 2 that all components of V other than
T 4 have dimension less than T4, so that the uniqueness claim
does follow from the test point produced in Section 3. Note
that this consideration does not arise in the false targets proof,
for there we are starting with To = C5, which is irreducible.
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